
CS 4644-DL / 7643-A: LECTURE 16
DANFEI XU

Recurrent Neural Networks (RNN)
Long Short-Term Memory (LSTM)



Administrative:

• Assignment 2 grace period ends today!

• Milestone guideline is out
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Which pixels matter: 
Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding Convolutional 
Networks”, ECCV 2014

Boat image is CC0 public domain
Elephant image is CC0 public domain
Go-Karts image is CC0 public domain

Mask part of the image before feeding to CNN, check 
how much predicted probabilities change

https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Which pixels matter: Saliency via Backprop

Dog

Forward pass: Compute probabilities

Compute gradient of (unnormalized) class score 
with respect to image pixels, take absolute value 
and max/sum over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Intermediate Features via (guided) backprop

Pick a single intermediate neuron, e.g. 
one value in 128 x 13 x 13 conv5 feature 
map

Compute gradient of activation value 
with respect to image pixels

Guided backprop: suppress pathways that 
have negative gradients --- only backprop 
positive gradients through each ReLU

ReLU

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, 
Martin Riedmiller, 2015; reproduced with permission.



Guided Backprop Results

From: Springenberg et al., “Striving For Simplicity: The All Convolutional Net"



Gradient Ascent on the Scores

We can perform gradient 
ascent on image for image 
generation

Start from random/zero image
Use scores to avoid 
minimizing other class scores 
instead

Often need regularization term 
to induce statistics of natural 
imagery

E.g. small pixel values, spatial 
smoothness

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

Backward Pass

Forward Pass

𝒂𝒓𝒈𝒎𝒂𝒙 𝑺𝒄 𝑰 − 𝝀 𝑰 𝟐
𝟐`

𝑰 = 𝑰 + 𝜶
𝝏𝑺𝒄
𝝏𝑰
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Style 
image

Content 
image

Output 
image

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, 
ECCV 2016. Copyright Springer, 2016. Reproduced for educational purposes.
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Today: Recurrent Neural Networks
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Vanilla Neural Networks

“Vanilla” Neural Network
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Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words
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Recurrent Neural Networks: Process Sequences

e.g. sentiment analysis
sequence of words -> sentiment label
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Recurrent Neural Networks: Process Sequences

E.g. Translation
Sequence of words -> 
sequence of words



14

Recurrent Neural Networks: Process Sequences

e.g. Language entity recognition



Why are existing convnets insufficient?
Variable sequence length inputs and outputs!
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Krishna, Hata, Ren, Fei-Fei, Niebles. Dense captioning Events in Videos. ICCV 2019

Example task: video captioning

Input video can have variable 
number of frames

Output captions can be variable 
length.
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Let's start with a task that takes a variable input and 
produces an output at every step
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Recurrent Neural Network

x

RNN

y
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Recurrent Neural Network

x

RNN

y
Key idea: RNNs have an 
“internal state” that is 
updated as a sequence is 
processed. You can think 
of it as “memory”.

ℎ!
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Unrolled RNN

x1

RNN

y1

x2

RNN

y2

x3

RNN

y3

...

xt

RNN

yt

h1 h2 h3h0



20

RNN hidden state update

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state 
(vector)

old state
(vector)

input vector at 
some time step

some function
with parameters W

Can set initial state ℎ" to all 0’s
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RNN output generation

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state

another function
with parameters Wo

output

Can set initial state ℎ" to all 0’s
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(Simple) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Sometimes called a “Vanilla RNN” or an 
“Elman RNN” after Prof. Jeffrey Elman
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h0 fW h1

x1

RNN: Computational Graph
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h0 fW h1 fW h2

x2x1

RNN: Computational Graph
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h0 fW h1 fW h2 fW h3

x3

…
x2x1

RNN: Computational Graph

hT
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h0 fW h1 fW h2 fW h3

x3

…
x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT
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h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1
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h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT
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h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

L
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h0 fW h1 fW h2 fW h3

x3

y

…
x2x1W

RNN: Computational Graph: Many to One

hT
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h0 fW h1 fW h2 fW h3

x3

y

…
x2x1W

RNN: Computational Graph: Many to One

hT
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h0 fW h1 fW h2 fW h3

yT

…
x

W

RNN: Computational Graph: One to Many

hT

y3y2y1
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h0 fW h1 fW h2 fW h3

yT

…
x

W

RNN: Computational Graph: One to Many

hT

y3y2y1

0 0 0



yT-

1
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h0 fW h1 fW h2 fW h3

yT

…
x

W

RNN: Computational Graph: One to Many

hT

y3y2y1

y1 y2
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Sequence to Sequence: Many-to-one + one-to-
many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1
W1

h
T

Many to one: Encode input 
sequence in a single vector

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014
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Sequence to Sequence: Many-to-one + one-to-
many

y1 y2

… 

Many to one: Encode input 
sequence in a single vector

One to many: Produce output 
sequence from single input vector

fW h1 fW h2 fW

W2

Sutskever et al, “Sequence to Sequence Learning with Neural Networks”, NIPS 2014

h0 fW h1 fW h2 fW h3

x3

… 

x2x1
W1

h
T
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”
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Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”



