
CS 4644-DL / 7643-A: LECTURE 13
DANFEI XU

Topics:
• Deep Learning Hardware and Software

2

Newton’s method for optimization: solving for the critical point we obtain
the Newton update rule:

Recap: Second-order Optimization

𝒙∗ = 𝒂 − 𝐻"# ∇𝑓
𝑎

𝑥∗

Bad for deep learning! O(n^3) hessian inversion
• Consider BGFS (approximate hessian) or L-

BFGS (don’t store full hessian in memory)
• L-BFGS works better in full-batch setting.

Disable all stochastic components in training

3

• Reminder: anonymous feedback
• Time to work on the project!

Administrative

4

Recap: Test-time performance

Regularization

5

Recap: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

6

Recap: Dropout

test time is unchanged!

Similar to BatchNorm, different behavior train vs test!

7

Recap: Data Augmentation

Load image
and label

“cat”

CNN

Compute
loss

Transform image

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on
top layer

You’re in trouble…
Try linear
classifier from
different stages

quite a lot of data Finetune a
few layers

Finetune a larger
number
of layers

8

Image

Conv-64
Conv-64
MaxPool

Conv-128
Conv-128
MaxPool

Conv-256
Conv-256
MaxPool

Conv-512
Conv-512
MaxPool

Conv-512
Conv-512
MaxPool

FC-4096
FC-4096
FC-1000

Task-agnostic

Task-specific

Recap: Transfer Learning

9

Today

- Deep learning hardware
- CPU, GPU

- Deep learning software
- PyTorch and TensorFlow
- Static and Dynamic computation graphs

Deep Learning
Hardware

10

11

Inside a computer

12

Spot the CPU!
(central processing unit)

This image is licensed under CC-BY 2.0

https://commons.wikimedia.org/wiki/File:Intel_Core_i7-2600_SR00B_(16339769307).jpg
https://creativecommons.org/licenses/by/2.0/deed.en

13

Spot the GPUs!
(graphics processing unit)

This image is licensed under CC-BY 2.0

https://creativecommons.org/licenses/by/2.0/deed.en

14

CPU vs GPU
Cores Clock

Speed
Memory Price Speed (throughput)

CPU
(Intel Core i9-
7900k)

10 4.3 GHz System
RAM

$385 ~640 GFLOPS FP32

GPU
(NVIDIA
RTX 3090)

10496 1.6 GHz 24 GB
GDDR6X

$1499 ~35.6 TFLOPS FP32

CPU: Fewer cores,
but each core is
much faster and
much more
capable; great at
sequential tasks

GPU: More cores,
but each core is
much slower and
“dumber”; great for
parallel tasks

15

Example: Matrix Multiplication
A x B

B x C
A x C

=

cuBLAS::GEMM (GEneral Matrix-to-matrix Multiply)

CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

(CPU performance not well-
optimized, a little unfair)

66x 67x 71x 64x 76x

16

CPU vs GPU in practice

Data from https://github.com/jcjohnson/cnn-benchmarks

cuDNN much faster than
“unoptimized” CUDA

2.8x 3.0x 3.1x 3.4x 2.8x

17

18

19

NVIDIA AMDvs

20

NVIDIA AMDvs

21

CPU vs GPU
Cores Clock

Speed
Memor
y

Price Speed

CPU
(Intel Core i7-
7700k)

10 4.3 GHz System
RAM

$385 ~640 GFLOPs FP32

GPU
(NVIDIA
RTX 3090)

10496 1.6 GHz 24 GB
GDDR6
X

$1499 ~35.6 TFLOPs FP32

GPU
(Data Center)
NVIDIA A100

6912 CUDA,
432 Tensor

1.5 GHz 40/80
GB
HBM2

$3/hr
(GCP)

~9.7 TFLOPs FP64
~20 TFLOPs FP32
~312 TFLOPs FP16

TPU
Google Cloud
TPUv3

2 Matrix Units
(MXUs) per
core, 4 cores

? 128 GB
HBM

$8/hr
(GCP)

