CS 4644-DL / 7643-A: LECTURE 17
DANFEI XU

Attention for Sequence Modeling

Attention is (Mostly) All you Need: Transformers



Administrative:

e HW3 due 10/25
* Milestone Report due 11/3



Recurrent Neural Networks: Process Sequences

one to one one to many many to one many to many many to many




RNN hidden state update

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

he|=|fw|(hi—1T4)
new state \ old state input vector at T
(vector) (vector) some time step
some function X
with parameters W

Can set initial state hy to all 0’s



RNN: Computational Graph: Many to Many -

y1 1 L1 y2 | L2 Y3
* hy fW " hy fW  hs

:|_3

YT

L




Truncated Backpropagation through time

Loss

/1 TN




Vani”a RNN Gradient FIOW Bd?f Itt IIElé_ET gl gt mde IdN cles |\<Nth1394d ent des

Pasc et al, “On the dff Ity of training recurren ral networks”,

Gradients over multiple time steps: o 2013
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hO :—» stack > h1 =——> stack h2 =——> stack h4
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X1 X2 X3 X4
tanh’
Z 8Lt Always < 1
t=1 Vanishing gradients | ]\

oL 3L Ooh
G = Dhy (Ht o [tanh! Whphi—y + Wapay )W, o




Long Short Term Memory (LSTM)

Vanilla RNN

LSTM

h; = tanh <W (ht*))
Tt

Q O % .

o
_ o W (ht_1>
o Tt
tanh

ct=fOc1+10g
ht = 0 ® tanh(c;)

Learn to control information flow from previous state to the next state

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997




Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

g N g N
Co- ‘?Z*T_'C<——’C1+ ?4_““4_ —’Cg ‘?T_’+T_'C<—_—'C3
W— T é}@ tanh W_> I_L’(D tanh W— T é}@ tanh
| |
—T > stack —— stack —T > stack
.t "° ey Qe 'Q_'h/_’ .t O Y

Notice that the gradient contains the f gate’s vector of activations
- allows better control of gradients values, using suitable parameter updates of the
forget gate.
Also notice that are added through the f, i, g, and o gates
- better balancing of gradient values



Machine Translation

estamos comiendo pan

RNN Encoder » RNN Decoder

we are eating bread



Machine Translation with RNNs

Encoder: h, = fyy(x, hiq)

we are eating  bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = fy(X;, h4)

we are eating  bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = fy(X;, h4)

estamos
Decoder: s; = gy(Yt, St.1, €)
Y1
A
h ——>» hy —> h, — h; —> h, » So » S1
A A A A A
X1 X, X3 Xa Yo
we are eating  bread [START]

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = fy(X;, h4)

Decoder: s; = gy(Yy, St.1, €)

estamos comiendo

Y1 Y2
A A
hp ——» hy —>» h, —> h; —> h, » So > S > S,
A A A A A V' N
X1 X, X3 Xa Yo > Y1
we are eating  bread [START]  estamos

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = fy(X;, h4)

estamos comiendo pan [STOP]
Decoder: s; = gy(Ys, St1, €)
Y1 Y2 Y3 \Z!
A A A A
hp ——» hy —>» h, —> h; —> h, » So » S1 > S > S3 » Sq
A A A A A A A A
X1 X, X3 Xy Yo > V1 > Y > V3
we are eating  bread [START]  estamos comiendo pan

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = fyy(x, hiq)

Decoder: s; = » St-1, C
t= 8ulVy St ©) Problem: s; is used to

encode input and
maintain decoder state

I [ [ [
ho ——> hy —» h, — h; —> h, » So > S > S, > S3 > S,
A A A A A A A A
X1 X, X3 Xa
we are eating  bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = fyy(x;, hi.4)
Decoder: s; = gylyt, St-1, €)
Solution: add a context

vector ¢ = h,and
generate sy from h,

I ‘ I ‘ I | I
hp ——» hy —» h, —>» h; — h, » Sg > S > S, > S3 » S,
Sl Sl B el B L S B S G
C
X1 X2 X3 Xy
we are eating  bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = fyy(x;, hi.4)
estamos comiendo pan [STOP]
Decoder: s; = guy(Yt, St1, €)
Solution: add a context
vector c = h,and Y1 Y2 £ Ya
generate sy from h, 7y 7'y 7'y 7'y
h ——>» hy —> h, — h; —> h, > S > S > S, > S3 » S,
A A A A A A AA A A AA
c
X1 X2 X3 Xg Yo > Y1 > Y > V3
we are eating  bread [START]  estamos comiendo pan

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = fy(X;, h4)

Decoder: s; = gy(Yy, St.1, €)

bottleneck
Problem: Input sequence
h ——» h; —» h, —>» h; — h, > s — bottlenecked through
- R - A L fixed-sized vector.
C Pe—
X1 X, X3 Xa
we are eating  bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = fyy(X;, hy.q)

Decoder: s; = gy(ys, St.1, €)

bottleneck
§ Idea: pass more
information from input
h —» hy —» h, —» h; — h, » So —
sequence to context c
A A A A . .
using attention!
c —
X1 X2 X3 Xa
we are eating  bread

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

From final hidden state:
Initial decoder state s,

=
firy
A 4
=
N
v
>
w
v
=
~
A 4
w
o

we are eating  bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

Compute affinity scores

From final hidden state:
Initial decoder state s,

=
firy
A 4
=
N
v
>
w
v
=
~

we are eating  bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

v

So

eyi = Tar(Ser, hy)

