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Instance Segmentation (Continued)
Network Visualization



Administrivia

• Assignment 2
• We are into the grace period!
• No exception other than for emergencies.

• Project Proposal Feedback is Out
• Talk to the TA (over OHs) who graded your proposal for more detailed 

feedback.

• Assignment 3 out soon
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Computer Vision Tasks

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, 
TREE, SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network with only convolutional layers 
without downsampling operators to make predictions 
for pixels all at once!

Loss: Pixel-wise cross entropy!
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Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input

Q: Why is it called 
transpose 
convolution?

Learnable Upsampling: Transposed Convolution
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Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W Predictions:

H x W

Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Downsampling:
Pooling, strided 
convolution

Upsampling:
Unpooling or strided 
transpose convolution
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“Slow” R-CNN

Input image

Conv
Net

Conv
Net

Conv
Net

SVMs

SVMs

SVMs

Warped image regions 
(224x224 pixels)

Regions of Interest 
(RoI) from a proposal 
method (~2k)

Forward each 
region through 
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify regions with 
SVMs

Bbox reg

Bbox reg

Bbox reg

Predict “corrections” to the RoI: 4 numbers: (dx, dy, dw, dh)

Problem: Very slow! 
Need to do ~2k 
independent forward 
passes for each image!

Idea: Pass the 
image through 
convnet before 
cropping! Crop the 
conv feature instead!

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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ConvNet

Input image

Run whole image
through ConvNet

“conv5” features

Crop + Resize features

Linear +
softmax

CNN Per-Region Network

Object 
category Linear Box offset

Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

“Slow” R-CNNRegions of
Interest (RoIs)
from a proposal
method

“Backbone” 
network: 
AlexNet, VGG, 
ResNet, etc

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0
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Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Project proposal 
onto features

“Snap” to 
grid cells

Divide into 2x2 
grid of (roughly) 
equal subregions

Max-pool within 
each subregion

Region features
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Region features always the 
same size even if input 

regions have different sizes!Problem: Region features slightly misaligned 

Cropping Features: RoI Pool

Image features: C x H x W
(e.g. 512 x 20 x 15)
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Input Image
(e.g. 3 x 640 x 480)

CNN

Project proposal 
onto features

He et al, “Mask R-CNN”, ICCV 2017

Sample at regular points 
in each subregion using 
bilinear interpolation

Max-pool within 
each subregion

Region features
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Cropping Features: RoI Align
No “snapping”!

Image features: C x H x W
(e.g. 512 x 20 x 15)
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Faster R-CNN: 
Make CNN do proposals!

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
Figure copyright 2015, Ross Girshick; reproduced with permission

Insert Region Proposal 
Network (RPN) to predict 
proposals from features

Otherwise same as Fast R-CNN: 
Crop features for each proposal, 
classify each one
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Faster R-CNN: 
Make CNN do proposals!
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Single-Stage Object Detectors: YOLO / SSD / RetinaNet

Divide image into grid
7 x 7

Image a set of base boxes
centered at each grid cell

Here B = 3

Input image
3 x H x W

Within each grid cell:
- Regress from each of the B 

base boxes to a final box 
with 5 numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of 
C classes (including 
background as a class)

- Looks a lot like RPN, but 
category-specific!

Output:
7 x 7 x (5 * B + C)Redmon et al, “You Only Look Once: 

Unified, Real-Time Object Detection”, CVPR 2016
Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016
Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017
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Instance Segmentation

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, 
TREE, SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels
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Object Detection:
Faster R-CNN
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Instance Segmentation:
Mask R-CNN

Mask Prediction

He et al, “Mask R-CNN”, ICCV 2017

Add a small mask 
network that operates 
on each RoI and 
predicts a 28x28 
binary mask
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Mask R-CNN

He et al, “Mask R-CNN”, arXiv 2017

RoI Align Conv

Classification Scores: C 
Box coordinates (per class): 4 * C

CNN
+RPN

Conv

Predict a mask for 
each of C classes

C x 28 x 28

256 x 14 x 14 256 x 14 x 14



Mask R-CNN: Example Mask Training Targets
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Mask R-CNN: Example Mask Training Targets
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Mask R-CNN: Example Mask Training Targets
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Mask R-CNN: Example Mask Training Targets

21
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Mask R-CNN: Very Good Results!

He et al, “Mask R-CNN”, ICCV 2017
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Mask R-CNN
Also does pose

He et al, “Mask R-CNN”, ICCV 2017



Open Source Frameworks

Lots of good implementations on GitHub! 

TensorFlow Detection API: 
https://github.com/tensorflow/models/tree/master/research/object_detection
Faster RCNN, SSD, RFCN, Mask R-CNN, ...

