CS 4803-DL / 7643-A: LECTURE 20
DANFEI XU

Topics:

* Reinforcement Learning Part 1
* Markov Decision Processes
e Value Iteration
* (Deep) Q Learning

Administrative

e HW4 isdue EOD 11/11. Grace period ends 11/13
 HW3 grades will be released by the end of this week
* Milestone Report grades and feedback will be released by Sunday, 11/13

Reinforcement

Learning
Introduction

Georgia
grgia |

0

Supervised Unsupervised Reinforcement
Learning Learning Learning

Train Input: {X, Y} Input: {X} Evaluative
feedback in the

Learning output: Learning form of reward
f:X ->Y,P(ylx) output: P(x)
e.g. classification Example: Clustering, ![\rl](; ?,;?,?Zlci:grr: o

density estimation,
generative modeling

: o DEF' u Envionment
0-0on |
— Uog od o ol A
DDE% u 5
P | —> Cat - | \2 Re’Va,u b
: | ion] iy u Interpreter
i O T
0y &’ @
ag? ® e\ J

Agent

=

) Types of Machine Learning Gegrgia |

RL: Sequential decision making in an environment with evaluative feedback.

Agent

| State, Reward, Action,
St! mu|95, Gain, Payoff, Response,
Situation Cost Control

Environment |
(world)

Figure Credit: Rich Sutton

Environment may be unknown, non-linear, stochastic and complex.
Agent learns a policy to map states of the environments to actions.

Seeking to maximize cumulative reward in the long run.

) What is Reinforcement Learning? Gegrala |

=

Example: Robot Locomotion

Objective: Make the robot move
forward without falling

State: Angle and position of the joints
Action: Torques applied on joints

Reward: +1 at each time step upright
and moving forward

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Examples of RL tasks Gograta |

=

Example: Robot Manipulation

> Examples of RL tasks

Objective: Pick up object and place
to sorting bin

State: Pose of the object and the bin,
joint state and velocity of robots

Action: End effector motion

Reward: inverse distance between
the object and the bin

Georgia
Tech

A

Example: Atari Games

Objective: Complete the game with the highest score
State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Georgia @1

Examples of RL tasks Tech

=

Example: Go

ABCDETFGH])]KLMNOPOQRST

L] T T A o
i }b’.g{) b i Objective: Defeat opponent
E 9 E State: Board pieces
| OS ‘&} s Action: Where to put next piece
190 190 down
: Reward: +1 if win at the end of game,
hd 0 otherwise

= N W s N

i

ABCDETFGH])]KLMNOPOQRST

= N Ws N ®
?%é/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Examples of RL tasks Gograta |

=

Deep Learning for Decision Making

action
output

state
input

Deep Learning for Decision Making Gograla)

=

Deep Learning for Decision Making

~

&

action
output

state
input

Problem: we don’t know the correct action label to supervise the output!

) Deep Learning for Decision Making Gograla)

=

Deep Learning for Decision Making

state
input

~y
ﬁ action
O output -\
? =
\ reward ry <— @

Problem: we don’t know the correct action label to supervise the output!

™~

All we know is the step-wise task reward

) Deep Learning for Decision Making Gograla)

=

Deep Learning for Decision Making

state
input

~y
ﬁ action
— output -\
\ ,)
i ?
How do we pose the Iearnmg problem- \ reward 7, <
(Deep) Reinforcement Learning!

Problem: we don’t know the correct action label to supervise the output!

All we know is the step-wise task reward

) Deep Learning for Decision Making Gograla)

=

Markov

Decision
Processes

Georgia
grgia |

0

MDPs: Theoretical framework underlying RL

Markov Decision Processes (MDPs) Gegrgia |

=

MDPs: Theoretical framework underlying RL
An MDP is defined as a tuple (S, A, R, T,)
S : Set of possible states
A : Set of possible actions
R(s,a,s’) : Distribution of reward
T(s,a,s’) : Transition probability distribution, also written as p(s’ls,a)
”Y : Discount factor

Georgia

Markov Decision Processes (MDPs) Techf}]

=

MDPs: Theoretical framework underlying RL
An MDP is defined as a tuple (S, A, R, T,)
S : Set of possible states
A : Set of possible actions
R(s,a,s’) : Distribution of reward
T(s,a,s’) : Transition probability distribution, also written as p(s’ls,a)
”Y : Discount factor
Experience: ... S¢, Q¢, Te41, St4+1, Qt+1,Tt4+2, St+2,5 - - -