~420 TFLOPs (non-
standard FP)

CPU: Fewer cores,
but each core is
much faster and
much more
capable; great at
sequential tasks

GPU: More cores,
but each core is
much slower and
“dumber”; great for
parallel tasks

TPU: Specialized
hardware for deep
learning

22

Programming GPUs
● CUDA (NVIDIA only)

○ Write C-like code that runs directly on the GPU
○ Optimized APIs: cuBLAS, cuFFT, cuDNN, etc

● OpenCL
○ Similar to CUDA, but runs on anything
○ Usually slower on NVIDIA hardware

● HIP https://github.com/ROCm-Developer-Tools/HIP
○ New project that automatically converts CUDA code to

something that can run on AMD GPUs
○ CS 8803 – GPU at GaTech

○ Taught by Prof. Hyesoon Kim

https://github.com/ROCm-Developer-Tools/HIP

CPU / GPU Communication

Model
is here

Data is here

23

CPU / GPU Communication

Model
is here

Data is here

If you aren’t careful, training can
bottleneck on reading data and
transferring to GPU!

Solutions:
- Read all data into RAM
- Use SSD instead of HDD
- Use multiple CPU threads

to prefetch data

24

Deep Learning
Software

25

A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)
mostly features absorbed
by PyTorch

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,
Hong Kong U, etc but main framework of
choice at AWS

And others...

26

Chainer
(Preferred Networks)
The company has officially migrated its research
infrastructure to PyTorch

JAX
(Google)

A zoo of frameworks!

Caffe
(UC Berkeley)

Torch
(NYU / Facebook)

Theano
(U Montreal)

TensorFlow
(Google)

Caffe2
(Facebook)
mostly features absorbed
by PyTorch

PyTorch
(Facebook)

CNTK
(Microsoft)

PaddlePaddle
(Baidu)

MXNet
(Amazon)
Developed by U Washington, CMU, MIT,
Hong Kong U, etc but main framework of
choice at AWS

And others...

27

Chainer
(Preferred Networks)
The company has officially migrated its research
infrastructure to PyTorch

JAX
(Google)

We’ll focus on these

Recall: Computational Graphs

x

W

hinge
loss

R

+ L
s (scores)

*

28

input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and
Geoffrey Hinton, 2012. Reproduced with permission.

Recall: Computational Graphs

29

Recall: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

30

https://twitter.com/karpathy/status/597631909930242048?lang=en

31

The point of deep learning frameworks

(1)Quick to develop and test new ideas
(2)Automatically compute gradients
(3)Run it all efficiently on GPU (wrap cuDNN, cuBLAS,

OpenCL, etc)

32

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

33

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

34

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy

Bad:
- Have to compute

our own gradients
- Can’t run on GPU

Good:
Clean API, easy to
write numeric code

35

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Looks exactly like numpy!

36

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

PyTorch handles gradients for us!

37

Computational Graphs
x y z

*

a
+

b

Σ

c

Numpy PyTorch

Trivial to run on GPU - just construct
arrays on a different device!

38

PyTorch
(More details)

39

PyTorch: Fundamental Concepts

torch.Tensor: Like a numpy array, but can run on GPU

torch.nn.Module: A neural network layer; may store state
or learnable weights

torch.autograd: Package for building computational graphs
out of Tensors, and automatically computing gradients

40

PyTorch: Versions

For this class we are using PyTorch version >= 1.10
(newest is 1.12)

Major API change in release 1.0

Be careful if you are looking at older PyTorch code (<1.0)!

41

PyTorch: Tensors

Running example: Train
a two-layer ReLU
network on random data
with L2 loss

42

PyTorch: Tensors
Create random tensors
for data and weights

43

PyTorch: Tensors

Forward pass: compute
predictions and loss

44

PyTorch: Tensors

Backward pass:
manually compute
gradients

45

PyTorch: Tensors

Gradient descent
step on weights

46

PyTorch: Tensors

To run on GPU, just use a
different device!