Detectron2 (PyTorch)
https://github.com/facebookresearch/detectron2
Mask R-CNN, RetinaNet, Faster R-CNN, RPN, Fast R-CNN, R-FCN, ...

Finetune on your own dataset with pre-trained models 
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https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/facebookresearch/detectron2


Beyond 2D Object Detection...

25
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Object Detection + Captioning
= Dense Captioning

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016
Figure copyright IEEE, 2016. Reproduced for educational purposes.
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Objects + Relationships = Scene Graphs

28

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, 
Stephanie Chen et al. "Visual genome: Connecting language and vision using 
crowdsourced dense image annotations." International Journal of Computer Vision 123, 
no. 1 (2017): 32-73.
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Scene Graph Prediction

Xu, Zhu, Choy, and Fei-Fei, “Scene Graph Generation by Iterative Message Passing”, CVPR 2017
Figure copyright IEEE, 2018. Reproduced for educational purposes.



3D Object Detection
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2D Object Detection:
2D bounding box
(x, y, w, h)

3D Object Detection:
3D oriented bounding box
(x, y, z, w, h, l, r, p, y)

Simplified bbox: no roll & pitch

Much harder problem than 2D 
object detection!

This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Image source: https://www.pcmag.com/encyclopedia_images/_FRUSTUM.GIF

A point on the image plane 
corresponds to a ray in the 3D 
space

A 2D bounding box on an image 
is a frustrum in the 3D space

Localize an object in 3D: 
The object can be anywhere in 
the camera viewing frustrum!

2D point

3D ray

3D Object Detection: Simple Camera Model

image plane

camera 
viewing frustrum

camera
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3D Object Detection: Monocular Camera

- Same idea as Faster RCNN, but proposals are in 3D
- 3D bounding box proposal, regress 3D box parameters + class score

Chen, Xiaozhi, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and Raquel 
Urtasun. "Monocular 3d object detection for autonomous driving." CVPR 2016.

Faster R-CNN



3D Shape Prediction: Mesh R-CNN

33
Gkioxari et al., Mesh RCNN, ICCV 2019
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Recap: Lots of computer vision tasks!

Classification Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CAT GRASS, CAT, 
TREE, SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Visualizing Neural Networks



Interpreting a Linear Classifier: Visual Viewpoint

36
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First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11 

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017
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First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11 

ResNet-18:
64 x 3 x 7 x 7

ResNet-101:
64 x 3 x 7 x 7

DenseNet-
121:

64 x 3 x 7 x 7

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017
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Visualize the 
filters/kernels 
(raw weights)

We can visualize 
filters at higher 
layers, but not 
that interesting

(these are taken 
from ConvNetJS 
CIFAR-10 demo)

layer 1 weights

layer 2 weights

layer 3 weights

16 x 3 x 7 x 7

20 x 16 x 7 x 
7

20 x 20 x 7 x 
7
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FC7 layerLast Layer

4096-dimensional feature vector for an image
(layer immediately before the classifier)

Run the network on many images, collect the 
feature vectors



41

Last Layer: Nearest Neighbors
Test image L2 Nearest neighbors in feature

space

4096-dim 
vector

Recall: Nearest 
neighbors in pixel
space

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.
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Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

Visualize the “space” of FC7 
feature vectors by reducing 
dimensionality of vectors from 
4096 to 2 dimensions

Simple algorithm: Principal 
Component Analysis (PCA)

More complex: t-SNE

Visualize MNIST:
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Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.

See high-resolution versions at  
http://cs.stanford.edu/people/karpathy/cnnembed/

http://cs.stanford.edu/people/karpathy/cnnembed/
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Visualizing Activations

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.

conv5 feature map is 
128x13x13; visualize 
as 128 13x13 
grayscale images
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Visualizing Activations

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.

conv5 feature map is 
128x13x13; visualize 
as 128 13x13 
grayscale images

Neural nets learn distributed representations 
over many layers. Difficult to visualize everything!
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Which pixels matter: 
Saliency via Occlusion
Mask part of the image before feeding to CNN, check 
how much predicted probabilities change

Zeiler and Fergus, “Visualizing and Understanding Convolutional 
Networks”, ECCV 2014

Boat image is CC0 public domain
Elephant image is CC0 public domain
Go-Karts image is CC0 public domain

P(elephant) = 
0.95

P(elephant) = 
0.75

https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Which pixels matter: 
Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding Convolutional 
Networks”, ECCV 2014

Boat image is CC0 public domain
Elephant image is CC0 public domain
Go-Karts image is CC0 public domain

Mask part of the image before feeding to CNN, check 
how much predicted probabilities change

https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
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Which pixels matter: Saliency via Backprop

Dog

Forward pass: Compute probabilities

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Which pixels matter: Saliency via Backprop

Dog

Forward pass: Compute probabilities

Compute gradient of (unnormalized) class score 
with respect to image pixels, take absolute value 
and max/sum over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.



