
CS 4644-DL / 7643-A: LECTURE 10
DANFEI XU

Topics:
• Convolutional Neural Networks Architectures (cont.)
• Training Neural Networks (Part 1)



Administrative
• PS2/HW2 out : Most difficult assignment. Start early!
• Project proposal due Sep 27th



CNN Architectures 
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Case Studies
- AlexNet
- VGG
- GoogLeNet
- ResNet

- DenseNet
- MobileNets
- NASNet
- EfficientNet

Also....
- SENet
- Wide ResNet
- ResNeXT
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers
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Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity...
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Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Comparing complexity... Inception-v4: Resnet + Inception!
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Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

VGG: most 
parameters, most 
operations
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Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

GoogLeNet: 
most efficient
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Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

AlexNet:
Smaller compute, still memory 
heavy, lower accuracy
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Comparing complexity...

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

ResNet:
Moderate efficiency depending on 
model, highest accuracy
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Network ensembling



Improving ResNets...

12

[Shao et al. 2016]

- Multi-scale ensembling of Inception, Inception-Resnet, Resnet, 
Wide Resnet models

- ILSVRC’16 classification winner

“Good Practices for Deep Feature Fusion”
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Adaptive feature map reweighting



Improving ResNets...
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[Hu et al. 2017]

Squeeze-and-Excitation Networks (SENet)

- Add a “feature recalibration” module that 
learns to adaptively reweight feature maps

- Global information (global avg. pooling 
layer) + 2 FC layers used to determine 
feature map weights 

- ILSVRC’17 classification winner (using 
ResNeXt-152 as a base architecture)
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Lin et al Sanchez & 
Perronnin

Krizhevsky et al 
(AlexNet)

Zeiler & 
Fergus

Simonyan & 
Zisserman (VGG)

Szegedy et al 
(GoogLeNet)

He et al 
(ResNet)

Russakovsky et alShao et al Hu et al
(SENet)

shallow 8 layers 8 layers

19 layers 22 layers

152 layers 152 layers 152 layers

Completion of the challenge:
Annual ImageNet competition no longer 
held after 2017 -> now moved to Kaggle.



But research into CNN architectures is still flourishing
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Improving ResNets...
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[He et al. 2016]

- Improved ResNet block design from 
creators of ResNet

- Creates a more direct path for 
propagating information throughout 
network

- Gives better performance

Identity Mappings in Deep Residual Networks

conv

BN

ReLU

conv

ReLU

BN



Improving ResNets...
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[Zagoruyko et al. 2016]

- Argues that residuals are the 
important factor, not depth

- User wider residual blocks (F x k 
filters instead of F filters in each layer)

- 50-layer wide ResNet outperforms 
152-layer original ResNet

- Increasing width instead of depth 
more computationally efficient 
(parallelizable)

Wide Residual Networks

Basic residual block Wide residual block

3x3 conv, F

3x3 conv, F

3x3 conv, F x k

3x3 conv, F x k



Improving ResNets...
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[Xie et al. 2016]

- Also from creators of 
ResNet

- Increases width of 
residual block through 
multiple parallel 
pathways 
(“cardinality”)

- Parallel pathways 
similar in spirit to 
Inception module

Aggregated Residual Transformations for Deep 
Neural Networks (ResNeXt)

1x1 conv, 256

3x3 conv, 64

1x1 conv, 64

256-d out

256-d in

1x1 conv, 
256

3x3 conv, 4

1x1 conv, 4

256-d out

256-d in

1x1 conv, 
256

3x3 conv, 4

1x1 conv, 4

1x1 conv, 
256

3x3 conv, 4

1x1 conv, 4

...

32 
paths



Pool

Conv

Dense Block 1

Conv

Input

Conv

Dense Block 2

Conv

Pool

Conv

Dense Block 3

Softmax

FC

Pool

Other ideas...

[Huang et al. 2017]

- Dense blocks where each layer is 
connected to every other layer in 
feedforward fashion

- Alleviates vanishing gradient, 
strengthens feature propagation, 
encourages feature reuse

- Showed that shallow 50-layer 
network can outperform deeper 
152 layer ResNet

Densely Connected Convolutional Networks (DenseNet)

Conv

Conv

1x1 conv, 64

1x1 conv, 64

Input

Concat

Concat

Concat

Dense Block



Learning to search for network architectures...
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[Zoph et al. 2016]

Neural Architecture Search with Reinforcement Learning (NAS)

- “Controller” network that learns to design a good 
network architecture (output a string 
corresponding to network design)