Georgia

Markov Decision Processes (MDPs) Techf}]

=

Markov property: Current state completely characterizes state of the
environment

Assumption: Most recent observation is a sufficient statistic of history
p(St—l—l = 3/|St = s8¢, Ay = a4, S¢—1 = S¢—1,...50 = 80) = p(St—l—l = 3/|St = 8¢, Ay = at)

) Markov Decision Processes (MDPs) Gegrgla |

=

Fully observed MDP Partially observed MDP

Agent receives the true state
s;at time t

Agent perceives its own
partial observation o; of the
state s; at time t, using past

Example: Chess, Go ,
states e.g. with an RNN

Example: Poker, First-
person games (e.g. Doom)

Source: https://github.com/mwydmuch/ViZDoom

) MDP Variations Gegroia |

=

We will assume fully observed MDPs for this lecture

) MDP Variations Gegrgia|

=

In Reinforcement Learning, we assume an underlying MDP with unknown:
Transition probability distribution T MDP

Reward distribution 7. (S, A,R,T,v)

) MDPs in the context of RL Gegroia |

=

In Reinforcement Learning, we assume an underlying MDP with unknown:
Transition probability distribution TT* MDP
Reward distribution 7%, (S, A,R,T,~)

Put simply: without learning, the agent doesn’t know how their actions will change
the environment and what reward they will receive.

Reinforcement learning is to learn the environment transition and (future) reward by
actively interacting with the environment and learning from the experience.

=

) MDPs in the context of RL Gegroia |

i
2 [-T]
1

1 2 3 4

Figure credits: Pieter Abbeel

) A Grid World MDP Gegrgia)|

=

Agent lives in a 2D grid environment
i
é 1]
1
1 2 3 4

Figure credits: Pieter Abbeel

) A Grid World MDP Gegrgia)|

=

Agent lives in a 2D grid environment
3
State: Agent’s 2D coordinates
Actions: N, E, S, W i 7]
Rewards: +1/-1 at absorbing states
1
1 2 3 4

Figure credits: Pieter Abbeel

) A Grid World MDP Gegrgia |

Tech

=

Agent lives in a 2D grid environment

3
State: Agent’s 2D coordinates
Actions: N, E, S, W i 7]
Rewards: +1/-1 at absorbing states

1
Walls block agent’s path

1 2 3 4

Actions to not always go as planned

20% chance that agent drifts one cell
left or right of direction of motion
(except when blocked by wall).

Figure credits: Pieter Abbeel

) A Grid World MDP Gegrgia)|

=

Solving MDPs by finding the best/optimal policy

Solving MDPs: Optimal policy Gegrgla |

=

Solving MDPs by finding the best/optimal policy

Formally, a policy is a mapping from states to actions Al State Action

Solving MDPs: Optimal policy Gegrgla |

=

n=|S|

Solving MDPs by finding the best/optimal policy — |A|
Formally, a policy is a mapping from states to actions ?
Deterministic 7(s) = a
70 M

Solving MDPs: Optimal policy Gegrgla |

=

n =15
Solving MDPs by finding the best/optimal policy m = | A

Formally, a policy is a mapping from states to actions 1

Deterministic 7(s) = a

Solving MDPs: Optimal policy Gegrgla |

=

n=|S|

Solving MDPs by finding the best/optimal policy — |A|
Formally, a policy is a mapping from states to actions ?
Deterministic 7(s) = a
Stochastic w(a|s) = P(A4; = a|S; = s) 7T

Solving MDPs: Optimal policy Gegrgla |

=

n =15
Solving MDPs by finding the best/optimal policy m = | A

Formally, a policy is a mapping from states to actions m

Deterministic 77(3) — a
Stochastic ~ 7(als) = P(A: = a|S; = s) n. T

Solving MDPs: Optimal policy Gegrgla |

=

Solving MDPs by finding the best/optimal policy

Formally, a policy is a mapping from states to actions
Deterministic 7(s) = a
Stochastic w(a|s) = P(A4; = a|S; = s)

What is a good policy?
Maximize current reward? Sum of all future rewards?

Solving MDPs: Optimal policy Gegrgla |

=

Solving MDPs by finding the best/optimal policy
Formally, a policy is a mapping from states to actions
Deterministic 7(s) = a

Stochastic w(a|s) = P(A4; = a|S; = s)

What is a good policy?
Maximize current reward? Sum of all future rewards?

