
CS 4644-DL / 7643-A: LECTURE 15
DANFEI XU

Instance Segmentation (Continued)
Network Visualization

Administrivia

• Assignment 2
• We are into the grace period!
• No exception other than for emergencies.

• Project Proposal Feedback is Out
• Talk to the TA (over OHs) who graded your proposal for more detailed

feedback.

• Assignment 3 out soon

3

Computer Vision Tasks

Classification Semantic
Segmentation

Object
Detection

Instance
Segmentation

CAT GRASS, CAT,
TREE, SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

4

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network with only convolutional layers
without downsampling operators to make predictions
for pixels all at once!

Loss: Pixel-wise cross entropy!

5

Input: 2 x 2 Output: 4 x 4

Input gives
weight for
filter

Sum where
output overlaps3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in
the output for every one
pixel in the input

Stride gives ratio between
movement in output and
input

Q: Why is it called
transpose
convolution?

Learnable Upsampling: Transposed Convolution

6

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W Predictions:

H x W

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Downsampling:
Pooling, strided
convolution

Upsampling:
Unpooling or strided
transpose convolution

7

“Slow” R-CNN

Input image

Conv
Net

Conv
Net

Conv
Net

SVMs

SVMs

SVMs

Warped image regions
(224x224 pixels)

Regions of Interest
(RoI) from a proposal
method (~2k)

Forward each
region through
ConvNet

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Classify regions with
SVMs

Bbox reg

Bbox reg

Bbox reg

Predict “corrections” to the RoI: 4 numbers: (dx, dy, dw, dh)

Problem: Very slow!
Need to do ~2k
independent forward
passes for each image!

Idea: Pass the
image through
convnet before
cropping! Crop the
conv feature instead!

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

8

ConvNet

Input image

Run whole image
through ConvNet

“conv5” features

Crop + Resize features

Linear +
softmax

CNN Per-Region Network

Object
category Linear Box offset

Fast R-CNN

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

“Slow” R-CNNRegions of
Interest (RoIs)
from a proposal
method

“Backbone”
network:
AlexNet, VGG,
ResNet, etc

https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

9

Input Image
(e.g. 3 x 640 x 480)

CNN

Girshick, “Fast R-CNN”, ICCV 2015.

Project proposal
onto features

“Snap” to
grid cells

Divide into 2x2
grid of (roughly)
equal subregions

Max-pool within
each subregion

Region features
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Region features always the
same size even if input

regions have different sizes!Problem: Region features slightly misaligned

Cropping Features: RoI Pool

Image features: C x H x W
(e.g. 512 x 20 x 15)

10

Input Image
(e.g. 3 x 640 x 480)

CNN

Project proposal
onto features

He et al, “Mask R-CNN”, ICCV 2017

Sample at regular points
in each subregion using
bilinear interpolation

Max-pool within
each subregion

Region features
(here 512 x 2 x 2;

In practice e.g 512 x 7 x 7)

Cropping Features: RoI Align
No “snapping”!

Image features: C x H x W
(e.g. 512 x 20 x 15)

11

Faster R-CNN:
Make CNN do proposals!

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015
Figure copyright 2015, Ross Girshick; reproduced with permission

Insert Region Proposal
Network (RPN) to predict
proposals from features

Otherwise same as Fast R-CNN:
Crop features for each proposal,
classify each one

12

Faster R-CNN:
Make CNN do proposals!

13

Single-Stage Object Detectors: YOLO / SSD / RetinaNet

Divide image into grid
7 x 7

Image a set of base boxes
centered at each grid cell

Here B = 3

Input image
3 x H x W

Within each grid cell:
- Regress from each of the B

base boxes to a final box
with 5 numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of
C classes (including
background as a class)

- Looks a lot like RPN, but
category-specific!

Output:
7 x 7 x (5 * B + C)Redmon et al, “You Only Look Once:

Unified, Real-Time Object Detection”, CVPR 2016
Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016
Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

14

Instance Segmentation

Classification Semantic
Segmentation

Object
Detection

Instance
Segmentation

CAT GRASS, CAT,
TREE, SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels

15

Object Detection:
Faster R-CNN

16

Instance Segmentation:
Mask R-CNN

Mask Prediction

He et al, “Mask R-CNN”, ICCV 2017

Add a small mask
network that operates
on each RoI and
predicts a 28x28
binary mask

17

Mask R-CNN

He et al, “Mask R-CNN”, arXiv 2017

RoI Align Conv

Classification Scores: C
Box coordinates (per class): 4 * C

CNN
+RPN

Conv

Predict a mask for
each of C classes

C x 28 x 28

256 x 14 x 14 256 x 14 x 14

Mask R-CNN: Example Mask Training Targets

18

Mask R-CNN: Example Mask Training Targets

19

Mask R-CNN: Example Mask Training Targets

20

Mask R-CNN: Example Mask Training Targets

21

22

Mask R-CNN: Very Good Results!

