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Instance Segmentation (Continued)

Network Visualization



Assignment 2

. G We are into the grace period!G
* No exception other than for emergencies.

Project Proposal Feedback is Out

* Talk to the TA (over OHs) who graded your proposal for more detailed
feedback.

Assignment 3 out soon



Computer Vision Tasks

Semantic Object Instance
Segmentation Detection Segmentation

Classification
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No spatial extent No objects, just pixels Multiple Object Thisimaga s GO0 ol domai


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Semantic Segmentation Idea: Fully Convolutional

Design a network with only convolutional layers
without downsampling operators to make predictions
for pixels all at once!

. w Conv Conv
| - — —

Input: N\

A

Conv

A

3xHxW

~

Convolutions:
DxHxW

Conv

argmax
—_—

Scores: Predictions:
CxHxW HxW

Loss: Pixel-wise cross entropy!



Learnable Upsampling: Transposed Convolution

Sum where

Q: Why is it called 3 x 3 transpose convolution, stride 2 pad 1 output overlaps

transpose
convolution?

A 4

Filter moves 2 pixels in

Input gives the output for every one
weight for pixel in the input
filter

Stride gives ratio between

movement in output and
input

Input: 2 x 2 Output: 4 x 4



Semantic Segmentation Idea: Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Bg;s)gcr;lliﬁ;g?:strided
. . - ing insi !
Pooling, lstrlded downsampling and upsampling inside the network! transpose convolution
convolution
Med-res: Med-res:
D, x H/4 x W/4 D, x H/4 x W/4%

Low-res:
LA D; x H/4 x W/4 A

Input: High-res: High-res: Predictions:
edictions:
3xHxW D, x H/2 x W/2 D, x H/2 x W/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015



“Slow” R-CNN

Predict “corrections” to the Rol: 4 numbers: (dx, dy, dw, dh)

Bboxreg || SVMs | Classify regions with Problem: Very slow!

Bbox reg || SVMs
Bbox reg SVMs ‘
Conv
Net
Conv

Conv
Net

SVMs Need to do ~2k

independent forward

Forward each :
passes for each image!

region through
ConvNet

Idea: Pass the

ﬁ , _ image through
Warped image regions

. convnet before
(224x224 pixels) cropping! Crop the

Regions of Interest -5y feature instead!
(Rol) from a proposal

method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Fast R-CNN

Object Linear +
category softmax Linear | Box offset

Regions of CNN Per-Region Network “Slow” R-CNN
Interest (Rols  a t a s
( ) L =7 /7 |Crop +Resize features

from a proposal g
method — &i “conv5” features Conv

Conv Net
Run whole image Conv Net
“Backbone” through ConvNet
network: '
AlexNet, VGG, 4  ConvNet -
ResNet, etc &£ Input image

Input image

Girshick, “Fast R-CNN”, ICCV 2015. Figure copyright Ross Girshick, 2015; source. Reproduced with permission.


https://dl.dropboxusercontent.com/s/vlyrkgd8nz8gy5l/fast-rcnn.pdf?dl=0

Cropping Features: Rol Pool .,

_ grid cells
Project proposax

onto features

Input Image
(e.g. 3 x 640 x 480)

Image features: C x Hx W
(e.g. 512 x 20 x 15)

Girshick, “Fast R-CNN', IGCY 2015, Problem: Region features slightly misaligned

Divide into 2x2
grid of (roughly)
equal subregions

Max-pool within
each subregion

v

Region features
(here 512 x 2 x 2;
In practice e.g 512 x 7 x 7)

Region features always the
same size even if input
regions have different sizes!



Sample at regular points

Cropping Features: Rol Align n each subregion using

« ing”l bilinear interpolation
Project proposaN'NO shapping

onto features

Max-pool within
each subregion

$3
$3

v

Region features
(here 512 x 2 x 2;
In practice e.g 512 x 7 x 7)

Input Image
(e.g. 3 x 640 x 480)

Image features: C x Hx W
(e.g. 512 x 20 x 15)

He et al, “Mask R-CNN”, ICCV 2017



Faster R-CNN:

Make CNN do proposals!

