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Generative Models:
PixelCNN / PixelRNN
Variational AutoEncoders (VAEs)



Recap: Three Ways of Processing Sequences
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Recurrent Neural Network 1D Convolution Self-Attention

Works on Ordered Sequences
(+) Good at long sequences: After 
one RNN layer, hT ”sees” the whole 
sequence
(-) Not parallelizable: need to 
compute hidden states sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need to 
stack many conv layers for outputs 
to “see” the whole sequence
(+) Highly parallel: Each output can 
be computed in parallel

Works on Sets of Vectors
(+) Good at long sequences: after 
one self-attention layer, each output 
“sees” all inputs!
(+) Highly parallel: Each output can 
be computed in parallel
(-) Very memory intensive

x1 x2 x3 x4x1 x2 x3 x4

Slide credit: Justin Johnson



Recap: Transformer

Self-Attention Transformer Model Beyond Language



Generative Models



Supervised vs Unsupervised Learning

5

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.



Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Cat

Classification

This image is CC0 public domain

https://pixabay.com/en/kitten-cute-feline-kitty-domestic-1246693/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Image captioning

A cat sitting on a suitcase on the floor

Caption generated using neuraltalk2
Image is CC0 Public domain.

https://github.com/karpathy/neuraltalk2
https://pixabay.com/en/luggage-antique-cat-1643010/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

DOG, DOG, CAT

This image is CC0 public domain

Object Detection

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Supervised vs Unsupervised Learning
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Semantic Segmentation

GRASS, CAT, 
TREE, SKY
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, density 
estimation, etc.

Supervised vs Unsupervised Learning
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, density 
estimation, etc.

Supervised vs Unsupervised Learning

K-means clustering

This image is CC0 public domain

https://commons.wikimedia.org/wiki/File:ClusterAnalysis_Mouse.svg
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, density 
estimation, etc.

Supervised vs Unsupervised Learning

Principal Component Analysis 
(Dimensionality reduction)

This image from Matthias Scholz  
is CC0 public domain

3-d 2-d

http://phdthesis-bioinformatics-maxplanckinstitute-molecularplantphys.matthias-scholz.de/fig_pca_illu3d.png
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, density 
estimation, etc.

Supervised vs Unsupervised Learning

2-d density estimation

2-d density images left and right
are CC0 public domain

1-d density estimation
Figure copyright Ian Goodfellow, 2016. Reproduced with permission. 

Modeling p(x)

https://commons.wikimedia.org/wiki/File:Bivariate_example.png
https://www.flickr.com/photos/omegatron/8533520357
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, density 
estimation, etc.
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Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.



Generative Modeling
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Training data ~ pdata(x)

Objectives:
1. Learn pmodel(x) that approximates pdata(x) 
2. Sampling new x from pmodel(x)

Given training data, generate new samples from same distribution

learning
pmodel(x)

sampling



Generative Modeling
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Training data ~ pdata(x)

Given training data, generate new samples from same distribution

learning
pmodel(x)

sampling

Formulate as density estimation problems:
- Explicit density estimation: explicitly define and solve for pmodel(x) 
- Implicit density estimation: learn model that can sample from pmodel(x) without 

explicitly defining it.



Why Generative Models?
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- Realistic samples for artwork, super-resolution, colorization, etc.
- Learn useful features for downstream tasks such as classification.
- Getting insights from high-dimensional data (physics, medical imaging, etc.)
- Modeling physical world for simulation and planning (robotics and 

reinforcement learning applications)
- Many more ...

FIgures from L-R are copyright: (1) Alec Radford et al. 2016; (2) Phillip Isola et al. 2017. Reproduced with authors permission (3) BAIR Blog. 

https://arxiv.org/abs/1511.06434
https://phillipi.github.io/pix2pix/
https://bair.berkeley.edu/blog/2018/11/30/visual-rl/


Taxonomy of Generative Models
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Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain
Variational Autoencoder
Denoising Diffusion Models

Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN
- NICE / RealNVP
- Glow 
- Ffjord



Taxonomy of Generative Models
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Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain
Variational Autoencoder
Denoising Diffusion Models

Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Today and the next lecture: 
discuss 4 most popular types 
of generative models

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN
- NICE / RealNVP
- Glow 
- Ffjord
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PixelRNN and PixelCNN
(A very brief overview)
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Fully visible belief network (FVBN)

Likelihood of 
image x

Explicit density model

Joint likelihood of 
each pixel in the 

image
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Fully visible belief network (FVBN)

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Then maximize likelihood of training data



Then maximize likelihood of training data
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Fully visible belief network (FVBN)

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Complex distribution over pixel 
values => Express using a neural 
network!
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Recurrent Neural Network

x1

RNN

x2

x2

RNN

x3

x3

RNN

x4

...

xn-1

RNN

xn

h1 h2 h3h0



PixelRNN
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Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

[van der Oord et al. 2016]



PixelRNN
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Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

[van der Oord et al. 2016]



PixelRNN

27

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

[van der Oord et al. 2016]



PixelRNN
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Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

[van der Oord et al. 2016]

Drawback: sequential generation is slow 
in both training and inference!



