# **CS 4644-DL / 7643-A: LECTURE 11 DANFEI XU**

#### Topics:

Training Neural Networks (Part 2)

#### Administrative

- Project Proposal deadline postponed to Oct 3<sup>rd</sup> (Monday)
  - No grace period!
- Google cloud coupon instruction released on Piazza

## **Sigmoid**

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$



#### tanh

tanh(x)



#### ReLU

 $\max(0, x)$ 



## Leaky ReLU

 $\max(0.1x, x)$ 



#### **Maxout**

 $\max(w_1^T x + b_1, w_2^T x + b_2)$ 

#### **ELU**

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$



Sigmoid

$$\sigma(x) = 1/(1 + e^{-x})$$

- Squashes numbers to range [0,1]
- Historically popular since they have nice interpretation as a saturating "firing rate" of a neuron

#### 3 problems:

- 1. Saturated neurons "kill" the gradients
- 2. Sigmoid outputs are not zerocentered
- 3. exp() is a bit compute expensive





Leaky ReLU

$$f(x) = \max(0.01x, x)$$

- Does not saturate
- Computationally efficient
- Converges much faster than sigmoid/tanh in practice! (e.g. 6x)
- will not "die".

#### Parametric Rectifier (PReLU)

$$f(x) = \max(\alpha x, x)$$

backprop into \alpha (parameter)

#### **Exponential Linear Units (ELU)**



$$f(x) = \begin{cases} x & \text{if } x > 0\\ \alpha \left( \exp(x) - 1 \right) & \text{if } x \le 0 \end{cases}$$
(Alpha default = 1)

- All benefits of ReLU
- Negative saturation encodes presence of features (all goes to -\alpha), not magnitude
- Same in backprop
- Compared with Leaky ReLU: more robust to noise

### Scaled Exponential Linear Units (SELU)



$$f(x) = egin{cases} \lambda x & ext{if } x > 0 \ \lambda lpha(e^x - 1) & ext{otherwise} \end{cases}$$

 $\alpha$  = 1.6732632423543772848170429916717  $\lambda$  = 1.0507009873554804934193349852946

- Scaled version of ELU that works better for deep networks
- "Self-normalizing" property;
- Can train deep SELU networks without BatchNorm
  - (will discuss more later)

Derivation takes 91 pages of math in appendix...

(Klambauer et al, Self-Normalizing Neural Networks, ICLR 2017)

## **TLDR:** In practice:

- Many possible choices beyond what we've talked here, but ...
- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / ELU / SELU
  - To squeeze out some marginal gains
- Don't use sigmoid or tanh

# Data Preprocessing

## **Data Preprocessing**



(Assume X [NxD] is data matrix, each example in a row)

## **Data Preprocessing**

**Before normalization**: classification loss very sensitive to changes in weight matrix; hard to optimize



**After normalization**: less sensitive to small changes in weights; easier to optimize



# Weight Initialization

## Weight Initialization: Activation statistics

```
dims = [4096] * 7 Forward pass for a 6-layer
hs = [] net with hidden size 4096
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = 0.01 * np.random.randn(Din, Dout)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

All activations tend to zero for deeper network layers

**Q**: What do the gradients dL/dW look like?

Hint: 
$$\frac{\partial L}{\partial w} = x^T \left( \frac{\partial L}{\partial y} \right)$$



## Weight Initialization: Activation statistics

All activations saturate

**Q**: What do the gradients look like?

More generally, gradient explosion.



## Weight Initialization: "Xavier" Initialization

"Just right": Activations are nicely scaled for all layers!



Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

## Weight Initialization: "Xavier" Initialization

"Just right": Activations are nicely scaled for all layers!

For conv layers, Din is filter\_size<sup>2</sup> \* input\_channels

```
Let: y = x_1w_1+x_2w_2+...+x_{Din}w_{Din}

Assume: Var(x_1) = Var(x_2)=...=Var(x_{Din})