Insert Region Proposal
Network (RPN) to predict

proposals from features

Otherwise same as Fast R-CNN:

Crop features for each proposal,
classify each one

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015

Figure copyright 2015, Ross Girshick; reproduced with permission

proposals/ /
Region Proposal Network 5o




Faster R-CNN:

Make CNN do proposals!

R-CNN Test-Time Speed
R-CNN
SPP-Net
Fast R-CNN 2.3

Faster R-CNN| 0.2

0 15 30

45



Single-Stage Object Detectors: YOLO / SSD / RetinaNet

Input image
3xHxW

Redmon et al, “You Only Look Once:

Unified, Real-Time Object Detection”, CVPR 2016

Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016
Lin et al, “Focal Loss for Dense Object Detection”, ICCV 2017

Divide image into grid
7x7

Image a set of base boxes
centered at each grid cell
Here B=3

Within each grid cell:

- Regress from each of the B
base boxes to a final box
with 5 numbers:

(dx, dy, dh, dw, confidence)

- Predict scores for each of
C classes (including
background as a class)

- Looks a lot like RPN, but
category-specific!

Output:
IxX7Tx(®*B+C)



Instance Segmentation

Instance
Segmentation

= =

DOG, DOG, CAT

- J

Y
Multiple Object




Object Detection:
Faster R-CNN

Object
Detection

[.‘",]‘,, 1€-DOX
'proposeV /

Region Proposal Network X

feature map

CNN
y. /



Instance Segmentation:

Mask R-CNN | e
7

propOSa'S/ network that operates
Instance

g on each Rol and
Segmentatlon Region Proposal Ne

twork ¢ predicts a 28x28
feature map

Add a small mask

He et al, “Mask R-CNN”, ICCV 2017



Mask R-CNN

He et al, “Mask R-CNN”, arXiv 2017

ﬁ

gl /
y y
A1

// L

//

| /// / >

{ // /
1/ Rol Align )/
)/

Classification Scores: C

Box coordinates (per class): 4 * C

 ——

Conv

y/

256 x14x14 256x 14 x 14

Conv

Predict a mask for
each of C classes

Cx28x28




Mask R-CNN: Example Mask Training Targets




Mask R-CNN: Example Mask Training Targets




Mask R-CNN: Example Mask Training Targets




Mask R-CNN: Example Mask Training Targets




Mask R-CNN: Very Good Results!

person1:00

person1.00

' persont.00

motorcycle1.00,

‘motorcycle1.00

A

. -

bottle.99
4 _bottis 99

He et al, “Mask R-CNN”, ICCV 2017



Mask R-CNN

Also does pose

He et al, “Mask R-CNN”, ICCV 2017



Open Source Frameworks

Lots of good implementations on GitHub!

TensorFlow Detection API:

https://github.com/tensorflow/models/tree/master/research/object detection
Faster RCNN, SSD, RFCN, Mask R-CNN, ...

Detectron2 (PyTorch)

https://github.com/facebookresearch/detectron2
Mask R-CNN, RetinaNet, Faster R-CNN, RPN, Fast R-CNN, R-FCN, ...

Finetune on your own dataset with pre-trained models


https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/facebookresearch/detectron2

Beyond 2D Object Detection...



Object Detection + Captioning
= Dense Captioning

people are in the background man wearing a black shirt

light on the wall  sign on the wall man wearing a white shirt _— greenred shirt on a man jelephant is Stand”;,?ephant < brown

trees

man with roof of a
black hair building
man sitting trunk of an s
on a tab'e white |apt0p elephant green trees
on a table 'S thke 4
ackgroun
; man sitting rocks on > :
man Weanng e table the ground "s
blue jeans ) : leg of an
woman bal] = elephant
wearing a VIS
blue jeans on black shirt
the ground o ground is leg of an
chair is brown | icipje sy elephant
man sitting on a bench man wearing black shirt ; shadow on
floor is brown grounsislbrawn elephant is standing the ground

Johnson, Karpathy, and Fei-Fei, “DenseCap: Fully Convolutional Localization Networks for Dense Captioning”, CVPR 2016
Figure copyright IEEE, 2016. Reproduced for educational purposes.