PixelCNN
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[van der Oord et al. 2016]

Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region
(masked convolution)

Figure copyright van der Oord et al., 2016. Reproduced with permission. 



PixelCNN
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[van der Oord et al. 2016]

Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region
(masked convolution)

Figure copyright van der Oord et al., 2016. Reproduced with permission. 

Training is faster than PixelRNN
(can parallelize convolutions since context region 
values known from training images)

Generation is still slow:
For a 32x32 image, we need to do forward passes of 
the network 1024 times for a single image



Generation Samples
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Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission. 

32x32 CIFAR-10 32x32 ImageNet
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PixelRNN and PixelCNN
Improving PixelCNN performance
- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc…

See
- Van der Oord et al. NIPS 2016
- Salimans et al. 2017 

(PixelCNN++)

Pros:
- Can explicitly compute 

likelihood p(x)
- Easy to optimize
- Good samples

Con:
- Sequential generation => slow



Taxonomy of Generative Models
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Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain
Variational Autoencoder
Denoising Diffusion Models

Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN
- NICE / RealNVP
- Glow 
- Ffjord
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Variational 
Autoencoders (VAE)
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PixelR/CNNs define tractable density function, optimize likelihood of training data:

So far...



So far...
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PixelR/CNNs define tractable density function, optimize likelihood of training data:

Variational Autoencoders (VAEs) define intractable density function with latent z:  

No dependencies among pixels, can generate all pixels at the same time!



So far...
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PixelR/CNNs define tractable density function, optimize likelihood of training data:

Variational Autoencoders (VAEs) define intractable density function with latent z:  

Cannot optimize (maximum likelihood estimation) directly, derive and optimize 
lower bound on likelihood instead

No dependencies among pixels, can generate all pixels at the same time!



So far...
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PixelR/CNNs define tractable density function, optimize likelihood of training data:

Variational Autoencoders (VAEs) define intractable density function with latent z:  

No dependencies among pixels, can generate all pixels at the same time!

Why latent z?

Cannot optimize (maximum likelihood estimation) directly, derive and optimize 
lower bound on likelihood instead



Some background first: Autoencoders
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Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Encoder

Input data

Features

Decoder



Some background first: Autoencoders
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Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 
reduction? Decoder

Encoder



Some background first: Autoencoders
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Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

z usually smaller than x
(dimensionality reduction)

Decoder

Encoder

Q: Why dimensionality 
reduction?

A: Want features to 
capture meaningful 
factors of variation in 
data



Some background first: Autoencoders
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Encoder

Input data

Features

How to learn this feature 
representation?

Train such that features 
can be used to 
reconstruct original data
“Autoencoding” -
encoding input itself

Decoder

Reconstructed 
input data

Reconstructed data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Input data



Some background first: Autoencoders
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Encoder

Input data

Features

Decoder

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 
can be used to 
reconstruct original data

Doesn’t use labels!



Some background first: Autoencoders
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Encoder

Input data

Features

Decoder

Reconstructed 
input data

After training, 
throw away decoder



Some background first: Autoencoders
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Encoder

Input data

Features

Classifier

Predicted Label
Fine-tune
encoder
jointly with
classifier

Loss function 
(Softmax, etc)

Encoder can be 
used to initialize a 
supervised model

plane
dog deer

bird
truck

Train for final task 
(sometimes with 

small data)

Transfer from large, unlabeled 
dataset to small, labeled dataset.



Some background first: Autoencoders
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Encoder

Input data

Features

Decoder

Reconstructed 
input data

Autoencoders can reconstruct 
data, and can learn features to 
initialize a supervised model

Features capture factors of 
variation in training data. 

But we can’t generate new 
images from an autoencoder 
because we don’t know the 
space of z.

How do we make autoencoder a  
generative model?
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Variational Autoencoders
Probabilistic spin on autoencoders - will let us sample from the model to generate data!
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from the distribution of unobserved (latent) 
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from 
true conditional
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Assume training data                  is generated from the distribution of unobserved (latent) 
representation z

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Sample from 
true conditional

Intuition (remember from autoencoders!): 
x is an image, z is latent factors used to 
generate x: attributes, orientation, etc. 
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How should we represent this model?
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How should we represent this model?

Choose prior p(z) to be simple, e.g. 
Gaussian. Reasonable for latent attributes, 
e.g. pose, how much smile.
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How should we represent this model?