- Iterate:
1) Sample an architecture from search space
2) Train the architecture to get a “reward” R 

corresponding to accuracy
3) Compute gradient of sample probability, and 

scale by R to perform controller parameter 
update (i.e. increase likelihood of good 
architecture being sampled, decrease 
likelihood of bad architecture) 



Learning to search for network architectures...
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[Zoph et al. 2017]

Learning Transferable Architectures for Scalable Image 
Recognition

- Applying neural architecture search (NAS) to 
a large dataset like ImageNet is expensive

- Design a search space of building blocks 
(“cells”) that can be flexibly stacked

- NASNet: Use NAS to find best cell structure 
on smaller CIFAR-10 dataset, then transfer 
architecture to ImageNet

- Many follow-up works in this 
space e.g. AmoebaNet (Real et 
al. 2019) and ENAS (Pham, 
Guan et al. 2018)



But sometimes smart heuristic is better than NAS ...
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[Tan and Le. 2019]

EfficientNet: Smart Compound Scaling

- Increase network capacity by scaling width, 
depth, and resolution, while balancing 
accuracy and efficiency.

- Search for optimal set of compound scaling 
factors given a compute budget (target 
memory & flops).

- Scale up using smart heuristic rules
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Efficient networks...

https://openai.com/blog/ai-and-efficiency/

https://openai.com/blog/ai-and-efficiency/
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https://paperswithcode.com/sota/image-classification-on-imagenet

Today’s Lecture Transformer



What we have learned so far …
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Deep Neural Networks:
• What they are (composite parametric, non-linear functions)
• Where they come from (biological inspiration, brief history of ANN)
• How they are optimized, in principle (analytical gradient via 

computational graphs, backpropagation)
• What they look like in practice (Deep ConvNets for vision)



Next few lectures:
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Training Deep Neural Networks
• Details of the non-linear activation functions
• Data normalization
• Weight Initialization
• Batch Normalization 
• Regularization
• Advanced Optimization
• Data Augmentation
• Transfer learning
• Hyperparameter Tuning
• Model Ensemble



Today: Training Deep NNs (Part 1)
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• Details of the non-linear activation functions
• Data normalization
• Weight Initialization



Activation Functions
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Activation Functions
Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

33



sigmoid 
gate

x

34



sigmoid 
gate

x

What happens when x = -10?
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sigmoid 
gate

x

What happens when x = -10?
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sigmoid 
gate

x

What happens when x = -10?
What happens when x = 10?
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sigmoid 
gate

x

What happens when x = -10?
What happens when x = 10?
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Non-zero but small: 
still problematic, causes 
vanishing gradient



Why is this a problem?
If all the gradients flowing back will be 
zero and weights will never change

sigmoid 
gate

x
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not zero-
centered

40



Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
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We know that local gradient of sigmoid is always positive



Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
We know that local gradient of sigmoid is always positive
We are assuming x is always positive
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
We know that local gradient of sigmoid is always positive
We are assuming x is always positive

So!! Sign of gradient for all wi is the same as the sign of upstream scalar gradient!
(local gradient cannot change the sign of global gradient)
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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𝑤!

𝑤"



Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(Minibatches help to average out the 
gradient, but still not great)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions

47



Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the 
gradients

2. Sigmoid outputs are not zero-
centered

3. exp() is a bit compute 
expensive
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron

Worst problem in practice: 
Saturated neurons “kill” the 
gradients / vanishing gradient
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Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]
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Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
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Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
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Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?
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Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?
Always 0, A.K.A. “dead ReLU”
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Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]
[He et al., 2015]
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Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into \alpha
(parameter)

[Mass et al., 2013]
[He et al., 2015]
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Activation Functions
Exponential Linear Units (ELU)

- All benefits of ReLU
- Negative saturation encodes 

presence of features (all goes to -
\alpha), not magnitude

- Same in backprop
- Compared with Leaky ReLU: 

more robust to noise 

[Clevert et al., 2015]
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(Alpha default = 1)



Activation Functions
Scaled Exponential Linear Units (SELU)

- Scaled versionof ELU that 
works better for deep networks

- “Self-normalizing” property

[Klambauer et al. ICLR 2017]
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Activation Functions
Scaled Exponential Linear Units (SELU)

- Scaled versionof ELU that 
works better for deep networks

- “Self-normalizing” property;
- Can train deep SELU networks 

without BatchNorm
- (will discuss more later)

[Klambauer et al. ICLR 2017]
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α = 1.6732632423543772848170429916717 
λ = 1.0507009873554804934193349852946

Derivation takes 91 pages of math in 
appendix…
(Klambauer et al, Self-Normalizing Neural Networks, 
ICLR 2017)



TLDR: In practice:

- Many possible choices beyond what we’ve talked 
here, but …
- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / ELU / SELU

- To squeeze out some marginal gains
- Don’t use sigmoid or tanh
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Data Preprocessing
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Data Preprocessing

(Assume X [NxD] is data matrix, 
each example in a row)
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Remember: Consider what happens when 
the input to a neuron is always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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(Assume X [NxD] is data matrix, each example in a row)

Data Preprocessing
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Data Preprocessing
In practice, you could also PCA and Whitening of the data

(data has diagonal 
covariance matrix)

(covariance matrix is the 
identity matrix)
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Data Preprocessing
Before normalization: classification loss 
very sensitive to changes in weight matrix; 
hard to optimize

After normalization: less sensitive to small 
changes in weights; easier to optimize



TLDR: In practice for Images: center only

- Subtract the per-pixel mean(e.g. AlexNet)
(mean image = [32,32,3] array)

- Subtract per-channel mean (e.g. VGGNet)
(mean along each channel = 3 numbers,)

- Subtract per-channel mean and
Divide by per-channel std (e.g. ResNet)
(mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images
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Weight Initialization

68



- Q: what happens when W=same initial value is used?
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- Q: what happens when W=same initial value is used?
- A: All output will be the same! 𝑤"#𝑥 = 𝑤$#𝑥 if 𝑤" = 𝑤$
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- Q: what happens when W=same initial value is used?
- A: All output will be the same! 𝑤"#𝑥 = 𝑤$#𝑥 if 𝑤" = 𝑤$
- Want to maintain variance through the layers.
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- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)
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- First idea: Small random numbers 
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with 
deeper networks.
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Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

74

What will happen to the activations for the last layer?



Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero 
for deeper network layers

Q: What do the gradients 
dL/dW look like?
Hint:
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Weight Initialization: Activation statistics
Forward pass for a 6-layer 
net with hidden size 4096

All activations tend to zero 
for deeper network layers

Q: What do the gradients 
dL/dW look like?

A: All zero, no learning =(
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Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

77

Initialize with higher values
What will happen to the activations for the last layer?



Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients 
look like?
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Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients 
look like?

A: Local gradients all zero, 
no learning =(
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Weight Initialization: Activation statistics
Increase std of initial 
weights from 0.01 to 0.05

All activations saturate

Q: What do the gradients 
look like?

More generally, gradient 
explosion.
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Weight Initialization: “Xavier” Initialization
“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010
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“Just right”: Activations are 
nicely scaled for all layers!

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization
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“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

85

Assume: Var(x1) = Var(x2)= …=Var(xDin)



“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels

86

Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)



“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
[substituting value of y]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)



“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
= Σ Var(xiwi) = Din Var(xiwi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)



“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
= Din Var(xiwi)
= Din Var(xi) Var(wi)

[Assume all xi, wi are zero mean]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)



“Xavier” initialization: 
std = 1/sqrt(Din)

Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Weight Initialization: “Xavier” Initialization

Var(y) = Var(x1w1+x2w2+...+xDinwDin)                              
= Din Var(xiwi)
= Din Var(xi) Var(wi)

[Assume all xi, wi are iid]

Let: y = x1w1+x2w2+...+xDinwDin

“Just right”: Activations are 
nicely scaled for all layers!

For conv layers, Din is 
filter_size2 * input_channels
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Assume: Var(x1) = Var(x2)= …=Var(xDin)

We want: Var(y) = Var(xi)

So, Var(y) = Var(xi) only when Var(wi) = 1/Din



Weight Initialization: What about ReLU?

Change from tanh to ReLU
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Weight Initialization: What about ReLU?

Xavier assumes zero 
centered activation function

Activations collapse to zero 
again, no learning =(

Change from tanh to ReLU
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Weight Initialization: Kaiming / MSRA Initialization

ReLU correction: std = sqrt(2 / Din)

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

Issue: Half of the activation 
get killed.
Solution: make the non-zero 
output variance twice as 
large as input
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Proper initialization is an active area of research…
Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et 
al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019
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Summary
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Training Deep Neural Networks
• Details of the non-linear activation functions

• Sigmoid, Tanh, ReLU, LeakyRELU, ELU, SELU
• Data normalization

• Zero-centering, decorrelation, image normalization
• Weight Initialization

• Constant init, random init, Xavier Init, Kaiming Init



Next time:
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Training Deep Neural Networks
• Details of the non-linear activation functions
• Data normalization
• Weight Initialization
• Batch Normalization 
• Advanced Optimization
• Regularization
• Data Augmentation
• Transfer learning
• Hyperparameter Tuning
• Model Ensemble