He et al, “Mask R-CNN”, ICCV 2017

23

Mask R-CNN
Also does pose

He et al, “Mask R-CNN”, ICCV 2017

Open Source Frameworks

Lots of good implementations on GitHub!

TensorFlow Detection API:
https://github.com/tensorflow/models/tree/master/research/object_detection
Faster RCNN, SSD, RFCN, Mask R-CNN, ...

Detectron2 (PyTorch)
https://github.com/facebookresearch/detectron2
Mask R-CNN, RetinaNet, Faster R-CNN, RPN, Fast R-CNN, R-FCN, ...

Finetune on your own dataset with pre-trained models

24

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/facebookresearch/detectron2

Beyond 2D Object Detection...

25

26

Object Detection + Captioning
= Dense Captioning

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016
Figure copyright IEEE, 2016. Reproduced for educational purposes.

27

Objects + Relationships = Scene Graphs

28

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen et al. "Visual genome: Connecting language and vision using
crowdsourced dense image annotations." International Journal of Computer Vision 123,
no. 1 (2017): 32-73.

29

Scene Graph Prediction

Xu, Zhu, Choy, and Fei-Fei, “Scene Graph Generation by Iterative Message Passing”, CVPR 2017
Figure copyright IEEE, 2018. Reproduced for educational purposes.

3D Object Detection

30

2D Object Detection:
2D bounding box
(x, y, w, h)

3D Object Detection:
3D oriented bounding box
(x, y, z, w, h, l, r, p, y)

Simplified bbox: no roll & pitch

Much harder problem than 2D
object detection!

This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

31

Image source: https://www.pcmag.com/encyclopedia_images/_FRUSTUM.GIF

A point on the image plane
corresponds to a ray in the 3D
space

A 2D bounding box on an image
is a frustrum in the 3D space

Localize an object in 3D:
The object can be anywhere in
the camera viewing frustrum!

2D point

3D ray

3D Object Detection: Simple Camera Model

image plane

camera
viewing frustrum

camera

32

3D Object Detection: Monocular Camera

- Same idea as Faster RCNN, but proposals are in 3D
- 3D bounding box proposal, regress 3D box parameters + class score

Chen, Xiaozhi, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and Raquel
Urtasun. "Monocular 3d object detection for autonomous driving." CVPR 2016.

Faster R-CNN

3D Shape Prediction: Mesh R-CNN

33
Gkioxari et al., Mesh RCNN, ICCV 2019

34

Recap: Lots of computer vision tasks!

Classification Semantic
Segmentation

Object
Detection

Instance
Segmentation

CAT GRASS, CAT,
TREE, SKY

DOG, DOG, CAT DOG, DOG, CAT

No spatial extent Multiple ObjectNo objects, just pixels This image is CC0 public domain

https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

35

Visualizing Neural Networks

Interpreting a Linear Classifier: Visual Viewpoint

36

37

First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017

38

First Layer: Visualize Filters

AlexNet:
64 x 3 x 11 x 11

ResNet-18:
64 x 3 x 7 x 7

ResNet-101:
64 x 3 x 7 x 7

DenseNet-
121:

64 x 3 x 7 x 7

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017

39

Visualize the
filters/kernels
(raw weights)

We can visualize
filters at higher
layers, but not
that interesting

(these are taken
from ConvNetJS
CIFAR-10 demo)

layer 1 weights

layer 2 weights

layer 3 weights

16 x 3 x 7 x 7

20 x 16 x 7 x
7

20 x 20 x 7 x
7

40

FC7 layerLast Layer

4096-dimensional feature vector for an image
(layer immediately before the classifier)

Run the network on many images, collect the
feature vectors

41

Last Layer: Nearest Neighbors
Test image L2 Nearest neighbors in feature

space

4096-dim
vector

Recall: Nearest
neighbors in pixel
space

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.

42

Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.

Visualize the “space” of FC7
feature vectors by reducing
dimensionality of vectors from
4096 to 2 dimensions

Simple algorithm: Principal
Component Analysis (PCA)

More complex: t-SNE

Visualize MNIST:

43

Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figure reproduced with permission.

See high-resolution versions at
http://cs.stanford.edu/people/karpathy/cnnembed/

http://cs.stanford.edu/people/karpathy/cnnembed/

44

Visualizing Activations

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.

conv5 feature map is
128x13x13; visualize
as 128 13x13
grayscale images

45

Visualizing Activations

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.

conv5 feature map is
128x13x13; visualize
as 128 13x13
grayscale images

Neural nets learn distributed representations
over many layers. Difficult to visualize everything!