Objects + Relationships = Scene Graphs

108,077 Images

5.4 Million Region Descriptions

1.7 Million Visual Question Answers

3.8 Million Object Instances

2.8 Million Attributes

2.3 Million Relationships

Everything Mapped to Wordnet Synsets

E©VISUALGENOME

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen et al. "Visual genome: Connecting language and vision using
crowdsourced dense image annotations." International Journal of Computer Vision 123,
no. 1(2017): 32-73.



Scene Graph Prediction

Object
Proposals

Graph
Inference

Xu, Zhu, Choy, and Fei-Fei, “Scene Graph Generation by lterative Message Passing”, CVPR 2017

Figure copyright IEEE, 2018. Reproduced for educational purposes.

of

face

mountain —» behind — horse
=
riding
man —— wearing — hat
.,
wearing — shirt



3D Object Detection

2D Object Detection:
2D bounding box
(X, y, w, h)

3D Object Detection:
3D oriented bounding box

(x,v,z,w, h, 1, r,p,y)

Simplified bbox: no roll & pitch

Much harder problem than 2D
object detection!

This i is CCOQ ' .


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

3D Obiject Detection: Simple Camera Model

A point on the image plane
corresponds to a ray in the 3D
space

A 2D bounding box on an image
is a in the 3D space

2D point

Localize an object in 3D:

The object can be anywhere in
the camera viewing frustrum!

Image source: https://www.pcmag.com/encyclopedia_images/ FRUSTUM.GIF



3D Object Detection: Monocular Camera

Candidate sampling in 3D space

z = Scoring
Cﬂf:x : &
Y

Faster R-CNN | X\

projection‘ / — =)

“ Proposals

2D candidate boxes

- Same idea as Faster RCNN, but proposals are in 3D
- 3D bounding box proposal, regress 3D box parameters + class score

Chen, Xiaozhi, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and Raquel
Urtasun. "Monocular 3d object detection for autonomous driving." CVPR 2016.



3D Shape Prediction: Mesh R-CNN

Input Image 2D Recognition

’ i&"' ,ﬁ?@f’ :

3D Meshes 3D Voxels

Gkioxari et al., Mesh RCNN, ICCV 2019



Recap: Lots of computer vision tasks!

Semantic Object Instance
Segmentation Detection Segmentation

Classification

GRASS, ,
\ ,  TREE,SKY , Y,

Y Y Y

No spatial extent No objects, just pixels Multiple Object Thisimaga s GO0 ol domai


https://pixabay.com/en/pets-christmas-dogs-cat-962215/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Visualizing Neural Networks



Interpreting a Linear Classifier: Visual Viewpoint
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2048

First Layer: Visualize Filters

048

pooling

128 Max

192
192

Max
pooling

128

AlexNet:
64x3x11x11

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017



First Layer: Visualize Filters B
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ResNet-18: ResNet-101: DenseNet-
64x3x7x7 64x3x7x7 121:

AlexNet: - 64x3x7x7
64x3x11x11

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017



Visualize the
filters/kernels
(raw weights)

We can visualize
filters at higher
layers, but not
that interesting

(these are taken
from ConvNetJS
CIFAR-10 demo)

Weights: .
BENCENE NSRS layer 1 weights

Weights: 16 x3x7x7
(FENE NSNS )(FISED AP AV SRS (PR RO

CL BT T R NWCRETEEEE TR E AN L UL T LR
BE)(ENSIARRARSSE NN YK ) (LT ANEL RN ) (AN

CULTTT PR TR ESEE SRR T T F LT LT T [

0 ) 0 5 4 ) (08 0052 0 M B (M ih
SEEN RO NNIER D) NN TN eEETE)(seEsnanans | AYET 2 Weights
PTG T EUETEE DT EEE LR T TS
NEENSEEEERENEEY)(ENInInNuTEennEy)anessnsn 20 X 16 X 7 X
S S ) 7

Weights:
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HESDERLAE)



1000

Last Layer

2048

FC7 layer

Joat /m Hense
se| [deflsa [

048

oy —
by
d

128 Max
pooling

13

192
192

4096-dimensional feature vector for an image
(layer immediately before the classifier)

Run the network on many images, collect the
feature vectors




Last Layer: Nearest Neighbors .