(far is an MLP)

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

Compute affinity scores
e = fau(Str, ) (far is an MLP)

a; Ay as as
1 1 1 1
softmax Normalize to get
f t * 1 From final hidden state: attention Weights
e; e e3 €4 Initial decoder state s, O<a <1 Ya, =1
A AA A A AL A I~

[ .

h; » h, > h; » h, » S

we are eating  bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

Compute affinity scores

x X
4 ‘ e = fau(Str, M) (far is an MLP)
a; az
1
soffmax Normalize to get
: : : ef attention weights
f \ \ “2“ u?)u \ Af‘lk 0< at’i < Zat’i =

=
N
>
w
=
~
A 4
w =
o
+ |

Set context vector ¢ to a linear

I I I I combination of hidden states
= Yagh;

X1 X2 X3 Xy > Cq

we are eating  bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

£ ¥ Compute affinity scores
A A ﬁ—‘—‘ ’—L e = fau(Str, M) (far is an MLP)
a, az
5 estamos
soffmax Normalize to get
t 1 t t Y1 attention weights
ef Y \ ?‘2“ ?‘3“ \ ?flu 1 0< at,i <1 zia’[,i =1

Set context vector ¢ to a linear

I 1 I I 1 T combination of hidden states
= 2y
. “ " o > Cq Yo
we are eating  bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

x x
A A
0 [ /ﬁ ﬁ
1

SO max
1 ) 1 )
(SF] e3 SV

f

we

are

eating

bread

v

So

Intuition: Context vector

attends to the relevant part

of the input sequence
“estamos” = “we are”

\ 4

Compute affinity scores
e = fau(Str, ) (far is an MLP)

estamos
Normalize to get
Y1 attention weights
1 O<ay<1 2ay=T
51 Set context vector ¢ to a linear

3

combination of hidden states
= Y@y

C1

Yo

This is all differentiable! Do not
supervise attention weights —
backprop through everything

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

1
X X Repeat: Use s,
a#‘ a‘ ’—‘—‘ ’—‘* to compute new
fl 2 estamos context vector
SO max Co
t 1 \ t t Vi
e2 e2 e3 e4 v A
S \ A a \ r 3 : +
hl \ hz \ h3 A h4 > SO S]_
X1 X2 X3 X4 Cq1 Yo Cy
we are eating  bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

comiendo

Y2

X X
A A
[ /m B
3 estamos
SO max
t t 1 t Vi
el e2 e3 e4
LI L

A

we are eating  bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

v
%]
o

si P s,

C1 Yo

C2 Y1

[START]

estamos

Repeat: Use s;
to compute new
context vector
Co

Use ¢, to
compute sy, Y,

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

comiendo

Y2

X X
A A
2 (e /ﬁ ﬁ
f estamos
SO max
1 1 4 ) Vi
e e, e; e,
\ \ \ A 4 A

A

we are eating  bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

v
%]
o

si P s,

C1 Yo

C2 Y1

[START]

estamos

Repeat: Use s;
to compute new
context vector
Co

Use ¢, to
compute sy, Y,

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through S|r111gle vectgr _ estamos  comiendo pan [STOP]
- At each timestep of decoder, context vector “looks at” different

parts of the input sequence, i.e., attention.
Y1 Y2 Y3 Ya
a A A a
——t—t—
h; » h, > h; » h, » Sy S1 > s, > S; > S,
A A a s

C1 Yo C Y1 C3 Y2 Ca Y3

t 1 1 i}

[START] estamos comiendo pan

we are eating  bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

Visualize attention weights ay;

Example: English to French : gg I .
translation vf 25885 88 ¢
ﬁ%%fuﬁuﬂ&;'m.g<a \Y
LI
Input: “The agreement on accz:‘:
the European Economic Area la
was signed in August 1992 . zone
economique
européenne
Output: “L'accord sur la zone ,t"f‘
ete
économique européenne a signé
été signé en aolt 1992.” en

ao(t
1992

<end>

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

Visualize attention weights ay;

Example: English to French : gg N .
translation 0 £ 025885 2§ §
I_Eggfu:JuLjEE'GE<H \Y;
LI
|f\[)l]t' “« accord
sur
European Economic Area la
was signed V! , zone
economique
européenne
Output: “ zone 't?
ete
économique européenne a signé
été signé Y en

ao(t
1992

<end>

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

Visualize attention weights ay;

Example: English to French : gg N .
translation v 2 _ 258k 28 %
ESsSslnbdsz2scxd Y,
LI
L accord
Input: cur
la
was signed V! , zone
economique
européenne
Output: “ @
ete
d signé
été signé V! en

ao(t
1992

<end>

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



Attention Layer

estamos comiendo  pan [STOP]

HEEE
II I

_Lln Uts' a; a;z a;a a‘24
State vector: s; (Shape: D) T
o 1 T f f
Hidden vectors: 1. (Shape: Ny x Dy) e em| lem  lew
. . . . 1 1 t

Similarity function: f, . . .
*—*—Fm
X4 X X3 X4
we are eating bread

Computation:

Similarities: e (Shape: Ny) e; = fau(se.1, )
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >3,  (Shape: Dy)