50

Saliency Maps

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and 
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.



Visualizing Neural NetworksVisualizing Neural Networks

Backward Pass

Forward Pass

Note: We are keeping parameters/weights frozen
Do not use gradients w.r.t. weights to perform updates

Given a trained model, we can 
perform forward pass given an 
input to get scores, softmax
probabilities, loss and then 
backwards pass to get 
gradients

Gradient-based Saliency Visualization



Gradient of Loss w.r.t. Image

Idea: We can backprop to the 
image

Sensitivity of loss to individual 
pixel changes
Large sensitivity implies 
important pixels
Called Saliency Maps

In practice:
Instead of loss, find  gradient of classifier scores (pre-softmax)
Take absolute value of gradient
Sum across all channels From: Simonyan et al., “Deep Inside Convolutional Networks: 

Visualising Image Classification Models and Saliency Maps”, 2013

Backward Pass

Forward Pass

Gradient-based Saliency Visualization



Object Segmentation for Free!

Applying traditional 
(non-learned) computer 
vision segmentation 
algorithms on gradients 
gets us object 
segmentation for free!

Surprising because not 
part of supervision

From: Simonyan et al., “Deep Inside Convolutional Networks: 
Visualising Image Classification Models and Saliency Maps”, 2013

Gradient-based Saliency Visualization
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Intermediate Features via (guided) backprop

Pick a single intermediate neuron, e.g. 
one value in 128 x 13 x 13 conv5 feature 
map

Compute gradient of activation value 
with respect to image pixels

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
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Intermediate Features via (guided) backprop

Pick a single intermediate neuron, e.g. 
one value in 128 x 13 x 13 conv5 feature 
map

Compute gradient of activation value 
with respect to image pixels

Guided backprop: suppress pathways that 
have negative gradients --- only backprop 
positive gradients through each ReLU

ReLU

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, 
Martin Riedmiller, 2015; reproduced with permission.



Guided Backprop Results

From: Springenberg et al., “Striving For Simplicity: The All Convolutional Net"



Note: These images were created 
by a slightly different method called 
deconvolution, which ends up 
being similar to guided backprop

VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



Grad-CAM 61

Guided 
Grad-CAM

Backprop till 
conv

Guided Backpropagation

Conv 
Feature Maps

+

Neuron Importance 

GradCAM
Selfvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2016.



Grad-CAM 62

Guided 
Grad-CAM

Backprop till 
conv

Guided Backpropagation

Rectified Conv 
Feature Maps

+

Grad-CAM

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep 
Networks via Gradient-based Localization, 2016.



Grad-CAM

What animal is in this picture? Dog
Selfvaraju et al., Grad-CAM: Visual Explanations from Deep 
Networks via Gradient-based Localization, 2016.



Grad-CAM

What animal is in this picture? Cat
Selfvaraju et al., Grad-CAM: Visual Explanations from Deep 
Networks via Gradient-based Localization, 2016.



Summary 

Gradients are important not just for optimization, but 
also for analyzing what neural networks have learned

Standard backprop not always the most informative for 
visualization purposes

Several ways to modify the gradient flow to improve 
visualization results



Optimizing 
the Input 
Images



Optimizing the Image

Idea: Since we have the 
gradient of scores w.r.t. 
inputs, can we optimize the 
image itself to maximize the 
score?

Why? 
Generate images from 
scratch!

Adversarial examples
Backward Pass

Forward Pass

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013



Gradient Ascent on the Scores

We can perform gradient 
ascent on image for image 
generation

Start from random/zero image
Use scores to avoid 
minimizing other class scores 
instead

Often need regularization term 
to induce statistics of natural 
imagery

E.g. small pixel values, spatial 
smoothness

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

Backward Pass

Forward Pass

𝒂𝒓𝒈𝒎𝒂𝒙 𝑺𝒄 𝑰 − 𝝀 𝑰 𝟐
𝟐`

𝑰 = 𝑰 + 𝜶
𝝏𝑺𝒄
𝝏𝑰



Example Images

Note: You might have to squint!
From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013



Example Images

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2015

Can improve results with 
various tricks:

Clipping or normalization of 
small values & gradients

Gaussian blurring



Improved Results

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2015

Note: Can generate input images to 
maximize any arbitrary activation!