N1/ ./
©V 9 6
Discount factor: 7Y 1 ~

Typ|Ca”y O 9 _ O 99 Worth Now Worth Next Step Worth In Two Steps

Discounted sum of future rewards!

How much to value future rewards

Solving MDPs: Optimal policy Gegrgla |

=

Formally, the optimal policy is defined as:

™ = argmax K Z’}/t’fﬂﬂ'

T

Solving MDPs: Optimal policy Gegrgla |

=

Formally, the optimal policy is defined as:
discounsjiof future rewards
* t /
7 = arg max £ E Yore|m
7
t>0

Solving MDPs: Optimal policy Gegrgla |

=

Formally, the optimal policy is defined as:
discounsjiof future rewards
* t /
7 = arg max £ E Yore|m
7
t>0

Solving MDPs: Optimal policy Gegrgla |

=

Formally, the optimal policy is defined as:
discounsjiof future rewards
* t
7 = arg max £ g Yore|m
7
t>0

so ~ p(80),ar ~ m(:|8t),8t+1 ~ p(|8¢,at)

Expectation over initial state, actions from policy,
next states from transition distribution

Solving MDPs: Optimal policy Gegrgla |

=

A value function predicts the sum of discounted future reward

) Value Function Gegrgia |

=

A value function predicts the sum of discounted future reward

State value function / V-function/ V : S — R
How good is this state?
Am | likely to win/lose the game from this state (reward-to-go)?

) Value Function Gegrgia |

=

A value function predicts the sum of discounted future reward

State value function / V-function/ V : S — R
How good is this state?
Am | likely to win/lose the game from this state (reward-to-go)?

State-Action value function / Q-function/ Q@ : S x A — R
How good is this state-action pair?
In this state, what is the impact of this action on my future?

) Value Function Gegrgia |

=

For a policy that produces a trajectory sample (sq, ag, S1,G1,52)

) Value Function Gegrgia |

=

For a policy that produces a trajectory sample (sq, ag, S1,G1,52)

The V-function of the policy at state s, is the expected cumulative reward
from state s:

VT(s)=E Z’ytrt|so = 8,7

>0

) Value Function Georgia &

For a policy that produces a trajectory sample (sq, ag, S1,G1,52)

The V-function of the policy at state s, is the expected cumulative reward
from state s:

VT(s)=E Z’ytrt|so = 8,7

>0

) Value Function Georgia &

For a policy that produces a trajectory sample (sq, ag, S1,G1,52)

The V-function of the policy at state s, is the expected cumulative reward
from state s:

VT(s)=E Z’ytrt|so = 8,7

>0

So ~ p(80),ar ~ 7(:[8t),St+1 ~ P (|8, at)

) Value Function Georgia &

For a policy that produces a trajectory sample (sq, ag, S1,G1,52)

The Q-function of the policy at state s and action a, is the expected
cumulative reward upon taking action a in state s (and following policy
thereafter):

Georgia

Action-Value Function orgia |

=

For a policy that produces a trajectory sample (sq, ag, S1,G1,52)

The Q-function of the policy at state s and action a, is the expected
cumulative reward upon taking action a in state s (and following policy
thereafter):

Q" (s,a) =E Zytn!so = S,a0 = Q, T
t>0

So ~ p(80),at ~ 7 (:[8t),8t41 ~ P (|8, at)

) Action-Value Function Geg.ggg&

The V and Q functions corresponding to the optimal policy ™

V*(s)=E thrﬂso =38, 7"

Q*(s,a) =E thrﬂso =s,a9 = a, 7"
t>0

V*(s) = max Q*(s,a)

) Optimal V & Q functions Gograta |

=

Recursive Bellman expansion (from definition of Q)

(Expected) return fromt=0

Olea)= Eoiw > A'r(sea) | so=sa0=a
tr : t
ser1~p(-|se,ar) LEZ0

Bellman Optimality Equations Gegrala |

=

Recursive Bellman expansion (from definition of Q)

(Expected) return fromt=0

Q*(s;,a)= E > " Air(se,ar) | so = s,a0 = a

ar~m*(+|s¢e)

3t+1Np<’|3t7at) t20
_ .0 E]E t—1 N/
=~°r(s,a) + Y i YT (sg,a) | s1 =8
s'~p(-|s,a) ar~mT (-] st) =1
i 3t+1Np('|3taat) - _