So

I
L dEgad:

[START] estamos comiendo  pan

Slide credit: Justin Johnson



Attention Layer

Query vector: g (Shape: Dg)
Input vectors:  (Shape: Ny x Dy)

Similarity function: f

estamos comiendo  pan [STOP]

Prr

we are eating bread

Computation:

Similarities: e (Shape: Ny) e; =f.:(q, )
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >3, (Shape: Dy)

So

IEVEIE

[START] estamos comiendo pan

Slide credit: Justin Johnson



Inputs:
Query vector: g (Shape: Dg)

Input vectors:  (Shape: Ny x Dg)

Similarity function{ dot product

Computation:

Similarities: e (Shape: Ny) lei=q -

Attention weights: a = softmax(e) (Shape:
Output vector: y = >3, (Shape: Dy)

Attention Layer

1 estamos comiendo  pan [STOP]

t

[ softmax |

- p @ @
*—*—h-, h2 *’ > h4 So

we are eating bread

[START estamos comiendo pan

Nx) Changes:
- Use dot product for similarity

Slide credit: Justin Johnson



Attention Layer

Inputs:
Query vector: g (Shape: Dg)

Input vectors:  (Shape: Ny x D)
Similarity function| scaled dot product

Computation:

Similarities: e (Shape: Ny) |ei=q- ./ sqrt(Dg)

Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >3, (Shape: Dy)

are

eating bread

estamos comiendo  pan [STOP]

Prr

So

IEVEIE

Changes:
Use scaled dot product for similarity

[START] estamos comiendo pan

Slide credit: Justin Johnson



Inputs:
Query vectors:

Input vectors:

fon:

(Shape: NQ X DQ)

Shape: NX X bq)

Attention Layer

4 4 4

an ax Az A

estamos comiendo  pan [STOP]
So $4

Similarities: E = Q" (Shape: Nq x Ny) Ei; = Q; - . / sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)|
Output vectors: Y = AX (Shape: Nq x D) Yi = 3A; X

we are eating bread
[START] estamos comiendo  pan
Changes:
- Use dot product for similarity

- Multiple query vectors

Slide credit: Justin Johnson



Attention Layer

. 4 4 4
I n Uts * an ax Az A

t 1 t 1 estamos comiendo  pan [STOP]

Query vectors: Q (Shape: Nq x Dq) | softmax |
|

Input vectors: . (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)

Value matrix: W,, (Shape: Dy x Dy)
[START] estamos comiendo  pan

we are eating bread

Computation:

Key vectors: I = W, (Shape: Ny x Dg)
Value vectors: V = W, (Shape: Nx x Dy)

Similarities: E = QK' (Shape: N X Ny) E;; = Q. - K;/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny) Changes:

output vectors: Y = AV (Shape: NQ X Dv) Y= Zin,jvj _ Use dot product for Slmllarlty

- Multiple query vectors
- Separate key and value

Slide credit: Justin Johnson



Attention Layer

Inputs:
Query vectors: Q (Shape: Nq x Dq)

Input vectors:  (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: I = W, (Shape: Ny x Dg) X1
Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nq x Ny) Ei; = Q; - K;/ sqrt(Dq) X,
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)

Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V; X3

Slide credit: Justin Johnson



Attention Layer

Inputs:
Query vectors: Q (Shape: Nq x Dq)

Input vectors:  (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nq x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V;

K>

Ks

Slide credit: Justin Johnson



Attention Layer

Inputs:
Query vectors: Q (Shape: Nq x Dq)

Input vectors:  (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nq x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V;

Ky Ei1 s Es1 Ean

Ky Eio P Es> P

Ks Eis Exs Ess Eas
Q Q Q Q
1 2 3 4

Slide credit: Justin Johnson



Attention Layer

Inputs:
Query vectors: Q (Shape: Nq x Dq) A1 A1 Az Ayq
Input vectors:  (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D) A, A, Az, As)
Value matrix: W,, (Shape: Dy x Dy)

Az Az Asz3 Ay

Sof'tmax(f )

Computation:
Key vectors: I = W, (Shape: Ny x Dg) X, = Ky Eis Essx Ess Ess
Value vectors: V = W, (Shape: Ny x Dy)
Similarities: E = QK" (Shape: Nq x Ny) Ei; = Q; - K;/ sqrt(Dq) X, = K, Ei, Es, Es, Es>
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V; X3 = K Eis Eys Ess Ess

Slide credit: Justin Johnson



Attention Layer

Inputs:
Query vectors: Q (Shape: Nq x Dq)

Input vectors:  (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nq x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V;

>\, Aq1 Az Az Ay
» V, A, Az, As, A,
> \/; Az Az Asz3 Ay
Softmax( 1 )
X1 = K Ei1 Eza Es Es.
X, = K, Eio E,o Es> Es»
X3 = Ks Eis E23 Ess Es3
| t t
Q Q Q Q
1 2 3 4

Slide credit: Justin Johnson



Y, Y, Y, Y,

Attention Layer r 1 1

Product(—=>), Sum(*)
Inputs: f
Query vectors: Q (Shape: Nq x Dq) » V, — | A A1 Az A1
Input vectors:  (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D) >\, > | A, A, By A,
Value matrix: W,, (Shape: Dy x Dy)
> \/; Az Az Asz3 Ay
Sof'tmax(f )