We can optimize the input image to generate examples to 
increase class scores or activations

This can show us a great deal about what examples (not in 
the training set) activate the network

Summary 



Gradient Ascent on the Scores

We can perform gradient 
ascent on image

Rather than start from zero 
image, why not real image?

And why not optimize the 
score of an arbitrary 
(incorrect!) class 

Surprising result: You need 
very small amount of pixel 
changes to make the network 
confidently wrong!

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

Backward Pass

Forward Pass

𝒂𝒓𝒈𝒎𝒂𝒙 𝑺𝒄 𝑰 − 𝝀 𝑰 𝟐
𝟐`

where 𝒄 = 𝒄𝒂𝒕



Example of Adversarial Noise

Note this problem is not specific to deep learning!
Other methods also suffer from it
Can show how linearity (even at the end) can bring this about

Can add many small values that add up in right direction
From: Goodfellow et al., “Explaining and Harnessing Adversarial Examples”, 2015



Variations of Attacks

Single-Pixel 
Attacks!

Su et al., “One Pixel 
Attack for Fooling Deep 
Neural Networks”, 2019.

White vs. Black-Box Attacks of Increasing Complexity
Chakraborty et al., Adversarial Attacks and Defences: A Survey, 2018



Summary of adversarial Attacks/Defenses

Similar to other security-related areas, it’s an active cat-and-mouse game
Several defenses such as:

Training with adversarial examples

Perturbations, noise, or re-encoding of inputs

There are not universal methods that are robust to all types of attacks



Style Transfer: Separating Style from Content

So far, we’ve seen how to generate images for certain classes / activations through 
backpropagation / gradient-based optimization.

Can we use similar ideas to generate images by combining the style and the content
from different images? 
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Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor 
of features; H x W grid of C-dimensional 
vectors

This image is in the public domain.

w

H

C

https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg
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Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of features; 
H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors gives C 
x C matrix measuring co-occurrence

This image is in the public domain.

w

H

C
C

C

https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg
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Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of features; 
H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors gives C 
x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving Gram 
matrix G of shape C x C

This image is in the public domain.

w

H

C

C

Gram 
Matrix

C

Gram matrix captures the statistics of the texture rather 
than the content of the image

https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg
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Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of features; 
H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors gives C 
x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving Gram 
matrix G of shape C x C

This image is in the public domain.

w

H

C

C

Efficient to compute; reshape features from

C x H x W to  =C x HW

then compute G from all pairs of feature vectors

C

Gram matrix captures the statistics of the texture rather 
than the content of the image

https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg
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Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Neural Texture Synthesis
1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN, 

record activations on every layer; layer i
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix
giving outer product of features:

(shape Ci × Ci)



83

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Neural Texture Synthesis
1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN, 

record activations on every layer; layer i
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix
giving outer product of features:

(shape Ci × Ci)

4. Initialize generated image from random 
noise

5. Pass generated image through CNN, 
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2 
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5
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Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Reconstructing texture from 
higher layers recovers larger 
features from the input 
texture
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Neural Style Transfer

Content Image Style Image

+

This image is licensed under CC-BY 3.0 Starry Night by Van Gogh is in the public domain

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015

https://commons.wikimedia.org/wiki/File:Tuebingen_Neckarfront.jpg
https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
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Neural Style Transfer

Content Image Style Image Style Transfer!

+ =

This image is licensed under CC-BY 3.0 Starry Night by Van Gogh is in the public domain This image copyright Justin Johnson, 2015. Reproduced with 
permission.

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016

https://commons.wikimedia.org/wiki/File:Tuebingen_Neckarfront.jpg
https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
https://github.com/jcjohnson/neural-style


87

Feature Inversion
Given a CNN feature vector for an image, find a new image that:

- Matches the given feature vector
- “looks natural” (image prior regularization) 

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Given feature 
vector

Features of new 
image

Total Variation regularizer 
(encourages spatial 
smoothness)
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Feature Inversion

Reconstructing from different layers of VGG-16

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. Copyright Springer, 2016. Reproduced for 
educational purposes.
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Style 
image

Content 
image

Output 
image
(Start 
with 

noise)

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, 
ECCV 2016. Copyright Springer, 2016. Reproduced for educational purposes.
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Style 
image

Content 
image

Output 
image

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, 
ECCV 2016. Copyright Springer, 2016. Reproduced for educational purposes.
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Neural Style Transfer

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015.



Summary 

Generating images through optimization is a powerful concept!

Besides fun and art, methods such as stylization also useful for 
understanding what the network has learned

Also useful for other things such as data augmentation