46

Which pixels matter:
Saliency via Occlusion
Mask part of the image before feeding to CNN, check
how much predicted probabilities change

Zeiler and Fergus, “Visualizing and Understanding Convolutional
Networks”, ECCV 2014

Boat image is CC0 public domain
Elephant image is CC0 public domain
Go-Karts image is CC0 public domain

P(elephant) =
0.95

P(elephant) =
0.75

https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

47

Which pixels matter:
Saliency via Occlusion

Zeiler and Fergus, “Visualizing and Understanding Convolutional
Networks”, ECCV 2014

Boat image is CC0 public domain
Elephant image is CC0 public domain
Go-Karts image is CC0 public domain

Mask part of the image before feeding to CNN, check
how much predicted probabilities change

https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

48

Which pixels matter: Saliency via Backprop

Dog

Forward pass: Compute probabilities

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

49

Which pixels matter: Saliency via Backprop

Dog

Forward pass: Compute probabilities

Compute gradient of (unnormalized) class score
with respect to image pixels, take absolute value
and max/sum over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

50

Saliency Maps

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.

Visualizing Neural NetworksVisualizing Neural Networks

Backward Pass

Forward Pass

Note: We are keeping parameters/weights frozen
Do not use gradients w.r.t. weights to perform updates

Given a trained model, we can
perform forward pass given an
input to get scores, softmax
probabilities, loss and then
backwards pass to get
gradients

Gradient-based Saliency Visualization

Gradient of Loss w.r.t. Image

Idea: We can backprop to the
image

Sensitivity of loss to individual
pixel changes
Large sensitivity implies
important pixels
Called Saliency Maps

In practice:
Instead of loss, find gradient of classifier scores (pre-softmax)
Take absolute value of gradient
Sum across all channels From: Simonyan et al., “Deep Inside Convolutional Networks:

Visualising Image Classification Models and Saliency Maps”, 2013

Backward Pass

Forward Pass

Gradient-based Saliency Visualization

Object Segmentation for Free!

Applying traditional
(non-learned) computer
vision segmentation
algorithms on gradients
gets us object
segmentation for free!

Surprising because not
part of supervision

From: Simonyan et al., “Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps”, 2013

Gradient-based Saliency Visualization

54

Intermediate Features via (guided) backprop

Pick a single intermediate neuron, e.g.
one value in 128 x 13 x 13 conv5 feature
map

Compute gradient of activation value
with respect to image pixels

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

55

Intermediate Features via (guided) backprop

Pick a single intermediate neuron, e.g.
one value in 128 x 13 x 13 conv5 feature
map

Compute gradient of activation value
with respect to image pixels

Guided backprop: suppress pathways that
have negative gradients --- only backprop
positive gradients through each ReLU

ReLU

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015

Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox,
Martin Riedmiller, 2015; reproduced with permission.

Guided Backprop Results

From: Springenberg et al., “Striving For Simplicity: The All Convolutional Net"

Note: These images were created
by a slightly different method called
deconvolution, which ends up
being similar to guided backprop

VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

Grad-CAM 61

Guided
Grad-CAM

Backprop till
conv

Guided Backpropagation

Conv
Feature Maps

+

Neuron Importance

GradCAM
Selfvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2016.

Grad-CAM 62

Guided
Grad-CAM

Backprop till
conv

Guided Backpropagation

Rectified Conv
Feature Maps

+

Grad-CAM

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization, 2016.

Grad-CAM

What animal is in this picture? Dog
Selfvaraju et al., Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization, 2016.

Grad-CAM

What animal is in this picture? Cat
Selfvaraju et al., Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization, 2016.

Summary

Gradients are important not just for optimization, but
also for analyzing what neural networks have learned

Standard backprop not always the most informative for
visualization purposes

Several ways to modify the gradient flow to improve
visualization results

Optimizing
the Input
Images

Optimizing the Image

Idea: Since we have the
gradient of scores w.r.t.
inputs, can we optimize the
image itself to maximize the
score?

Why?
Generate images from
scratch!

Adversarial examples
Backward Pass

Forward Pass

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

Gradient Ascent on the Scores

We can perform gradient
ascent on image for image
generation

Start from random/zero image
Use scores to avoid
minimizing other class scores
instead

Often need regularization term
to induce statistics of natural
imagery

E.g. small pixel values, spatial
smoothness

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

Backward Pass

Forward Pass

𝒂𝒓𝒈𝒎𝒂𝒙 𝑺𝒄 𝑰 − 𝝀 𝑰 𝟐
𝟐`

𝑰 = 𝑰 + 𝜶
𝝏𝑺𝒄
𝝏𝑰

Example Images

Note: You might have to squint!
From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

Example Images

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2015

Can improve results with
various tricks:

Clipping or normalization of
small values & gradients

Gaussian blurring

Improved Results

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2015

Note: Can generate input images to
maximize any arbitrary activation!