47

PyTorch: Autograd

Creating Tensors with
requires_grad=True enables
autograd

Operations on Tensors with
requires_grad=True cause PyTorch
to build a computational graph

48

PyTorch: Autograd

Forward pass looks exactly
the same as before, but we
don’t need to track
intermediate values -
PyTorch keeps track of them
for us in the graph

49

PyTorch: Autograd

Compute gradient of loss
with respect to w1 and w2

50

PyTorch: Autograd
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss

51

PyTorch: Autograd

Make gradient step on weights, then zero
them. Torch.no_grad means “don’t build a
computational graph for this part”

52

PyTorch: Autograd

PyTorch methods that end in underscore
modify the Tensor in-place; methods that
don’t return a new Tensor

53

PyTorch: New Autograd Functions
Define your own autograd
functions by writing forward
and backward functions for
Tensors

Use ctx object to “cache” values
for the backward pass

54

PyTorch: New Autograd Functions
Define your own autograd
functions by writing forward
and backward functions for
Tensors

Use ctx object to “cache” values
for the backward pass

Define a helper function to make it
easy to use the new function

55

PyTorch: New Autograd Functions

Can use our new autograd
function in the forward pass

56

PyTorch: New Autograd Functions

In practice you almost never need
to define new autograd functions!
Only do it when you need custom
backward. In this case we can just
use a normal PyTorch function

57

PyTorch: nn

Higher-level wrapper for
working with neural nets

Use this! It will make your life
easier

58

PyTorch: nn

Define our model as a
sequence of layers; each
layer is an object that
holds learnable weights

59

PyTorch: nn

Forward pass: feed data to
model, and compute loss

60

PyTorch: nn

torch.nn.functional has useful
helpers like loss functions

Forward pass: feed data to
model, and compute loss

61

PyTorch: nn

Backward pass: compute
gradient with respect to all
model weights (they have
requires_grad=True)

62

PyTorch: nn

Make gradient step on
each model parameter
(with gradients disabled)

63

PyTorch: optim

Use an optimizer for
different update rules

64

PyTorch: optim

After computing gradients, use
optimizer to update params
and zero gradients

65

PyTorch: nn
Define new Modules
A PyTorch Module is a neural net
layer; it inputs and outputs Tensors

Modules can contain weights or other
modules

You can define your own Modules
using autograd!

66

PyTorch: nn
Define new Modules

Define our whole model
as a single Module

67

PyTorch: nn
Define new Modules

Initializer sets up two
children (Modules can
contain modules)

68

PyTorch: nn
Define new Modules

Define forward pass using
child modules

No need to define
backward - autograd will
handle it

69

PyTorch: nn
Define new Modules

Construct and train an
instance of our model

70

PyTorch: nn
Define new Modules
Very common to mix and match
custom Module subclasses and
Sequential containers

71

PyTorch: nn
Define new Modules

Define network component
as a Module subclass

72

PyTorch: nn
Define new Modules

Stack multiple instances of the
component in a sequential

73

PyTorch: Pretrained Models

Super easy to use pretrained models with torchvision
https://github.com/pytorch/vision

https://github.com/pytorch/vision

PyTorch: Computational Graphs

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

75

https://twitter.com/karpathy/status/597631909930242048?lang=en

76

PyTorch: Dynamic Computation Graphs

77

PyTorch: Dynamic Computation Graphs
x w1 w2 y

Create Tensor objects

78

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND
perform computation

79

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND
perform computation

80

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2
(for backprop) AND perform computation

81

PyTorch: Dynamic Computation Graphs
x w1 w2 y

Throw away the graph, backprop path, and
rebuild it from scratch on every iteration

82

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

Build graph data structure AND
perform computation

83

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Build graph data structure AND
perform computation

84

PyTorch: Dynamic Computation Graphs
x w1 w2 y

mm

clamp

mm

y_pred

-

pow sum loss
Search for path between loss and w1, w2
(for backprop) AND perform computation

85

PyTorch: Dynamic Computation Graphs

Building the graph and
computing the graph happen at
the same time.