1 2
[ 2
vector ] —
Test image L2 Nearest neighbors in feature | >k
q j L S e =3 “_ :

RecaII' Nearest

4 ¥iri it
- T
S-EHEEEE
gfrda g & ¥
- ASEE

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission



204 /zoaa fense
1000
2048

20

Last Layer: Dimensionality Reduction

R s
Visualize the “space” of FC7 T o
feature vectors by reducing oy T
dimensionality of vectors from %
4096 to 2 dimensions

(AN
deflse]

I3

dense

K]
&
)
S
Y
128 Max
pooling

128

192
192

Edics o 3 # 14
: b Prine N Ny B
Simple algorithm: Principal e Wb i)
, 6‘ ' i |

- VR ST T

Component Analysis (PCA) S % iy

42 RO

15 C e e ;l.l:: 5,‘":1;",”

i

More complex: t-SNE

Visualize MINIST:

CPVLYDPY

295789
d3Yysoe7¢89
24669 89
3456789
34Sby2¥%9
34567849
545061849

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Fiecure convricht Laurens van der Maaten and Geoff Hinton 2008 Renroduced with permission.



Hense
1000

Last Layer: Dimensionality Reduction

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.

Figure reproduced with permission. http://cs.stanford.edu/people/karpathy/cnnembed/



http://cs.stanford.edu/people/karpathy/cnnembed/

Visualizing Activations

convl pl nl1 conv2 p2 n2 conv3 conv4 gomvd p5 fc6 fc7 fe8 pro

conv5 feature map is
128x13x13; visualize
as 128 13x13

grayscale images

Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014.
Figure copyright Jason Yosinski, 2014. Reproduced with permission.



Visualizing Activations

conv5 feature map is
128x13x13; visualize
as 128 13x13

grayscale images

Neural nets learn distributed representations
Yosinski et al, “Understanding Neural Networks Through Deep Visualization”, ICML DL Workshop 2014. Ove r m a ny I aye rS . D iffi C u |t to Vi S u a | i Ze eve ryt h i n g !

Figure copyright Jason Yosinski, 2014. Reproduced with permission.



Which pixels matter:
Saliency via Occlusion

Mask part of the image before feeding to CNN, check
how much predicted probabilities change

[ S
128

P(elephant) =
0.95

P(elephant) =
0.75

Boat image is CCO public domain
Zeiler and Fergus, “Visualizing and Understanding Convolutional Elephant image is CCO public domain

Go-Karts image is CCO public domain
Networks”, ECCV 2014 5 =



https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Which pixels matter:

Saliency via Occlusion

Mask part of the image before feeding to CNN, check
how much predicted probabilities change

2088 2048

0.8

0.7

0.6

05

0.4

0.98

0.96

0.94

0.92

0.90

0.88

128 Max pooling
pooling pooling

Boat image is CCO public domain
Elephant image is CCO public domain
Go-Karts image is CCO public domain

Zeiler and Fergus, “Visualizing and Understanding Convolutional
Networks”, ECCV 2014



https://pixabay.com/en/sailboat-ship-sailing-greenland-459794/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/elephant-african-bush-elephant-114543/
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://pixabay.com/en/gokart-fun-car-go-kart-racing-1089893/
https://creativecommons.org/publicdomain/zero/1.0/deed.en

ich pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

A 4

2088 2048

Max 5 Max pooling
pooling pooling

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.



Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

y 3

Compute gradient of (unnormalized) class score
with respect to image pixels, take absolute value
and max/sum over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.




aliency Maps

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.