—rsa)+y, E V()

s'~p(s’|s,a)

= E = [r(s,a) +yV7(s)]

s'~p(s’|s,a)

(Reward at t = 0) + gamma * (Return from expected state at t=1)

Bellman Optimality Equations Gegrala |

=

Equations relating optimal quantities

Vi(s) =maxQ*(s,a)] ['(s) = argmaxQ*(s,a)

Recursive Bellman optimality equation

Q" (s,a)= E [r(s,a)+~yV"(s)]

s'~p(s’'|s,a)

=S p(s']s,a) [r (s,0) + 7V *(5)]

— le (s']s, a) [7“ (s,a) + ymax Q™ (s, a’)]

Bellman Optimality Equations Gegrala |

=

Equations relating optimal quantities

V*(s) = max Q*(s,a)

7*(s) = arg max Q*(s,a)

Bellman Optimality Equations

Georgia
Tec

Al

=

Equations relating optimal quantities

V*(s) = max Q*(s,a) m*(s) = argmax Q" (s, a)

Recursive Bellman optimality equation

Q" (s,a)= E [r(s,a)+~yV"(s)]

s'~p(s’'|s,a)

=3 p (@)l (5, + V()
= Zp(s'\s a) [(s,a) -l—’YmC?LlX Q*(s’,a/)]

V*(s) = mapr "Is,a) [r(s,a) + V™ (s')]

Bellman Optimality Equations Gegroia)

Algorithm: Value Iteration
Initialize values of all states to arbitrary values, e.g., all 0’s.

While not converged: . :
For each state: | V*'! (s) < max Zp(8'|8, a) [7“(3» a) + ’YVZ(S/)]
a
S/

Repeat until convergence (no change in values)
Vi Vvis vl oV SV

Time complexity per iteration O(|S | 2 |.A|)

) Value Iteration Gegrgia |

=

Value Iteration Update:

Vi—|—1 (S) (_ m(?x ZP(S/|37 a) [T(S, CL) i WVi(s’)]

S/
Q-lteration Update:

Q" (5,0) = Ep(elanc) |7 (s,0) + ymax Q'(s', ')

The algorithm is same as value iteration, but it loops over
actions as well as states

) Value Iteration Ge‘%é%ﬁ{}]

Value iteration is almost never used in practice!

Time complexity per iteration O(|S|2 |,A|)

1 2 3 4
IS| = 11,]4] = 4 S| = 3361, |4| = 361 S| =7,]|4| =7
Can't iterate over all (s, a) pairs -> need approximation!

We also don’t know the transition function (model) -> need a model-free method!

) Value Iteration Gegraia

&

Q-Learning

 We'd like to do Q-value updates to each Q-state:
Q'(spap) = Z T(st41lseag)lre +v maaX Q(St41,a)]
S’

— But can’t compute this update without knowing all possible next states s’

* Instead, approximate the expectation with (lots of) experience samples
— Take an action in the environment following policy argmax,Q (s, a)
— receive a sample transition (s¢, ag, ¢, Sg41)

— This sample suggests: Q(s¢, a;) = 1 + y max Q(S¢41, @)
a

— Keep a running average to approximate the expectation:
Q'(star) = (1 — a)Q(sg, ap) + afry + y max Q(St41,a)]

Still need to represent all (s, a) pairs in a Q value table!

Q-Learning

|dea: represent the Q value table as a parametric function Qg (s, a)!

How do we learn the function?

Q'(star) = (1 — a)Q(sg, ap) + afry + y max Q(st41,a)]
=Q(spap) +a(ry + VmC?XQ(St+1r a) — Q(st ar))

Now, at optimum, Q(s¢, ar) = Q'(s¢, ar) = Q*(st, ap); This gives us:

0=0+a(r + VmO?XQ(St+1; a) — Q(sg ar))

Learning problem:
argming||ry + y max Qo(St+1,a) — Qo (st ar)) |

\ }

|
Target Q value

Deep

Q-Learning

Georgia
groia |

Q-Learning with linear function approximators

Q(s,a;w,b) = w, s+ b,

Has some theoretical guarantees FC-4 (Q-values)
FC-256
Deep Q-Learning: Fit a deep Q-Network Q (S, a; v)
Works well in practice
Q-Network can take arbitrary input (e.g. RGB images)
Assume discrete action space (e.g., left, right) I — - ——

|

) Deep Q-Learning Gograta |

=

Assume we have collected a dataset:

{(87 a, 8,7 T)’i 713\21

We want a Q-function that satisfies bellman optimality (Q-value)

Q(s,a) = E [r(s,0) + ymaxQ(s',a)

s'~p(s’|s,a)

Loss for a single data point:

MSE Loss := (Qnew(s, a) — (r+ VmC?X Qold(sla a)))2
\) \ Y J

Predicted Q-Value Target Q-Value

) Deep Q-Learning Gograta |

=

Minibatch of { (s, a, s, 7); 12,

Forward pass:

State — Q-Network » Q-Values per action
B x D B x Nactions
2
Compute loss: (Qnew(s, a) — (r + ymax Qo (s, a)))
\ Y J @ \ Y J
Hnew HOld [FC-4 Qvalues) |

| FC-256 |

Backward pass: 8L 0SS

aenew

={ |-

=

) Deep Q-Learning Gograta |

MSE Loss := (Qnew(s, a) — (r+ max Qota(s’, a))>2

In practice, for stability:
Freeze Qold and update Qnew parameters

Set Qold < Qnew at regular intervals or update as running average

Oo1a = BOo1a + (1 - ﬁ)gnew

) Deep Q-Learning Gograta |

=

How to gather experience?

{(37 a, 5,7 T)’i ffil

This is why RL is hard

) Deep Q-Learning Gograta |

=

Wgather — Environment > Data {(s,a,s",1); ﬁvzl

Train

Update
Mgather

Ttrained

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data

How to gather experience? Gograla)

=

What should TTgather be?

Greedy? -> no exploration, always choose the most confident action

arg max (s, a; 0)
a
An exploration strategy:
e-greedy

argmax Q(s,a) with probability 1 — ¢
at — &
random action with probability €

) Exploration Problem Gograta |

=

Samples are correlated => high variance gradients => inefficient learning

Current Q-network parameters determines next training samples => can lead
to bad feedback loops

e.g. if maximizing action is to move right, training samples will be
dominated by samples going right, may fall into local minima

=

) Correlated Data Problem Gegroia |

Correlated data: addressed by using experience replay

" /
A replay buffer stores transitions (S, a,Ss ,7“)

Continually update replay buffer as game (experience) episodes are
played, older samples discarded

Train Q-network on random minibatches of transitions from the replay
memory, instead of consecutive samples

Larger the buffer, lower the correlation

) Experience Replay Gegrgla |

=

Algorithm 1 Deep O-learning with Experience Replay
Initialize replay memory D to capacity N .
Initialize action-value function () with random weights Experience Replay
for episode = 1, M do
Initialise sequence s, = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1.T do _
With probability € select a random action a;, EpS' Ion-g reedy
otherwise select a; = max, Q*(d(s;).a; 0)
Execute action a; in emulator and observe reward r; and image x;;
Set 8;.1 = 84, a4, Ty, and preprocess @y.1 = O(8111)
Store transition (¢, a;, 7y, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
S B { r for terminal ¢, Q Update
Y=Y : ol el &
ri +ymaxy Q(¢;r1,a';6) for non-terminal ¢; .,
Perform a gradient descent step on (y; — Q(d;, a;; 6?))2 according to equation 3
end for
end for

) Deep Q-Learning Algorithm Gegth

!5

=

Atari Games

Objective: Complete the game with the highest score
State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Georgia

Case study: Playing Atari Games Tech@]

=

Atari Games

-
:

https://www.youtube.com/watch?v=V1eYniJORnk

Case study: Playing Atari Games Gogrola |

=

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Different RL Paradigms

Value-based RL
(Deep) Q-Learning, approximating Q* (s, a) with a deep Q-network

Policy-based RL
Directly approximate optimal policy 7° with a parametrized policy 7

Model-based RL
Approximate transition function T'(s’, a, s) and reward function R(s, a)
Plan by looking ahead in the (approx.) future!

Today, we saw
MDPs: Theoretical framework underlying RL, solving MDPs
Policy: How an agents acts at states
Value function (Utility): How good is a particular state or state-action pair?

Solving an MDP with known rewards/transition
Value lteration: Bellman update to state value estimates
Q-Value lteration: Bellman update to (state, action) value estimates

Policy Iteration
Policy evaluation + refinement

=

) Summary: MDP Algorithms Gograta |

Next Time: RL continued --- Policy
Gradient and Actor-Critic