Computation:
Key vectors: I = W, (Shape: Ny x Dg) - X; = K; Eis Essx Ess Ess
Value vectors: V = W, (Shape: Ny x Dy)
Similarities: E = QK" (Shape: Nq x Ny) Ei; = Q; - K;/ sqrt(Dq) — X, — K, Ei, Es, Es, Es>
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V; — X; = K Eis Eys Ess Ess

| t t

Q Q Q3 Q

Slide credit: Justin Johnson



Attention Layer o

a
afm af atn %4 estamos comiendo  pan [sTOP]

|61 etsoftma:} : | )T m m @
Inputs: o] ] B [ 01
Query vectors: Q (Shape: N x Dq) N
Input vectors:  (Shape: Ny x Dy)
Key matrix: Wy (Shape: Dy x Dq) b 5 h h gﬂﬂﬂh
Value matrix: W,, (Shape: Dy x Dy) we  are eating bread

[START] estamos comiendo  pan

Attention seems to be really powerful ...

Computation: Do we still need RNN?
Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nq x Ny) Ei; = Q; - K;/ sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)

Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V;

Slide credit: Justin Johnson



RNN is bad at encoding long-range relationships!

Recurrent update can easily “forget” information




Attention Layer

Inputs:
Query vectors: Q (Shape: Nq x Dq)

Input vectors:  (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W, (Shape: Dy x Dy)

Computation:

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nq x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Nq x Ny)
Output vectors: Y = AV (Shape: Nq x Dy) Yi = 3A;;V;

4 4 4 4
an 3 A A

1 1 t t estamos comiendo  pan [STOP]
| softmax | —

€n € €3 €4 |

t 1 t t T 1 1

we are eating bread

[START] estamos comiendo  pan

Attention seems to be really powerful ...
Do we still need RNN?

Can we use attention for sequence encoding?

Slide credit: Justin Johnson



Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

Slide credit: Justin Johnson



Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q Q, Qs
Output vectors: Y = AV (Shape: Ny x Dy) Y; = A}V, L) L} L}
X1 X5 X3

Slide credit: Justin Johnson



Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

\ 4

Q, Q, Qs
4 4 4
X1 X, X3

Slide credit: Justin Johnson



Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

" K3 | ([ Eus E2s Es;s
= Ky |=*|| Ei2 E» Es»
> Ky =] Eix Ex1 Es1
4 4 4
Q Q Q
4 4 4
X1 X, X3

Slide credit: Justin Johnson



Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

A1,3 A2,3 A3,3
Al,Z AZ,Z A3,2
A1 A, Asq
[}
Softmax(T) |
4
> K3 ||| Eq3 Ess Ess
= Ky |=*|| E12 Eso Es»
> Ky =] Eix Ex1 Es1
4 4 4
Q Q, Q
4 4 4
X1 X, X3

Slide credit: Justin Johnson



Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

" Vs || A Az As;
Vo [ AL A, Az,
» V; |=> A1 A, Asq
[}
Softmax(T) |
4
» K3 ||| E13 Ess Ess
> Ky ||| Ei2 Ez. Esa
> Ky =] Eix Ex1 Es1
4 4 4
Q Q, Qs
4 4 4
X, X, Xs
]

Slide credit: Justin Johnson



Self-Attention Layer

Sequence encode -> use each input element as query!

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

Y1

Yz

Y3

4

4

4

Product(->), Sum(1")
[}

" Vs || A Az As;
» V, |7 A, A, Az,
» V; |=> A1 A, Asq
[}
| Softmax(1T") |
4
» Ks [=*|]| Ei3 Ess Ess
= Ky ||| E12 E» Es»
> Ky =] Eix Ex1 Es1
4 4 4
Q Q, Qs
4 4 4
X, X, Xs
- |

Slide credit: Justin Johnson



Self-Attention Layer ‘pmduct(ez, smit) ]

Consider permuting > -
Inputs: the input vectors:
Input vectors: * (Shape: Ny x Dy) b -
Key matrix: W (Shape: Dy x D)
Value matrix: Wy, (Shape: Dy x Dy) > -
Query matrix: W, (Shape: Dx x Dq) L)
Softmax(T)
)
> —p
Computation:
Query vectors: Q = XWq — -
Key vectors: I = W, (Shape: Ny x Dg)
Value vectors: V = W, (Shape: Ny x Dy) I g
Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq) 4 4 1
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x Dy) Y; = A}V, ¢ 4 ‘—l
X3 X1 X,
]

Slide credit: Justin Johnson



Self-Attention Layer ‘pmduct(ez, smit) ]

Consider permuting ) -
Inputs: the input vectors:
Input vectors: * (Shape: Ny x Dy) b -
Key matrix: W (Shape: Dy x Dq) Queries and Keys will be
ix: . > —->
Query matrix: W, (Shape: Dx x Dq) L}
| Softmax(T)
)
Computation: T
Query vectors: Q = “Wq + K P
Key vectors: I = W, (Shape: Ny x Dg)
Value Vectors: VV = XW, (Shape: Ny x Dy) I K T
Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq) 4 4 4
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Qs Q Q
Output vectors: Y = AV (Shape: Ny x Dy) Y; = A}V, 4 4 4
X3 X1 X5
T | |

Slide credit: Justin Johnson



Self-Attention Layer ‘pmduct(ez, somt) ]

Consider permuting > -

Inputs: the input vectors:

Input vectors: * (Shape: Ny x Dy) b -

Key matrix: Wy (Shape: Dy x Dq) Similarities will be the .