We want: Var(y) = Var(x_i)
```

```
Var(y) = Var(x_1w_1+x_2w_2+...+x_{Din}w_{Din})
= Din Var(x_iw_i)
= Din Var(x_i) Var(w_i)
[Assume all x_i, w_i are iid]
```

So,  $Var(y) = Var(x_i)$  only when  $Var(w_i) = 1/Din$ 

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

## Weight Initialization: Kaiming / MSRA Initialization

```
dims = [4096] * 7
hs = []

ReLU correction: std = sqrt(2 / Din)

x = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1:]):

W = np.random.randn(Din, Dout) * np.sqrt(2/Din)

x = np.maximum(0, x.dot(W))
hs.append(x)
```

Issue: Half of the activation get killed.

Solution: make the non-zero output variance twice as large as input



He et al, "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification", ICCV 2015

#### This Time:

#### **Training** Deep Neural Networks

- Details of the non-linear activation functions
- Data normalization
- Weight Initialization
- Batch Normalization
- Advanced Optimization
- Regularization
- Data Augmentation
- Transfer learning
- Hyperparameter Tuning
- Model Ensemble

#### Recall: Normalization



Problem: Can't do this for intermediate layers! Need fixed statistics (e.g., mean & std), but activations change as the training progresses.

"you want zero-mean unit-variance activations? just make them so."

consider a **batch of activations** *x* at some layer. To make each dimension zero-mean unit-variance, apply:

$$\hat{x} = \frac{x - \mathbf{E}[x]}{\sqrt{\mathbf{Var}[x]}}$$

this is a vanilla differentiable function...

"you want zero-mean unit-variance activations? just make them so."



Input:  $x: N \times D$ 

X

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \quad \text{Per-channel mean,} \\ \text{shape is D}$$

$$\sigma_j^2 = rac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2$$
 Per-channel var, shape is D

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \qquad \text{Normalized x,} \\ \text{Shape is N x D}$$

(Prevent div by 0 err)

Input:  $x: N \times D$ 



$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \quad \text{Per-channel mean,} \\ \text{shape is D}$$

$$\sigma_j^2 = rac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2$$
 Per-channel var, shape is D

$$\hat{x}_{i,j} = rac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + arepsilon}}$$
 Normalized x, Shape is N x D

Problem: What if zero-mean, unit variance is too hard of a constraint?
E.g., inserting a BN before sigmoid will constrain it to (mostly) linear regime



## Input: $x: N \times D$ Learnable scale and shift parameters:

$$\gamma, \beta \colon \mathbb{R}^D$$

We want to give the model a chance to adjust batchnorm if the default is not optimal. Learning  $\gamma = \sigma$  and  $\beta = \mu$  will recover the identity function!

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \quad \text{Per-channel mean,} \\ \sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 \quad \text{Per-channel var,} \\ \hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \quad \text{Normalized x,} \\ y_{i,j} = \underline{\gamma_j} \hat{x}_{i,j} + \underline{\beta_j} \quad \text{Output,} \\ \text{Shape is N x D}$$

## **Batch Normalization: Test-Time**

Estimates depend on minibatch; can't do this at test-time!

Input:  $x: N \times D$ Learnable scale and shift parameters:

 $\gamma, \beta \colon \mathbb{R}^D$ 

Activations become fixed after training. Can calculate training set-wide statistics for inference-time normalization.

Do moving average to save compute.

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \quad \text{Per-channel mean,} \\ \sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 \quad \text{Per-channel var,} \\ \text{shape is D}$$