Seems inefficient, especially if we
are building the same graph over
and over again...

86

Static Computation Graphs

Alternative: Static graphs

Step 1: Build computational graph
describing our computation
(including finding paths for
backprop)

Step 2: Reuse the same graph on
every iteration

87

TensorFlow

88

TensorFlow Versions

Default static graph,
optionally dynamic
graph (eager mode).

Pre-2.0 (1.14 latest) 2.0+
Default dynamic graph,
optionally static graph.
We use 2.4 in this class.

89

TensorFlow:
Neural Net
(Pre-2.0)

(Assume imports at the
top of each snippet)

90

TensorFlow:
Neural Net
(Pre-2.0)

First define
computational graph

Then run the graph
many times

91

TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 2.0+:
“Eager” Mode by default

assert(tf.executing_eagerly())
Tensorflow 1.13

92

TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0+:
“Eager” Mode by default

assert(tf.executing_eagerly())

93

TensorFlow: 2.0+ vs. pre-2.0

Tensorflow 1.13

Tensorflow 2.0+:
“Eager” Mode by default

assert(tf.executing_eagerly())

94

TensorFlow:
Neural Net

Convert input numpy
arrays to TF tensors.
Create weights as
tf.Variable

95

TensorFlow:
Neural Net

Use tf.GradientTape()
context to build
dynamic computation
graph.

96

TensorFlow:
Neural Net

All forward-pass
operations in the
contexts (including
function calls) gets
traced for computing
gradient later.

97

TensorFlow:
Neural Net

Forward pass

98

TensorFlow:
Neural Net

tape.gradient() uses the
traced computation
graph to compute
gradient for the weights

99

TensorFlow:
Neural Net

Backward pass

100

TensorFlow:
Neural Net

Train the network: Run
the training step over
and over, use gradient
to update weights

101

TensorFlow:
Neural Net

Train the network: Run
the training step over
and over, use gradient
to update weights

102

TensorFlow:
Optimizer

Can use an optimizer to
compute gradients and
update weights

103

TensorFlow:
Loss

Use predefined
loss functions

104

Keras (https://keras.io/)

tf.keras (https://www.tensorflow.org/api_docs/python/tf/keras)

tf.estimator (https://www.tensorflow.org/api_docs/python/tf/estimator)

Sonnet (https://github.com/deepmind/sonnet)

TFLearn (http://tflearn.org/)

TensorLayer (http://tensorlayer.readthedocs.io/en/latest/)

TensorFlow: High-Level Wrappers

https://keras.io/
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/estimator
https://github.com/deepmind/sonnet
http://tflearn.org/
http://tensorlayer.readthedocs.io/en/latest/

105

@tf.function:
compile static
graph

tf.function decorator
(implicitly) compiles
python functions to
static graph for better
performance

106

@tf.function:
compile static
graph

Here we compare the
forward-pass time of
the same model under
dynamic graph mode
and static graph mode

Ran on Google Colab, April 2020

107

@tf.function:
compile static
graph

Static graph is in theory
faster than dynamic graph,
but the performance gain
depends on the type of
model / layer / computation
graph.

Ran on Google Colab, April 2020

108

@tf.function:
compile static
graph

Static graph is in theory
faster than dynamic graph,
but the performance gain
depends on the type of
model / layer / computation
graph.

Ran on Google Colab, April 2020

Static vs Dynamic: Optimization
With static graphs,
framework can
optimize the
graph for you
before it runs!