Value matrix: Wy, (Shape: Dx x Dy) same, but permuted ; g

Query matrix: W, (Shape: Dy x Dq) | Soﬂmfa e |

Computation: LK Es» E1s E2,

Query vectors: Q = ¥Wg - K, Esq Ey1 Ezs

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy) L Ks Ess Ei3 E23

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq) ¥ ¥ i)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Qs Q Q

Output vectors: Y = AV (Shape: Ny x Dy) Y; = A}V, L) L} L}
X3 X1 X5
I | |

Slide credit: Justin Johnson



Self-Attention Layer e

Product(->), Sum(1")
4

Consider permuting > =+ A A A
Inputs: the input vectors: >2 - 22
Input vectors: * (Shape: Ny x Dy) b -+ | Ay A, A,
Key matrix: W, (Shape: Dx x Do) Attention weights will be _
Value matrix: W,, (Shape: Dy x Dy) the same, but permuted g T Ass Az Az
Query matrix: W, (Shape: Dy x Dq) ¥
| Softmax(T) |
)
Computation: "L K2 |™|[Bs2 S¥! B2z
Query vectors: Q = “Wq = K; [=*|| E34 E11 E,
Key vectors: I = W, (Shape: Ny x Dg)
Value vectors: V = W, (Shape: Ny x Dy) "L K ™| Ess Eis E2s
Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq) L) t 1
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Qs Q Q
Output vectors: Y = AV (Shape: Ny x Dy) Y; = A}V, L) L} L}
7X3 X1 X5
I | |

Slide credit: Justin Johnson



Self-Attention Layer e

Product(->), Sum(1")
[}

Consider permuting >

Inputs: the input vectors: e ack e Aoz

Input vectors: * (Shape: Ny x Dy) >V, As 1 Ars A,

Key matrix: W (Shape: Dy x D) Values will be the .

Value matrix: W, (Shape: Dy x Dy) same, but permuted " Vs As3 A3 A3

Query matrix: W, (Shape: Dy x Dq) | — 4 o |

O m:x

Computation: "L K2 |™|[Bs2 S¥! B2z

Query vectors: Q = “Wq — K, [=|| Ess E11 Ess

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy) "L K ™| Ess Eis Ez

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq) L) t 1

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Qs Q Q

Output vectors: Y = AV (Shape: Ny x Dy) Y; = A}V, L) L} L}
X3 X1 X5
I | |

Slide credit: Justin Johnson



Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Outputs will be the
same, but permuted

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

Y3

Y1 Y2

2
ol

3

Product(->), Sum(’]‘;‘ |
[}

> Vo [ Ass Aq, A,
> Vi ||| Asy A, A4
> V3 - A3,3 Al,3 A2,3
[}
| Softmax(T) |
4
» K, ||| E32 Eio Ezo
> Ky ||| E3a Ei1 Ez1
> K3 [=|]| Es3 Eis Exs
4 4 4
Q Q Q
4 4 4
X5 X, X,
|

Slide credit: Justin Johnson



Self-Attention Layer

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)
Value vectors: V = W, (Shape: Ny x Dy)

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Self-attention layer is
Permutation Equivariant

f(s(x)) = s(f(x))

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

Y3

Y1 Y2

2
ol

3

Product(->), Sum(’]‘;‘ |
[}

> Vo [ Ass Aq, A,
> Vi ||| Asy A, A4
> V3 - A3,3 Al,3 A2,3
[}
| Softmax(T) |
4
» K, ||| E32 Eio Ezo
> Ky ||| E3a Ei1 Ez1
> K3 [=|]| Es3 Eis Exs
4 4 4
Q Q Q
4 4 4
X5 X, X,
|

Slide credit: Justin Johnson



Self-Attention Layer

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)
Value vectors: V = W, (Shape: Ny x Dy)

)

Self attention doesn’t “know’
the order of the vectors it is
processing! Not good for
sequence encoding.

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

Y1

Yz

Y3

4

4

4

Product(->), Sum(1")
[}

Vi =] Az Az As;
Vo ||| A A, Az,
Vi = A1 A, Asq
[}
| Softmax(1T") |
4
Ks |=*|| Ei3 Ess Ess
Ky |=*|| Eiz E» Es»
Ky |=>|] Eqn Ex1 Es1
4 4 4
Q Q, Qs
4 4 4
X1 X2 X3

Slide credit: Justin Johnson



Self-Attention Layer

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:
Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)
Value vectors: V = W, (Shape: Nx x Dy)

In order to make processing
position-aware, concatenate
input with positional encoding E

E can be learned lookup table,
or fixed function (e.g., sin
function)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

Y1

Y3 Y;

4

4 4

Product(->), Sum() |
[}

Vi =] Az Az As;
Vo |7 A A, Az,
Vi = A1 A, Asq
[}
| Softmax(1T") |
4
Ks [=*[| Ey3 Ess Ess
Ky [=*[| E12 Es» Es»
Ky |=>|| Eqq E>q Esq
4 4 4
Q Q, Qs
4 4 4
X1 X, X3
E(1)  E(2)  E(3)