We can optimize the input image to generate examples to
increase class scores or activations

This can show us a great deal about what examples (not in
the training set) activate the network

Summary

Gradient Ascent on the Scores

We can perform gradient
ascent on image

Rather than start from zero
image, why not real image?

And why not optimize the
score of an arbitrary
(incorrect!) class

Surprising result: You need
very small amount of pixel
changes to make the network
confidently wrong!

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

Backward Pass

Forward Pass

𝒂𝒓𝒈𝒎𝒂𝒙 𝑺𝒄 𝑰 − 𝝀 𝑰 𝟐
𝟐`

where 𝒄 = 𝒄𝒂𝒕

Example of Adversarial Noise

Note this problem is not specific to deep learning!
Other methods also suffer from it
Can show how linearity (even at the end) can bring this about

Can add many small values that add up in right direction
From: Goodfellow et al., “Explaining and Harnessing Adversarial Examples”, 2015

Variations of Attacks

Single-Pixel
Attacks!

Su et al., “One Pixel
Attack for Fooling Deep
Neural Networks”, 2019.

White vs. Black-Box Attacks of Increasing Complexity
Chakraborty et al., Adversarial Attacks and Defences: A Survey, 2018

Summary of adversarial Attacks/Defenses

Similar to other security-related areas, it’s an active cat-and-mouse game
Several defenses such as:

Training with adversarial examples

Perturbations, noise, or re-encoding of inputs

There are not universal methods that are robust to all types of attacks

Style Transfer: Separating Style from Content

So far, we’ve seen how to generate images for certain classes / activations through
backpropagation / gradient-based optimization.

Can we use similar ideas to generate images by combining the style and the content
from different images?

78

Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor
of features; H x W grid of C-dimensional
vectors

This image is in the public domain.

w

H

C

https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg

79

Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of features;
H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors gives C
x C matrix measuring co-occurrence

This image is in the public domain.

w

H

C
C

C

https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg

80

Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of features;
H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors gives C
x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving Gram
matrix G of shape C x C

This image is in the public domain.

w

H

C

C

Gram
Matrix

C

Gram matrix captures the statistics of the texture rather
than the content of the image

https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg

81

Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of features;
H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors gives C
x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving Gram
matrix G of shape C x C

This image is in the public domain.

w

H

C

C

Efficient to compute; reshape features from

C x H x W to =C x HW

then compute G from all pairs of feature vectors

C

Gram matrix captures the statistics of the texture rather
than the content of the image

https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg

82

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Neural Texture Synthesis
1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN,

record activations on every layer; layer i
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix
giving outer product of features:

(shape Ci × Ci)

83

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Neural Texture Synthesis
1. Pretrain a CNN on ImageNet (VGG-19)
2. Run input texture forward through CNN,

record activations on every layer; layer i
gives feature map of shape Ci × Hi × Wi

3. At each layer compute the Gram matrix
giving outer product of features:

(shape Ci × Ci)

4. Initialize generated image from random
noise

5. Pass generated image through CNN,
compute Gram matrix on each layer

6. Compute loss: weighted sum of L2
distance between Gram matrices

7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO 5

84

Neural Texture Synthesis

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Reconstructing texture from
higher layers recovers larger
features from the input
texture

85

Neural Style Transfer

Content Image Style Image

+

This image is licensed under CC-BY 3.0 Starry Night by Van Gogh is in the public domain

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015

https://commons.wikimedia.org/wiki/File:Tuebingen_Neckarfront.jpg
https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg

86

Neural Style Transfer

Content Image Style Image Style Transfer!

+ =

This image is licensed under CC-BY 3.0 Starry Night by Van Gogh is in the public domain This image copyright Justin Johnson, 2015. Reproduced with
permission.

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016

https://commons.wikimedia.org/wiki/File:Tuebingen_Neckarfront.jpg
https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
https://github.com/jcjohnson/neural-style

87

Feature Inversion
Given a CNN feature vector for an image, find a new image that:

- Matches the given feature vector
- “looks natural” (image prior regularization)

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

Given feature
vector

Features of new
image

Total Variation regularizer
(encourages spatial
smoothness)

88

Feature Inversion

Reconstructing from different layers of VGG-16

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. Copyright Springer, 2016. Reproduced for
educational purposes.

89

Style
image

Content
image

Output
image
(Start
with

noise)

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”,
ECCV 2016. Copyright Springer, 2016. Reproduced for educational purposes.

90

Style
image

Content
image

Output
image

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”,
ECCV 2016. Copyright Springer, 2016. Reproduced for educational purposes.

92

Neural Style Transfer

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015.

Summary

Generating images through optimization is a powerful concept!

Besides fun and art, methods such as stylization also useful for
understanding what the network has learned

Also useful for other things such as data augmentation