40

Example: Character-
level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a time, 
feed back to model

.03

.84

.00

.13

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
Sample
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At test-time sample 
characters one at a time, 
feed back to model
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At test-time sample 
characters one at a time, 
feed back to model
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Backpropagation through time
Loss

Forward through entire sequence to 
compute loss, then backward through 
entire sequence to compute gradient
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Truncated Backpropagation through time
Loss

Run forward and backward 
through chunks (length k) of 
the sequence instead of 
whole sequence, do 
parameter update, clear 
gradient cache
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Truncated Backpropagation through time
Loss

Carry hidden states 
forward in time for k 
steps, backprop, 
update parameter, 
clear gradient …
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Truncated Backpropagation through time
Loss
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time

depth

Multilayer RNNs



49

x

RNN

y
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train more

train more

train more

at first:
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The Stacks Project: open source algebraic geometry textbook

Latex source http://stacks.math.columbia.edu/
The stacks project is licensed under the GNU Free Documentation License

http://stacks.math.columbia.edu/
https://github.com/stacks/stacks-project/blob/master/COPYING
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Generated 
C code
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OpenAI GPT-2 generated text
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Input: In a shocking finding, scientist discovered a herd of unicorns living in a remote, 
previously unexplored valley, in the Andes Mountains. Even more surprising to the 
researchers was the fact that the unicorns spoke perfect English.

Output: The scientist named the population, after their distinctive horn, Ovid’s Unicorn. 
These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is 
finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several 
companions, were exploring the Andes Mountains when they found a small valley, with 
no other animals or humans. Pérez noticed that the valley had what appeared to be a 
natural fountain, surrounded by two peaks of rock and silver snow.

source

https://openai.com/blog/better-language-models/
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Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning

Figure from Karpathy et a, “Deep Visual-
Semantic Alignments for Generating Image 
Descriptions”, CVPR 2015; figure copyright 
IEEE, 2015.
Reproduced for educational purposes.
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Convolutional Neural Network

Recurrent Neural Network



test image

This image is CC0 public domain

https://pixabay.com/en/straw-hat-man-sea-sunlight-sunset-70696/
https://creativecommons.org/publicdomain/zero/1.0/deed.en


test image



test image

X



test image

x0
<START

>



h0

y0

test image

before:
h = tanh(Wxh * x + Whh * h)

now:
h = tanh(Wxh * x + Whh * h + Wih * v)

v

Wih

x0
<START

>



h0

y0

test image

straw

sample!

x0
<START

>



h0

y0

test image

straw

h1

y1

x0
<START

>



h0

y0

test image

straw

h1

y1

hat

sample!

x0
<START

>



h0

y0

test image

straw

h1

y1

hat

h2

y2

x0
<START

>



h0

y0

test image

straw

h1

y1

hat

h2

y2

sample
<END> token
=> finish.

x0
<START

>
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A cat sitting on a 
suitcase on the floor

A cat is sitting on a tree 
branch

A dog is running in the 
grass with a frisbee

A white teddy bear sitting in 
the grass

Two people walking on 
the beach with surfboards

Two giraffes standing in a 
grassy field

A man riding a dirt bike on 
a dirt track

Image Captioning: Example Results

A tennis player in action 
on the court

Captions generated using 
neuraltalk2
All images are CC0 Public domain: 
cat suitcase, cat tree, dog, bear, 
surfers, tennis, giraffe, motorcycle

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/luggage-antique-cat-1643010/
https://pixabay.com/en/cat-kitten-tree-green-summer-1647775/
https://pixabay.com/en/adorable-animal-canine-cute-dog-1849992/
https://pixabay.com/en/teddy-plush-bears-cute-teddy-bear-1623436/
https://pixabay.com/en/beach-beach-sports-blur-blurry-1853903/
https://pixabay.com/en/tennis-head-ramos-vinolas-clay-934841/
https://pixabay.com/en/giraffe-animals-wildlife-africa-2064520/
https://pixabay.com/en/moto-cross-motorbike-sports-jump-214928/
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Image Captioning: Failure Cases

A woman is holding a 
cat in her hand

A woman standing on a 
beach holding a surfboard

A person holding a 
computer mouse on a desk

A bird is perched on 
a tree branch

A man in a 
baseball uniform 
throwing a ball

Captions generated using neuraltalk2
All images are CC0 Public domain: fur 
coat, handstand, spider web, baseball

https://github.com/karpathy/neuraltalk2
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/woman-female-model-portrait-adult-983967/
https://pixabay.com/en/handstand-lake-meditation-496008/
https://pixabay.com/en/spider-web-tree-branches-pattern-617769/
https://pixabay.com/en/baseball-player-shortstop-infield-1045263/
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Visual Question Answering (VQA)

Agrawal et al, “VQA: Visual Question Answering”, ICCV 2015
Zhu et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2016
Figure from Zhu et al, copyright IEEE 2016. Reproduced for educational purposes.
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Agrawal et al, “Visual 7W: Grounded Question Answering in Images”, CVPR 2015
Figures from Agrawal et al, copyright IEEE 2015. Reproduced for educational purposes.