Gradient-based Saliency Visualization

Given a trained model, we can
perform forward pass given an
input to get scores, softmax
probabilities, loss and then
backwards pass to get
gradients

Note: We are keeping parameters/weights frozen

Forward Pass

Backward Pass

Do not use gradients w.r.t. weights to perform updates




Gradient-based Saliency Visualization

Idea: We can backprop to the

: Forward Pass
Image

Sensitivity of loss to individual
pixel changes

Large sensitivity implies
important pixels

Called Saliency Maps

In practice:

Backward Pass

Instead of loss, find gradient of classifier scores (pre-softmax)

Take absolute value of gradient
Sum across all channels

From: Simonyan et al., “Deep Inside Convolutional Networks:

Visualising Image Classification Models and Saliency Maps”, 2013




Gradient-based Saliency Visualization

Applying traditional
(non-learned) computer
vision segmentation
algorithms on gradients
gets us object
segmentation for free!

Surprising because not
part of supervision

From: Simonyan et al., “Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps”, 2013



Intermediate Features via (guided) backprop

Pick a single intermediate neuron, e.g.
one value in 128 x 13 x 13 conv5 feature

map

Compute gradient of activation value
with respect to image pixels

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015



Intermediate Features via (guided) backprop
RelLU

b) 1]-1]5 110]5
Forward pass .
3124 0ofl2]4
2|lo|1 2|31
Backward pass:
backpropagation N < B G
o|-1]3 2|-1]3
. ) ) . Backward pass: K -2 I -1
Pick a single intermediate neuron, e.g. guided  Jeijo Ol <— [i6H] 3
. backpropagation olols 21l
one value in 128 x 13 x 13 conv5 feature
map Guided backprop: suppress pathways that
_ o have negative gradients --- only backprop
C(?mpute gradle.nt of activation value positive gradients through each RelLU
with respect to image pixels
Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014 Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox,

Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015 Martin Riedmiller, 2015; reproduced with permission.



Guided Backprop Results

cdingi ﬁ
ﬂ‘ ,J' L] ’l ;
&\ SR

;'\J‘ 'O "»:;"

guided backpropagation

)opsl " Y

:5

guided backpropagation

From: Springenberg et al., “Striving For Simplicity: The All Convolutional Net"



VGG Layer-by-Layer Visualization

Note: These images were created
by a slightly different method called
deconvolution, which ends up
being similar to guided backprop

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization

Salmm

e =

[ I

M ”””Hlll

H /
£
B
[
In

Layer 2

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.
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Guided Backpropagation

1
1
1
1
1
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1

1
Neuron Importance of = EZ;

Grad-CAM

Grad-CAM

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2016.
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Selfvaraju et al., Grad-CAM: Visual Explanations from Deep

R . Networks via Gradient-based Localization, 2016.
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What animal is in this picture? Dog

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization, 2016.



What animal is in this picture? Cat

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization, 2016.



Summary

Gradients are important not just for optimization, but
also for analyzing what neural networks have learned

Standard backprop not always the most informative for
visualization purposes

Several ways to modify the gradient flow to improve
visualization results






Idea: Since we have the
gradient of scores w.r.t.
inputs, can we optimize the
image itself to maximize the
score?

Why?

Generate images from
scratch!

Adversarial examples

L

Forward Pass

Backward Pass

J

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013



We can perform gradient
ascent on image for image
generation

Start from random/zero image

Use scores to avoid
minimizing other class scores
instead

Often need regularization term
to induce statistics of natural
imagery

E.g. small pixel values, spatial
smoothness

.

argmax S.(I) — 2 ||1|

2,
2

Forward Pass

Backward Pass
as,

I =1
+aal

J

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013



dumbbell cup dalmatian

Note: You might have to squint!

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013



Can improve results with
various tricks:

@ Clipping or normalization of
small values & gradients

@ Gaussian blurring

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2015

Flamingo Pelican

Ground Beetle Indian Cobra




Improved Results

Pirate Ship Rocking Chair Teddy Bear Windsor Tie

Layer 5

Layer 4

Layer 4

Layer2 Layer3

Laver 1

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2015



Summary
We can optimize the input image to generate examples to

increase class scores or activations

This can show us a great deal about what examples (not in
the training set) activate the network



We can perform gradient
ascent on image argmax S.(I) — 2 ||1]

where ¢ = cat

=l

Backward Pass

2,
2

Rather than start from zero
image, why not real image? Forward Pass

And why not optimize the
score of an arbitrary
(incorrect!) class

Surprising result: You need
very small amount of pixel
changes to make the network
confidently wrong!