Slide credit: Justin Johnson



Masked Self-Attention Layer

Inputs:
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg)
Value matrix: W,, (Shape: Dy x Dy)
Query matrix: W, (Shape: Dx x Dq)

Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)
Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V, L

Don’t let vectors “look
ahead” in the sequence

Used for language
modeling (predict next
word) _

Big cat [END]
4 4 4
Product(->), Sum(1") |
[
V; |= 0 0 Ass
Vo, =] o A, Az,
Vl - A1,1 A2,1 A3,1
4
Softmax(T) |
4
Ks [=*]| -°° -o° Ess
Ky |=*|| -°° Es» Es»
Ky |=>|] Eqn Ex1 Es1
4 4 4
Q Q, Qs
4 ) 4
[START] Big cat

Slide credit: Justin Johnson



Multi-headed Self-Attention Layer T

Inputs: Concat
Input vectors: ' (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Dg) " mE o o
Value matrix: W, (Shape: Dx x Dy) —
Query matrix: W, (Shape: Dx x Dq)

Use H independent
“Attention Heads” in
parallel
Computation:

Query vectors: Q = XWq

Key vectors: I = W, (Shape: Ny x Dg)

Value vectors: V = W, (Shape: Ny x Dy)

Similarities: E = QK" (Shape: Nx x Ny) Ei; = Q; - K;/ sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Nx x Dy) Y; = 3;A;}V,

Slide credit: Justin Johnson



Three Ways of Processing Sequences

Recurrent Neural Network

Y1 " Y2 gRE > Ya
X1 X2 X3 Xa

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; "sees” the whole
sequence

(-) Not parallelizable: need to
compute hidden states sequentially

Slide credit: Justin Johnson



Three Ways of Processing Sequences

Recurrent Neural Network

Y1 > Y2 > V3 > Va4
X1 X2 X3 Xa

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; "sees” the whole
sequence

(-) Not parallelizable: need to
compute hidden states sequentially

1D Convolution

Y1 Y, Y3 Vs

Works on Multidimensional Grids
(-) Bad at long sequences: Need to
stack many conv layers for outputs
to “see” the whole sequence

(+) Highly parallel: Each output can
be computed in parallel

Slide credit: Justin Johnson



Three Ways of Processing Sequences

Recurrent Neural Network

Y1 > Y, > Y;3 > Y4
X]. XZ X3 X4

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; "sees” the whole
sequence

(-) Not parallelizable: need to
compute hidden states sequentially

1D Convolution

Y1 Y Y3 Ya

Works on Multidimensional Grids
(-) Bad at long sequences: Need to
stack many conv layers for outputs
to “see” the whole sequence

(+) Highly parallel: Each output can

be computed in parallel

Self-Attention

<
=
=<

3
2|

H

[
g H
g-’iii "

3

t

H

}
BHeElE]
Heleliele]
FeE

=]
=]
=]

Works on Sets of Vectors

(+) Good at long sequences: after
one self-attention layer, each output
“sees” all inputs!

(+) Highly parallel: Each output can
be computed in parallel

(-) Very memory intensive

Slide credit: Justin Johnson



Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution

Self-Attention

Attention is all you need

Vaswani et al, NeurlPS 2017

Works on Ordered Sequences Works on Multidimensional Grids
(+) Good at long sequences: After (-) Bad at long sequences: Need to
one RNN layer, h; ”sees” the whole stack many conv layers for outputs
sequence to “see” the whole sequence

(-) Not parallelizable: need to (+) Highly parallel: Each output can
compute hidden states sequentially be computed in parallel

Works on Sets of Vectors

(+) Good at long sequences: after
one self-attention layer, each output
“sees” all inputs!

(+) Highly parallel: Each output can
be computed in parallel

(-) Very memory intensive

Slide credit: Justin Johnson



The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide credit: Justin Johnson



The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

All vectors interact
with each other

4
Self-Attention
4 4 4 4
t t t t
X X X X
1 2 3 4

Slide credit: Justin Johnson



The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

MLP independently on
each vector

All vectors interact
with each other

Y1 \%) Y3 Ya
) t ) )
4 4 4 4

MLP MLP MLP MLP
) ) 4 )
4
Self-Attention
4 4 4 4
t t t t
X X X X
1 2 3 4

Slide credit: Justin Johnson



The Transformer Block Vi

Vaswani et al, “Attention is all you need”, NeurIPS 2017

\%) Y3 Ya
) t ) )

) 4 4 4 4
MLI:] independently on MLP MLP MLP MLP
each vector p § 5 §
Residual connection é
All vectors interact Self-Attention
with each other 1 1 4 4

t t t t
X X X X

2

3

Slide credit: Justin Johnson



The Transformer Block

Recall Layer Normalization:
Given hy, ..., hy  (Shape: D)

scale: y (Shape: D)
shift: § (Shape: D)
ui = (1/D)3; h;; (scalar)
;= (3 (hy; - w)?)Y/? (scalar)
z;=(h;- ) / o
Vi=y*z+pB

Ba et al, 2016

Vaswani et al, “Attention is all you need”, NeurIPS 2017

MLP independently on
each vector

Residual connection

All vectors interact
with each other

Y1 Y2 Y3 Yy
t t + t
14
| | | |
MLP MLP MLP MLP
t t I t 1
Layer Normalization
5
Self-Attention
¢ L} ) )
t t t t
X X X X

2

3

Slide credit: Justin Johnson



The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

MLP independently on
each vector

Residual connection

All vectors interact
with each other

Y1 \%) Y3 Ya

MLP MLP MLP MLP

t 1|11

Layer Normalization

:é

Self-Attention
4 4 4 4
t t t t
X X X X
1 2 3 4

Slide credit: Justin Johnson



The Transformer Block

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Residual connection

MLP independently on
each vector

Residual connection

All vectors interact
with each other

Y1 Y2 Y3 Ya
| | | |
Layer Normalization
5
| | | |
MLP MLP MLP MLP
1t
|
Layer Normalization
:é
Self-Attention
t t t t
t t t t
X X X X
1 2 3 4

Slide credit: Justin Johnson



The Transformer Block vf vf ; y?