Visual Question Answering: RNNs with Attention
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Das et al, “Visual Dialog”, CVPR 2017
Figures from Das et al, copyright IEEE 2017. Reproduced with permission.

Visual Dialog: Conversations about images



Agent encodes instructions in 
language and uses an RNN to 
generate a series of movements as 
the visual input changes after each 
move.
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Wang et al, “Reinforced Cross-Modal Matching and Self-Supervised 
Imitation Learning for Vision-Language Navigation”, CVPR 2018
Figures from Wang et al, copyright IEEE 2017. Reproduced with permission.

Visual Language Navigation: Go to the living room



RNN tradeoffs

RNN Advantages:
- Can process any length input
- Computation for step t can (in theory) use information from many steps 

back 
- Model size doesn’t increase for longer input 
- Same weights applied on every timestep, so there is symmetry in how 

inputs are processed. 
RNN Disadvantages: 
- Recurrent computation is slow 
- In practice, difficult to access information from many steps back 
- Vanishing gradient / gradient explosion

78
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Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN LSTM
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt
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ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

yt
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Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4



87

Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

Always < 1
Vanishing gradients
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

Largest eigen value > 1: 
Exploding gradients

Largest eigen value < 1:
Vanishing gradients
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

Largest eigen value > 1: 
Exploding gradients

Largest eigen value < 1:
Vanishing gradients

Gradient clipping: 
Scale gradient if its 
norm is too big
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Vanilla RNN Gradient Flow
Gradients over multiple time steps:

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

y1 y2 y3 y4

What if we assumed no non-linearity?

Largest eigen value > 1: 
Exploding gradients

Largest eigen value < 1:
Vanishing gradients

We need a new 
RNN architecture!
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Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 1997

Vanilla RNN LSTM

Learn to control information flow from previous state to the next state
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), How much to write to cell

4*h



i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), How much to write to cell
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h



96

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), How much to write to cell
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Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

x

h

vector from 
before (h)

W

i

f

o

g

vector from 
below (x)

sigmoid

sigmoid

tanh

sigmoid

4h x 2h 4h 4*h

i: Input gate, whether to write to cell
f: Forget gate, Whether to erase cell
o: Output gate, How much to reveal cell
g: Gate gate (?), How much to write to cell



☉
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ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM)
[Hochreiter et al., 1997]

stack



☉
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ct-1

ht-1

xt

f
i
g

o

W ☉

+ ct

tanh

☉ ht

Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

stack

Backpropagation from ct to 
ct-1 only elementwise 
multiplication by f, no 
matrix multiply by W
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!

Notice that the gradient contains the f gate’s vector of activations
- allows better control of gradients values, using suitable parameter updates of the 

forget gate.
Also notice that are added through the f, i, g, and o gates

- better balancing of gradient values



Do LSTMs solve the vanishing gradient 
problem?
The LSTM architecture makes it easier for the RNN to preserve information 
over many timesteps
- e.g. if the f = 1 and the i = 0, then the information of that cell is preserved 

indefinitely.
- By contrast, it’s harder for vanilla RNN to learn a recurrent weight matrix 

Wh that preserves info in hidden state

LSTM doesn’t guarantee that there is no vanishing/exploding gradient, but it 
does provide an easier way for the model to learn long-distance dependencies.

It is possible to mitigate vanishing / exploding gradient by learning the correct i
and f.
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Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

c0 c1 c2 c3

Uninterrupted gradient flow!

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool
Similar to ResNet!



LSTM cell
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Neural Architecture Search for RNN architectures

Zoph et Le, “Neural Architecture Search with Reinforcement Learning”, ICLR 2017
Figures copyright Zoph et al, 2017. Reproduced with permission.

Cell they found
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Other RNN Variants

[LSTM: A Search Space Odyssey, 
Greff et al., 2015]

[An Empirical Exploration of 
Recurrent Network Architectures,
Jozefowicz et al., 2015]

GRU [Learning phrase representations using rnn
encoder-decoder for statistical machine translation, 
Cho et al. 2014]

Simpler than LSTM, control information flow 
without cell state. 
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Recurrence for Vision
- LSTM wer a good default choice until this year
- Use variants like GRU if you want faster compute and less 

parameters
- Use transformers (next lecture) as they are dominating NLP 

models
- almost everyday there is a new vision transformer model

Su et al. "Vl-bert: Pre-training of generic visual-linguistic representations." ICLR 2020
Lu et al. "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurIPS 2019
Li et al. "Visualbert: A simple and performant baseline for vision and language." arXiv 2019
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Summary
- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don’t work very well
- Common to use LSTM or GRU: their additive interactions 

improve gradient flow
- Backward flow of gradients in RNN can explode or vanish. 

Exploding is controlled with gradient clipping. Vanishing is 
controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research, 
as well as new paradigms for reasoning over sequences

- Better understanding (both theoretical and empirical) is needed.