Conv
ReLU
Conv
ReLU
Conv
ReLU

The graph you wrote

Conv+ReLU

Equivalent graph with
fused operations

Conv+ReLU
Conv+ReLU

109

110

Static PyTorch: TorchScript
graph(%self.1 :
__torch__.torch.nn.modules.module.___torch_mangl
e_4.Module,

%input : Float(3, 4),
%h : Float(3, 4)):

%19 :
__torch__.torch.nn.modules.module.___torch_mangl
e_3.Module =
prim::GetAttr[name="linear"](%self.1)
%21 : Tensor =

prim::CallMethod[name="forward"](%19, %input)
%12 : int = prim::Constant[value=1]() #

<ipython-input-40-26946221023e>:7:0
%13 : Float(3, 4) = aten::add(%21, %h, %12) #

<ipython-input-40-26946221023e>:7:0
%14 : Float(3, 4) = aten::tanh(%13) #

<ipython-input-40-26946221023e>:7:0
%15 : (Float(3, 4), Float(3, 4)) =

prim::TupleConstruct(%14, %14)
return (%15)

Build static graph with torch.jit.trace

PyTorch vs TensorFlow, Static vs Dynamic

PyTorch
Dynamic Graphs

Static: TorchScript

111

TensorFlow
Dynamic: Eager

Static: @tf.function

Static vs Dynamic: Serialization

Once graph is built, can
serialize it and run it
without the code that
built the graph!

Graph building and execution
are intertwined, so always
need to keep code around

Static Dynamic

112

Dynamic Graph Applications

Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for Generating
Image Descriptions”, CVPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

113

- Recurrent networks

Dynamic Graph Applications

The cat ate a big rat

114

- Recurrent networks
- Recursive networks

Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular networks

Andreas et al, “Neural Module Networks”, CVPR 2016
Andreas et al, “Learning to Compose Neural Networks for Question Answering”, NAACL 2016
Johnson et al, “Inferring and Executing Programs for Visual Reasoning”, ICCV 2017

115

Figure copyright Justin Johnson, 2017. Reproduced with permission.

Dynamic Graph Applications

- Recurrent networks
- Recursive networks
- Modular Networks
- (Your creative idea here)

116

117

Model Parallel vs. Data Parallel

Model Parallel minibatch

Data Parallel

Model parallelism:
split computation
graph into parts &
distribute to GPUs/
nodes

Data parallelism: split
minibatch into chunks &
distribute to GPUs/ nodes

118

PyTorch: Data Parallel
nn.DataParallel
Pro: Easy to use (just wrap the model and run training script as normal)
Con: Single process & single node. Can be bottlenecked by CPU with large number
of GPUs (8+).

nn.DistributedDataParallel
Pro: Multi-nodes & multi-process training
Con: Need to hand-designate device and manually launch training script for each
process / nodes.

Horovod (https://github.com/horovod/horovod): Supports both PyTorch and
TensorFlow

https://pytorch.org/docs/stable/nn.html#dataparallel-layers-multi-gpu-distributed

https://github.com/horovod/horovod
https://pytorch.org/docs/stable/nn.html

119

TensorFlow: Data Parallel
tf.distributed.Strategy

https://www.tensorflow.org/tutorials/distribute/keras

https://www.tensorflow.org/api_docs/python/tf/distribute/Strategy
https://www.tensorflow.org/tutorials/distribute/keras

120

PyTorch vs. TensorFlow: Academia

https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-
research-tensorflow-dominates-industry/

https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/

121

PyTorch vs. TensorFlow: Academia

https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-
research-tensorflow-dominates-industry/

https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/

My Advice:
PyTorch is my personal favorite. Clean API, native dynamic graphs
make it very easy to develop and debug. Can build model using the
default API then compile static graph using JIT. Almost all academic
research uses PyTorch

TensorFlow’s syntax became a lot more intuitive after 2.0. Not
perfect but has huge community and wide usage. Can use same
framework for research and production. Probably use a higher-level
wrapper (Keras, Sonnet, etc.).

122