Layer Normalization
Transformer Block: :é
Input: Set of vectors x
Output: Set of vectors y ' | I |

MLP MLP MLP MLP

Self-attention is the only t 1 . 1 1
interaction among vectors! —

Layer Normalization
Layer norm and MLP work :é
independently per vector

Self-Attention

Highly scalable, highly t t t t
parallelizable | 4 4 4

x
x
x
x

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide credit: Justin Johnson



The Transformer ool

®
] [

Layer Normalization

Transformer Block: :

Input: Set of vectors x [ seltatentn

Output: Set of vectors y N —

Layer Normalization

: . A Transformer is a sequence :
§e|f attgntnon is the only q
interaction between vectors! of transformer blocks

Layer Normalization

Layer norm and MLP work s
independently per vector . ——

Layer Normalization

®
Highly scalable, highly
parallelizable II

Layer Normalization

‘ Self-Attention

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Slide credit: Justin Johnson



Output
Probabilities

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Add & Norm

Feed
Forward

| Add & Norm ﬁ

e I N\
g ) Mult-Head
Feed Attention
Forward D) Nx
N
Nix Add & Norm
f_>| Add & Norm | Ve
Multi-Head Multi-Head
Attention Attention
AN - AT —))

e J \_ | e—
Positional o) @ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Encoder-Decoder



GLUE Benchmark

Rank Name URL Score CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm
1  HFLIFLYTEK MacALBERT + DKM 90.7 74.8 97.0 94.5/92.6 92.8/92.6 74.7/90.6 91.3 91.1 97.8 92.0 94.5 52.6
L 2 Alibaba DAMO NLP StructBERT + TAPT C)J‘ 90.6 753 97.3 93.9/91.9 93.2/92.7 74.8/91.0 90.9 90.7 97.4 91.2 94.5 49.1
L 3 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6 73.5 97.2 94.0/92.0 93.0/92.4 76.1/91.0 91.6 91.3 97.5 91.7 94.5 51.2
4 ERNIE Team - Baidu ERNIE C)J‘ 90.4 74.4 97.5 93.5/91.4 93.0/92.6 75.2/90.9 914 91.0 96.6 90.9 94.5 51.7
5 T5Team- Google TS5 g 90.3 71.6 97.5 92.8/90.4 93.1/92.8 75.1/90.6 92.2 91.9 96.9 92.8 94.5 53.1
6  Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART g 89.9 69.5 97.5 93.7/91.6 92.9/92.5 73.9/90.2 91.0 90.8 99.2 89.7 94.5 50.2
+ 7  Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024) C’J‘ 89.7 70.5 97.5 93.4/91.2 92.6/92.3 75.4/90.7 91.4 91.1 95.8 90.0 94.5 51.6
+ 8  ELECTRA Team ELECTRA-Large + Standard Tricks C’J‘ 89.4 7.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 91.3 90.8 95.8 89.8 91.8 50.7
+ 9  Huawei Noah's Ark Lab NEZHA-Large 89.1 69.9 97.3 93.3/91.0 92.4/91.9 74.2/90.6 91.0 90.7 95.7 88.7 93.2 47.9
+ 10  Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) [:}J| 88.4 68.0 96.8 93.1/90.8 92.3/92.1 74.8/90.3 91.1 90.7 95.6 88.7 89.0 50.1
11 Junjie Yang HIRE-RoBERTa [:}J| 88.3 68.6 97.1 93.0/90.7 92.4/92.0 74.3/90.2 90.7 90.4 95.5 87.9 89.0 493
12 Facebook Al RoBERTa [:}J| 88.1 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8 90.2 95.4 88.2 89.0 48.7
+ 13 Microsoft D365 Al & MSR Al MT-DNN-ensemble [:}J| 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9 87.9 87.4 96.0 86.3 89.0 42.8
14  GLUE Human Baselines GLUE Human Baselines C};' 87.1 66.4 97.8 86.3/80.8 92.7/92.6 59.5/80.4 92.0 92.8 91.2 93.6 95.9 -
15 Stanford Hazy Research Snorkel MeTaL C};' 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9 87.6 87.2 93.9 80.9 65.1 39.9