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013



o

% sign(VJ(0,x,y))

esign(Vy J (6, 2, )
“panda” “nematode” “gibbon™
57.7% confidence 8.2% confidence 99.3 % confidence

Note this problem is not specific to deep learning!
Other methods also suffer from it
Can show how linearity (even at the end) can bring this about
Can add many small values that add up in right direction

From: Goodfellow et al., “Explaining and Harnessing Adversarial Examples”, 2015



DEER
AIRPLANE(85.3%

BIRD
FROG(86.5%)

Single-Pixel
Attacks!

Su et al., “One Pixel
Attack for Fooling Deep
Neural Networks”, 2019.

Variations of Attacks

Confidence
Reduction
Misclassification

Targeted
Misclassification
Source / Target
Misclassification

. Increasing
~ Complexity

White-Box Attack

Non-Adaptive
Black-Box Attack

Adaptive Black-
Box Attack

Strict Black-Box

Attack Increasing

Attack Difficulty

\4
Decreasing
Capability

Logic Corruption

Data Modification

Data Injection
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White vs. Black-Box Attacks of Increasing Complexity
Chakraborty et al., Adversarial Attacks and Defences: A Survey, 2018



Summary of adversarial Attacks/Defenses

Similar to other security-related areas, it’s an active cat-and-mouse game
Several defenses such as:

Training with adversarial examples

Perturbations, noise, or re-encoding of inputs

There are not universal methods that are robust to all types of attacks



Style Transfer: Separating Style from Content

So far, we’ve seen how to generate images for certain classes / activations through
backpropagation / gradient-based optimization.

Can we use similar ideas to generate images by combining the style and the content
from different images?




Neural Texture Synthesis: Gram Matrix

,,,,,

This image is in the public domain.

Each layer of CNN gives C x H x W tensor
of features; H x W grid of C-dimensional
vectors


https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg

Neural Texture Synthesis: Gram Matrix

Max 128 Max
pooling pooling W

This image is in the public domain.

Each layer of CNN gives C x H x W tensor of features;
H x W grid of C-dimensional vectors

Outer product of two C-dimensional vectors gives C
x C matrix measuring co-occurrence



https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg

Neural Texture Synthesis: Gram Matrix

C C
A C

s T »'- f& ‘ W
This image is in the public domain.

Each layer of CNN gives C x H x W tensor of features;

: ) : Gram
H x W grid of C-dimensional vectors )
Matrix

Outer product of two C-dimensional vectors gives C
x C matrix measuring co-occurrence

Average over all HW pairs of vectors, giving Gram
matrix G of shape Cx C

Gram matrix captures the statistics of the texture rather
than the content of the image


https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg

Neural Texture Synthesis: Gram Matrix

Max
pooling W

A
»

This image is in the public domain.

Each layer of CNN gives C x H x W tensor of features;

H x W grid of C-dimensional vectors
Efficient to compute; reshape features from

Outer product of two C-dimensional vectors gives C
x C matrix measuring co-occurrence CxHxWto =Cx HW

Average over all HW pairs of vectors, giving Gram then compute G from all pairs of feature vectors
matrix G of shape Cx C

Gram matrix captures the statistics of the texture rather
than the content of the image


https://commons.wikimedia.org/wiki/File:Coastal-rocks.jpg

Neural Texture Synthesis

1. Pretrain a CNN on ImageNet (VGG-19)

2.  Runinput texture forward through CNN, s12 : —
record activations on every layer; layer i ' ;conv5_3;§ =
gives feature map of shape C; x H; x W,

i ‘poom

3. At each layer compute the Gram matrix 512 ‘

Al
giving outer product of features: k;; conv4_3, = = ﬂ—' D D
! gl —Poold =~
Gij =Y FiFjxhape Cx C) - =Tl
k

.
= I_[_ -conv2_ 2 - — — — — — — iJ—> |:] I:I

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.