$$\hat{x}_{i,j} = rac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + arepsilon}}$$
 Normalized x, Shape is N x D  $y_{i,j} = \gamma_j \hat{x}_{i,j} + eta_j$  Output, Shape is N x D

## **Batch Normalization: Test-Time**

## Input: $x: N \times D$ Learnable scale and shift parameters:

$$\gamma, \beta \colon \mathbb{R}^D$$

During testing batchnorm becomes a linear operator!
Can be fused with the previous fully-connected or conv layer

$$\mu_j = {}^{ ext{(Moving)}}$$
 average of values seen during training

$$\sigma_j^2 = {}^{ ext{(Moving)}}$$
 average of values seen during training

 $\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$ 

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output, Shape is N x D

Per-channel mean, shape is D

Per-channel var, shape is D

Q: Should you put batchnorm before or after ReLU?

A: Topic of debate. Original paper says BN->ReLU. Now most commonly ReLU->BN. If BN-> ReLU and zero mean, ReLU kills half of the activations, but in practice makes insignificant differences.

Q: Should you normalize the input (e.g., images) with batchnorm?

A: No, you already have the fixed & correct dataset statistics, no need to do batchnorm.

Q: How many parameters does a batchnorm layer have?

A: Input dimension \* 4: beta, gamma, moving average mu, moving average sigma. Only beta and gamma are trainable parameters.

- Makes deep networks much easier to train!
  - If you are interested in the theory, read <a href="https://arxiv.org/abs/1805.11604">https://arxiv.org/abs/1805.11604</a>
  - TL;DR: makes optimization landscape smoother
- Allows higher learning rates, faster convergence
- More useful in deeper networks
- Networks become more robust to initialization.
- Zero overhead at test-time: can be fused with conv!
- Behaves differently during training and testing: this is a very common source of bugs!
- Needs large batch size to calculate accurate stats

## **Batch Normalization for ConvNets**

Batch Normalization for **fully-connected** networks



Batch Normalization for **convolutional** networks (Spatial Batchnorm, BatchNorm2D)

Normalize 
$$\mathbf{x}: \mathbf{N} \times \mathbf{C} \times \mathbf{H} \times \mathbf{W}$$
 $\mu, \sigma: \mathbf{1} \times \mathbf{C} \times \mathbf{1} \times \mathbf{1}$ 
 $\mathbf{y}, \beta: \mathbf{1} \times \mathbf{C} \times \mathbf{1} \times \mathbf{1}$ 
 $\mathbf{y} = \mathbf{y}(\mathbf{x} - \boldsymbol{\mu}) / \sigma + \beta$ 

# **Layer Normalization**

**Batch Normalization** for fully-connected networks

Normalize
$$\mu, \sigma: 1 \times D$$

$$y, \beta: 1 \times D$$

$$y = y(x-\mu)/\sigma + \beta$$

Ba, Kiros, and Hinton, "Layer Normalization", arXiv 2016

**Layer Normalization** for fullyconnected networks Same behavior at train and test!

Normalize
$$\mu, \sigma: N \times D$$

$$\mu, \sigma: N \times 1$$

$$y, \beta: 1 \times D$$

$$y = y(x-\mu)/\sigma + \beta$$

More flexible (can use N = 1!), works well with sequence models (RNN, Transformers)

## Instance Normalization

**Batch Normalization** for convolutional networks



Instance Normalization for convolutional networks
Same behavior at train / test!

Normalize  

$$\mu, \sigma: N \times C \times 1 \times 1$$
  
 $\mu, \sigma: N \times C \times 1 \times 1$   
 $y, \beta: 1 \times C \times 1 \times 1$   
 $y = y(x-\mu)/\sigma + \beta$ 

Ulyanov et al, Improved Texture Networks: Maximizing Quality and Diversity in Feed-forward Stylization and Texture Synthesis, CVPR 2017

# Comparison of Normalization Layers



Wu and He, "Group Normalization", ECCV 2018

# **Group Normalization**



Wu and He, "Group Normalization", ECCV 2018

## (Fancier) Optimizers

# Optimization