source: https://gluebenchmark.com/leaderboard



GLUE Benchmark

Rank Name URL Score CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm
1  HFLIFLYTEK MacALBERT + DKM 90.7 74.8 97.0 94.5/92.6 92.8/92.6 74.7/90.6 91.3 91.1 97.8 92.0 94.5 52.6
L 2 Alibaba DAMO NLP StructBERT + TAPT C)J‘ 90.6 753 97.3 93.9/91.9 93.2/92.7 74.8/91.0 90.9 90.7 97.4 91.2 94.5 49.1
L 3 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6 73.5 97.2 94.0/92.0 93.0/92.4 76.1/91.0 91.6 91.3 97.5 91.7 94.5 51.2
4 ERNIE Team - Baidu ERNIE C)J‘ 90.4 74.4 97.5 93.5/91.4 93.0/92.6 75.2/90.9 91.4 91.0 96.6 90.9 94.5 51.7
5 T5Team- Google TS5 g 90.3 71.6 97.5 92.8/90.4 93.1/92.8 75.1/90.6 92.2 91.9 96.9 92.8 94.5 53.1
6  Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART g 89.9 69.5 97.5 93.7/91.6 92.9/92.5 73.9/90.2 91.0 90.8 99.2 89.7 94.5 50.2
+ 7  Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024) C’J‘ 89.7 70.5 97.5 93.4/91.2 92.6/92.3 75.4/90.7 91.4 91.1 95.8 90.0 94.5 51.6
+ 8  ELECTRA Team ELECTRA-Large + Standard Tricks C’J‘ 89.4 7.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 91.3 90.8 95.8 89.8 91.8 50.7
+ 9  Huawei Noah's Ark Lab NEZHA-Large 89.1 69.9 97.3 93.3/91.0 92.4/91.9 74.2/90.6 91.0 90.7 95.7 88.7 93.2 47.9
+ 10  Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) [:}J| 88.4 68.0 96.8 93.1/90.8 92.3/92.1 74.8/90.3 91.1 90.7 95.6 88.7 89.0 50.1
11 Junjie Yang HIRE-RoBERTa [:}J| 88.3 68.6 97.1 93.0/90.7 92.4/92.0 74.3/90.2 90.7 90.4 95.5 87.9 89.0 493
12 Facebook Al RoBERTa [:}J| 88.1 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8 90.2 95.4 88.2 89.0 48.7
+ 13 Microsoft D365 Al & MSR Al MT-DNN-ensemble [:}J| 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9 87.9 87.4 96.0 86.3 89.0 42.8

GLUE Human Baselines GLUE Human Baselines 86.3/80.8 92.7/92.6 59.5/80.4

15 Stanford Hazy Research Snorkel MeTaL 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9 87.6 87.2 93.9 80.9 65.1 39.9

source: https://gluebenchmark.com/leaderboard




MODEL COMPLETION (MACHINE-WRITTEN, 10 TRIES)
The scientist named the population, after their distinctive horn, Ovid’s

Unicorn. These four-horned, silver-white unicorns were previously unknown to
science.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and
several companions, were exploring the Andes Mountains when they found a small
valley, with no other animals or humans. Pérez noticed that the wvalley had

what appeared to be a natural fountain, surrounded by two peaks of rock and
silver snow.

Pérez and the others then ventured further into the valley. “By the time we
reached the top of one peak, the water looked blue, with some crystals on
top,” said Pérez.

Source: OpenAl, “Better Language Models and Their Implications”
https://openai.com/blog/better-language-models/



Can Attention/Transformers be used from
more than text processing?



ViT: Vision Transformer

Vision Transformer (ViT)
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An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
(Dosovitskiy et al., 2021)



TOP 1 ACCURACY

ViT: Vision Transformer
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Formal Algorithms for Transformers

Mary Phuong! and Marcus Hutter!
1DeepMind

This document aims to be a self-contained, mathematically precise overview of transformer architec-
tures and algorithms (not results). It covers what transformers are, how they are trained, what they are
used for, their key architectural components, and a preview of the most prominent models. The reader
is assumed to be familiar with basic ML terminology and simpler neural network architectures such as
MLPs.

Keywords: formal algorithms, pseudocode, transformers, attention, encoder, decoder, BERT, GPT, Gopher,
tokenization, training, inference.

Contents plete, precise and compact overview of trans-
1 Introduction 1 former architectures and formal algorithms (but
2 Motivation 1 notresults). It covers what Transformers are (Sec-
3 Transformers and Typical Tasks 3 tion 6), how they are trained (Section 7), what
4 Tokenization: How Text is Represented 4  they're used for (Section 3), their key architec-
g !T\:;lr:lstff)cr'trlrllzarl :r(?}rllilt):cnt?ll:';ss ; tural components (Section 5), tokenization (Sec-
7 Transformer Training and Inference g tion 4), and a preview of practical considerations
8 Practical Considerations 9 (Section 8) and the most prominent models.
11; {{‘ieslie;(ferll\;::tsaﬁon 12 The essentially complete pseudocode is about

50 lines, compared to thousands of lines of ac-
tual real source code. We believe these formal

A famous colleague once sent an actually very
well-written paper he was quite proud of to a fa-
mous complexity theorist. His answer: “I can’t find

SO, SR 2T -, SRURNNURSIUR. .. SNSRI . SESR W0, % A

algorithms will be useful for theoreticians who
require compact, complete, and precise formu-
lations, experimental researchers interested in
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Beyond Language

Vision Transformer (ViT)

‘ Transformer Encoder
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Next time: Guest Lecture on Robotics + Language + Vision!

Embodied Reasoning Through
Planning with Language and Vision
Foundation Models.

Zoom only (no in-person lecture)

L
Dr. Fei Xia
Google Research