Neural Texture Synthesis

1. Pretrain a CNN on ImageNet (VGG-19)

2.  Run input texture forward through CNN, 512 i
. . . : bl e = > L AL < ~
record activations on every layer; layer i conv5_3, = ” FL
gives feature map of shape C; x H; x W, - OFy, 9Ey C T
. P00|4 IFL HFL-1
3. At each layer compute the Gram matrix s12 s oF

giving outer product of features: 1'"{;; conv4_::;g = ﬂ—* D D :\_/ |l L1 M
Gi; = > FiFjxhape ¢;x C) =~ i T
k

4. Initialize generated image from random ‘@ g T

distance between Gram matrices
7. Backprop to get gradient on image
8. Make gradient step on image
9. GOTO5

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

oL

noise 128
. 1o [ — <« I
5. Pass generated image through CNN, [ - -conv2_, {J i D I:‘ -y | “
compute Gram matrix on each layer ﬁ
6. Compute loss: weighted sum of L2 el
|- — - convi

Gradient
descent

oF




Neural Texture Synthesis

Reconstructing texture from
higher layers recovers larger
features from the input

texture

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.



Neural Style Transfer

Content Image

Starry Night by Van Gogh is in the public domain

This image is licensed under CC-BY 3.0

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015


https://commons.wikimedia.org/wiki/File:Tuebingen_Neckarfront.jpg
https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg

Neural Style Transfer

Content Image

Starry Night by Van Gogh is in the public domain This image copyright Justin Johnson, 2015. Reproduced with

This image is licensed under CC-BY 3.0 L
I permission.

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016


https://commons.wikimedia.org/wiki/File:Tuebingen_Neckarfront.jpg
https://creativecommons.org/licenses/by/3.0/deed.en
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg
https://github.com/jcjohnson/neural-style

Feature Inversion

Given a CNN feature vector for an image, find a new image that:
- Matches the given feature vector
- “looks natural” (image prior regularization)

_— > Given f

x* = argmin_£(®(x), $) + AR(x) o

IR FRsRkiRs B > Features of new
U(®(x), Do) = [|P(x) — Pol|? mage

[Nl ge)

Rya(x) =) ((wmvrl —@is)” + (T = ‘”“’)2) ~

ij Total Variation regularizer
(encourages spatial

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015

smoothness)



Feature Inversion

Reconstructing from different layers of VGG-16
e1u2_2 relu3_3 relud_3 relub_1 relub_3

T -~

Mahendran and Vedaldi, “Understanding Deep Image Representations by Inverting Them”, CVPR 2015
Figure from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”, ECCV 2016. Copyright Springer, 2016. Reproduced for
educational purposes.



Style
image

Output
image
(Start

with
noise)

Content
image

Style Target

Ys

£¢,re1u1_2 €¢,relu2_2 €¢,re1u3_3 €¢,re1u4_3

style style style style
AA 'Y Y AA 'Y Y

Loss Network ¢

vy
€¢,relu3_3
feat

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”,
ECCV 2016. Copyright Springer, 2016. Reproduced for educational purposes.



Style
image

Style Target £¢,re1u1_2 €¢,relu2_2 €¢,re1u3_3 €¢,relu4_3

style style style style
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Output
image
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Y |
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|

l Loss Network (/5
Ye P 'mm e 7 il
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Content Target

Content
image

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure adapted from Johnson, Alahi, and Fei-Fei, “Perceptual Losses for Real-Time Style Transfer and Super-Resolution”,
ECCV 2016. Copyright Springer, 2016. Reproduced for educational purposes.






Neural Style Transfer

Gatys, Ecker, and Bethge, “Image style transfer using convolutional neural networks”, CVPR 2016
Figure copyright Justin Johnson, 2015.



Summary

Generating images through optimization is a powerful concept!

Besides fun and art, methods such as stylization also useful for
understanding what the network has learned

Also useful for other things such as data augmentation