```
# Vanilla Gradient Descent

while True:
    weights_grad = evaluate_gradient(loss_fun, data, weights)
    weights += - step_size * weights_grad # perform parameter update
```

# Optimization: Problem #1 with SGD

- Stochastic minibatch gives a noisy estimate of the true gradient direction. Very problematic when the batch size is small (e.g., due to compute resource limit).
- Poorly-selected learning rate makes the oscillation worse (overshoot)



http://web.cs.ucla.edu/~chohsieh/teaching/CS260\_Winter2019/lecture4.pdf

# Optimization: Problem #2 with SGD

What if the loss function has a local minima or saddle point?



### Optimization: Problem #2 with SGD

What if the loss function has a local minima or saddle point?

Zero gradient, gradient descent gets stuck



# Optimization: Problem #2 with SGD

What if the loss function has a local minima or saddle point?

Saddle points much more common in high dimension



Dauphin et al, "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization", NIPS 2014

#### SGD + Momentum

#### Intuitions:

- Think of a ball (set of parameters) moving in space (loss landscape), with momentum keeping it going in a direction.
- Individual gradient step may be noisy, the general trend accumulated over a few steps will point to the right direction.
- Momentum can "push" the ball over saddle points or local minima.



#### SGD + Momentum

#### Intuitions:

- Think of a ball (set of parameters) moving in space (loss landscape), with momentum keeping it going in a direction.
- Individual gradient step may be noisy, the general trend accumulated over a few steps will point to the right direction.
- Momentum can "push" the ball over saddle points or local minima.





# SGD: the simple two line update code

#### SGD

```
x_{t+1} = x_t - \alpha \nabla f(x_t)
```

```
while True:
    dx = compute_gradient(x)
    x -= learning_rate * dx
```

#### SGD + Momentum:

continue moving in the general direction as the previous iterations

SGD

SGD+Momentum

```
x_{t+1} = x_t - \alpha \nabla f(x_t) while True:  dx = compute\_gradient(x)   x -= learning\_rate * dx
```

```
v_{t+1} = \rho v_t + \nabla f(x_t)x_{t+1} = x_t - \alpha v_{t+1}
```

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

#### SGD + Momentum:

continue moving in the general direction as the previous iterations

#### SGD

#### $x_{t+1} = x_t - \alpha \nabla f(x_t)$

```
while True:
   dx = compute_gradient(x)
   x -= learning_rate * dx
```

#### SGD+Momentum

```
v_{t+1} = \rho v_t + \nabla f(x_t)x_{t+1} = x_t - \alpha v_{t+1}
```

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx + dx
    x -= learning_rate * vx
```

- Build up "velocity" as a running mean of gradients
- Rho gives "friction"; typically rho=0.9 or 0.99

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

#### SGD + Momentum:

#### alternative equivalent formulation

#### SGD+Momentum

$$v_{t+1} = \rho v_t - \alpha \nabla f(x_t)$$
$$x_{t+1} = x_t + v_{t+1}$$

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx - learning_rate * dx
    x += vx
```

#### SGD+Momentum

```
v_{t+1} = \rho v_t + \nabla f(x_t)x_{t+1} = x_t - \alpha v_{t+1}
```

```
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx + dx
    x -= learning_rate * vx
```

You may see SGD+Momentum formulated different ways, but they are equivalent - give same sequence of x

Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

### SGD+Momentum

#### Momentum update:



Combine gradient at current point with velocity to get step used to update weights

Nesterov, "A method of solving a convex programming problem with convergence rate O(1/k^2)", 1983 Nesterov, "Introductory lectures on convex optimization: a basic course", 2004 Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

#### **Nesterov Momentum**

#### Momentum update:



### Combine gradient at current point with velocity to get step used to update weights

Nesterov, "A method of solving a convex programming problem with convergence rate O(1/k^2)", 1983 Nesterov, "Introductory lectures on convex optimization: a basic course", 2004 Sutskever et al, "On the importance of initialization and momentum in deep learning", ICML 2013

#### **Nesterov Momentum**



"Look ahead" to the point where updating using velocity would take us; compute gradient there and mix it with velocity to get actual update direction

### **Nesterov Momentum**



# Optimization: Problem #3 with SGD

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction



### Optimization: Problem #3 with SGD

What if loss changes quickly in one direction and slowly in another? What does gradient descent do?

Very slow progress along shallow dimension, jitter along steep direction



https://www.cs.toronto.edu/~rgrosse/courses/csc421 2019/slides/lec07.pdf

Loss function has high **condition number**: ratio of largest to smallest singular value of the Hessian matrix is large

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension

"Per-parameter learning rates" or "adaptive learning rates"

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```



Q: What happens with AdaGrad?

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```



Q: What happens with AdaGrad?

Progress along "steep" directions is damped; progress along "flat" directions is accelerated