Choose prior p(z) to be simple, e.g. 
Gaussian. Reasonable for latent attributes, 
e.g. pose, how much smile.

Conditional p(x|z) is complex (generates 
image) => represent with neural network

Decoder 
network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How to train the model?

Decoder 
network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How to train the model?

Learn model parameters to maximize likelihood 
of training dataDecoder 

network
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Sample from
true prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders

Sample from 
true conditional

We want to estimate the true parameters 
of this generative model given training data x.

How to train the model?

Learn model parameters to maximize likelihood 
of training data

Q: What is the problem with this?
Intractable!

Decoder 
network
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Simple Gaussian prior

✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Decoder neural network

✔ ✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Intractable to compute p(x|z) for every z!

😢 ✔ ✔
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:

Intractable to compute p(x|z) for every z!

😢 ✔ ✔

Monte Carlo estimation is too high variance



62

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
😢 ✔ ✔

Posterior density:

Intractable data likelihood
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Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Autoencoders: Intractability

Data likelihood:
😢 ✔ ✔

Posterior density:

Can we derive a tractable approximate of the data likelihood?
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Variational Autoencoders
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Variational Autoencoders

Let’s assume we can sample from some 
approximate posterior for now …
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Variational Autoencoders
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Variational Autoencoders
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Variational Autoencoders



71

Variational Autoencoders

Recall: 
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Variational Autoencoders

We use a neural network encoder to 
approximate the posterior distribution, i.e., what 
is the distribution of z given an input x(i). 
Assume a Gaussian distribution.



73

Variational Autoencoders

This KL term (between 
Gaussians for encoder and z 
prior) has nice closed-form 
solution!

Decoder network gives pθ(x|z), can 
compute the expectation by sampling 
from the learned posterior. (need some 
trick to differentiate through sampling). 
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Variational Autoencoders

pθ(z|x) intractable (saw 
earlier), can’t compute this KL 
term :(  But we know KL 
divergence always  >= 0.
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Variational Autoencoders

We want to 
maximize the 
data 
likelihood

pθ(z|x) intractable (saw 
earlier), can’t compute this KL 
term :(  But we know KL 
divergence always  >= 0.
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Variational Autoencoders

We want to 
maximize the 
data 
likelihood

Tractable lower bound which we can take 
gradient of and optimize! (pθ(x|z) differentiable, 
KL term differentiable)
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Variational Autoencoders

Tractable lower bound which we can take 
gradient of and optimize! (pθ(x|z) differentiable, 
KL term differentiable)

Decoder:
reconstruct
the input data

Encoder: 
make approximate 
posterior distribution 
close to prior
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Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound
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Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Let’s look at computing the KL 
divergence between the estimated 
posterior and the prior given some data



80

Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound
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Encoder network

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Have analytical solution
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Encoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Not part of the computation graph!
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Encoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Reparameterization trick to make 
sampling differentiable:

Sample 
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Encoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Reparameterization trick to make 
sampling differentiable:

Sample 

Part of computation graph

Input to 
the graph
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Maximize likelihood of original 
input being reconstructed
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

Hyperparameter to weigh the strength of 
the prior matching objective
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Encoder network

Decoder network

Sample z from

Input Data

Variational Autoencoders
Putting it all together: maximizing the 
likelihood lower bound

For every minibatch of input 
data: compute this forward 
pass, and then backprop!
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Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from
true prior

Sample from 
true conditional

Decoder 
network

Our assumption about data generation 
process
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Variational Autoencoders: Generating Data!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample from
true prior

Sample from 
true conditional

Decoder 
network

Our assumption about data generation 
process

Decoder network

Sample z from

Sample x|z from

Now given a trained VAE: 
use decoder network & sample z from prior!
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network.  Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Decoder network

Sample z from

Sample x|z from

Variational Autoencoders: Generating Data!
Use decoder network.  Now sample z from prior! Data manifold for 2-d z

Vary z1

Vary z2Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

Vary z1

Vary z2

Degree of smile

Head pose

Diagonal prior on z
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Also good feature representation that 
can be computed using qɸ(z|x)! 

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014
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Variational Autoencoders: Generating Data!

32x32 CIFAR-10
Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission. 



Variational Autoencoders
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Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound
Pros:

- Principled approach to generative models
- Latent space z is interpretable and may be useful for other downstream tasks.

Cons:
- Samples are blurry
- KL weights are hard to tune
- Latent distributions are aggressive representation bottlenecks that may limit the 

expressiveness of the model.
Active areas of research:

- More flexible approximations, e.g. richer approximate posterior instead of diagonal 
Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.

- Learning disentangled representations.



Next Time: Denoising Diffusion and 
Generative Adversarial Networks