```
grad_squared = 0
while True:
  dx = compute\_gradient(x)
  grad\_squared += dx * dx
  x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Q2: What happens to the step size over long time?

```
grad_squared = 0
while True:
  dx = compute\_gradient(x)
  grad_squared += dx * dx
 x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Q2: What happens to the step size over long time? Decays to zero

# RMSProp: "Leaky AdaGrad"

#### AdaGrad

```
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

#### RMSProp

```
grad_squared = 0
while True:
    dx = compute_gradient(x)

grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

# RMSProp



# Adam (almost)

```
first_moment = 0
second_moment = 0
while True:
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))
```

# Adam (almost)

```
first_moment = 0
second_moment = 0
while True:
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx
    x -= learning_rate * first_moment / (np.sqrt(second_moment) + 1e-7))
```

Momentum

AdaGrad / RMSProp

Sort of like RMSProp with momentum

Q: What happens at first timestep?

# Adam (full form)

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)

x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
```

**Momentum** 

Bias correction

AdaGrad / RMSProp

Bias correction for the fact that first and second moment estimates start at zero

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

# Adam (full form)

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
    dx = compute_gradient(x)
    first_moment = beta1 * first_moment + (1 - beta1) * dx
    second_moment = beta2 * second_moment + (1 - beta2) * dx * dx

    first_unbias = first_moment / (1 - beta1 ** t)
    second_unbias = second_moment / (1 - beta2 ** t)
    x -= learning_rate * first_unbias / (np.sqrt(second_unbias) + 1e-7))
```

**Momentum** 

Bias correction

AdaGrad / RMSProp

Bias correction for the fact that first and second moment estimates start at zero

Adam with beta1 = 0.9, beta2 = 0.999, and learning\_rate = 1e-3 or 5e-4 is a great starting point for many models!

Kingma and Ba, "Adam: A method for stochastic optimization", ICLR 2015

# Adam



### Learning rate schedules

# SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.



Q: Which one of these learning rates is best to use?

# SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.



Q: Which one of these learning rates is best to use?

A: In reality, all of these are good learning rates.

# Learning rate decays over time



**Step:** Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.



**Step:** Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine: 
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Loshchilov and Hutter, "SGDR: Stochastic Gradient Descent with Warm Restarts", ICLR 2017 Radford et al, "Improving Language Understanding by Generative Pre-Training", 2018 Feichtenhofer et al, "SlowFast Networks for Video Recognition", arXiv 2018 Child at al, "Generating Long Sequences with Sparse Transformers", arXiv 2019

 $lpha_0$  : Initial learning rate

 $lpha_t$  : Learning rate at epoch t

T: Total number of epochs



**Step:** Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine: 
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Loshchilov and Hutter, "SGDR: Stochastic Gradient Descent with Warm Restarts", ICLR 2017 Radford et al, "Improving Language Understanding by Generative Pre-Training", 2018 Feichtenhofer et al, "SlowFast Networks for Video Recognition", arXiv 2018 Child at al, "Generating Long Sequences with Sparse Transformers", arXiv 2019

 $lpha_0$  : Initial learning rate

 $lpha_t$  : Learning rate at epoch t

T: Total number of epochs



**Step:** Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine: 
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Linear: 
$$\alpha_t = \alpha_0(1 - t/T)$$

 $lpha_0$  : Initial learning rate

 $lpha_t$  : Learning rate at epoch t

 $T\,$  : Total number of epochs

Devlin et al, "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", 2018



**Step:** Reduce learning rate at a few fixed points. E.g. for ResNets, multiply LR by 0.1 after epochs 30, 60, and 90.

Cosine: 
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Linear: 
$$\alpha_t = \alpha_0(1 - t/T)$$

Inverse sqrt: 
$$\alpha_t = \alpha_0/\sqrt{t}$$

 $lpha_0$  : Initial learning rate

 $lpha_t$  : Learning rate at epoch t

 $T\,$  : Total number of epochs

Vaswani et al, "Attention is all you need", NIPS 2017

# First-Order Optimization



# First-Order Optimization



- (1) Use gradient and Hessian to form quadratic approximation
- (2) Step to the **minima** of the approximation



second-order Taylor expansion:

$$J(\boldsymbol{\theta}) \approx J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

Solving for the critical point we obtain the Newton parameter update:

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

Q: Why is this bad for deep learning?

second-order Taylor expansion:

$$J(\boldsymbol{\theta}) \approx J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

Solving for the critical point we obtain the Newton parameter update:

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

Hessian has O(N<sup>2</sup>) elements

Inverting takes O(N<sup>3</sup>)

N = Millions

Q: Why is this bad for deep learning?

$$\mathbf{I}_f = egin{bmatrix} rac{\partial^2 f}{\partial x_1^2} & rac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_1 \partial x_n} \ & & & & & & & & & \\ rac{\partial^2 f}{\partial x_2 \partial x_1} & rac{\partial^2 f}{\partial x_2^2} & \cdots & rac{\partial^2 f}{\partial x_2 \partial x_n} \ & & & & & & & & \\ \vdots & & \vdots & & \ddots & & \vdots \ & & & & & & & & \\ rac{\partial^2 f}{\partial x_n \partial x_1} & rac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & rac{\partial^2 f}{\partial x_n^2} \ \end{bmatrix}$$

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

- Quasi-Newton methods (BGFS most popular):
   instead of inverting the Hessian (O(n^3)), approximate
   inverse Hessian with rank 1 updates over time (O(n^2)
   each).
- L-BFGS (Limited memory BFGS):
   Does not form/store the full inverse Hessian.

#### L-BFGS

- Usually works very well in full batch, deterministic mode
   i.e. if you have a single, deterministic f(x) then L-BFGS will
   probably work very nicely
- **Does not transfer very well to mini-batch setting**. Gives bad results. Adapting second-order methods to large-scale, stochastic setting is an active area of research.

Le et al, "On optimization methods for deep learning, ICML 2011"

Ba et al, "Distributed second-order optimization using Kronecker-factored approximations", ICLR 2017

### In practice:

- Adam is a good default choice in many cases; it often works ok even with constant learning rate
- SGD+Momentum can outperform Adam but may require more tuning of LR and schedule
  - Try cosine schedule, very few hyperparameters!
- If you can afford to do full batch updates then try out L-BFGS (and don't forget to disable all sources of noise)

# Regularization

# **Beyond Training Error**



Better optimization algorithms help reduce training loss

But we really care about error on new data - how to reduce the gap?

## Early Stopping: Always do this



Stop training the model when accuracy on the validation set decreases Or train for a long time, but always keep track of the model snapshot that worked best on val

#### Model Ensembles

- 1. Train multiple independent models
- 2. At test time average their results
  (Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

#### How to improve single-model performance?



Regularization

## Regularization: Add term to loss

$$L=rac{1}{N}\sum_{i=1}^{N}\sum_{j
eq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1)+\lambda R(W)$$

#### In common use:

$$R(W) = \sum_k \sum_l W_{k,l}^2$$
 (Weight decay)

$$R(W) = \sum_k \sum_l |W_{k,l}|$$

Elastic net (L1 + L2) 
$$R(W) = \sum_{k} \sum_{l} \beta W_{k,l}^{2} + |W_{k,l}|$$

In each forward pass, randomly set some neurons to zero Probability of dropping is a hyperparameter; 0.5 is common





Srivastava et al, "Dropout: A simple way to prevent neural networks from overfitting", JMLR 2014

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
  """ X contains the data """
 # forward pass for example 3-layer neural network
  H1 = np.maximum(0, np.dot(W1, X) + b1)
  U1 = np.random.rand(*H1.shape) < p # first dropout mask
  H1 *= U1 # drop!
  H2 = np.maximum(0, np.dot(W2, H1) + b2)
  U2 = np.random.rand(*H2.shape) < p # second dropout mask
  H2 *= U2 # drop!
  out = np.dot(W3, H2) + b3
  # backward pass: compute gradients... (not shown)
  # perform parameter update... (not shown)
```

Example forward pass with a 3-layer network using dropout



How can this possibly be a good idea?



Forces the network to have a redundant representation; Prevents co-adaptation of features



How can this possibly be a good idea?



Another interpretation:

Dropout is training a large **ensemble** of models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has  $2^{4096} \sim 10^{1233}$  possible masks! Only  $\sim 10^{82}$  atoms in the universe...

Dropout makes our output random!

Output Input (label) (image) 
$$y = f_W(x, z) \text{ Random mask}$$

Want to "average out" the randomness at test-time

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

But this integral seems hard ...

Want to approximate the integral

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

Consider a single neuron.



Want to approximate the integral

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$



Consider a single neuron.

At test time we have: 
$$E[a] = w_1x + w_2y$$

Want to approximate the integral

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$



Consider a single neuron.

At test time we have:  $E[a] = w_1x + w_2y$ 

During training we have: 
$$E[a] = \frac{1}{4}(w_1x + w_2y) + \frac{1}{4}(w_1x + 0y) + \frac{1}{4}(0x + 0y) + \frac{1}{4}(0x + w_2y) = \frac{1}{2}(w_1x + w_2y)$$

Want to approximate the integral

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$



Consider a single neuron.

At test time we have:  $E[a] = w_1x + w_2y$ 

During training we have:  $E[a] = \frac{1}{4}(w_1x + w_2y) + \frac{1}{4}(w_1x + 0y)$ 

At test time, **multiply** by dropout probability

$$+\frac{1}{4}(0x+0y) + \frac{1}{4}(0x+w_2y)$$
$$=\frac{1}{2}(w_1x+w_2y)$$

```
def predict(X):
    # ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3
```

At test time all neurons are active always => We must scale the activations so that for each neuron: output at test time = expected output at training time

```
""" Vanilla Dropout: Not recommended implementation (see notes below)
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train step(X):
  """ X contains the data """
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = np.random.rand(*H1.shape) < p # first dropout mask
 H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = np.random.rand(*H2.shape) < p # second dropout mask
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
 # perform parameter update... (not shown)
def predict(X):
 # ensembled forward pass
 H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
 H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
 out = np.dot(W3, H2) + b3
```

### **Dropout Summary**

drop in train time

scale at test time

### More common: "Inverted dropout"

```
p = 0.5 # probability of keeping a unit active. higher = less dropout
def train_step(X):
 # forward pass for example 3-layer neural network
 H1 = np.maximum(0, np.dot(W1, X) + b1)
 U1 = (np.random.rand(*H1.shape) < p) / p # first dropout mask. Notice /p!
  H1 *= U1 # drop!
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 U2 = (np.random.rand(*H2.shape) < p) / p # second dropout mask. Notice /p!
 H2 *= U2 # drop!
 out = np.dot(W3, H2) + b3
 # backward pass: compute gradients... (not shown)
 # perform parameter update... (not shown)
                                                                      test time is unchanged!
def predict(X):
 # ensembled forward pass
 H1 = np.maximum(0, np.dot(W1, X) + b1) # no scaling necessary
 H2 = np.maximum(0, np.dot(W2, H1) + b2)
 out = np.dot(W3, H2) + b3
```

# Regularization: A common pattern

**Training**: Add some kind of randomness

$$y = f_W(x, z)$$

**Testing:** Average out randomness (sometimes approximate)

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

# Regularization: A common pattern

**Training**: Add some kind of randomness

$$y = f_W(x, z)$$

**Testing:** Average out randomness (sometimes approximate)

$$y = f(x) = E_z[f(x,z)] = \int p(z)f(x,z)dz$$

**Example**: Batch Normalization

#### **Training**:

Normalize using stats from random minibatches

**Testing**: Use fixed stats to normalize

#### **Next Time:**

#### **Training** Deep Neural Networks

- Details of the non-linear activation functions
- Data normalization
- Weight Initialization
- Batch Normalization
- Advanced Optimization
- Regularization
- Data Augmentation
- Transfer learning
- Hyperparameter Tuning
- Model Ensemble