Topics:

- Backpropagation / Automatic Differentiation
- Jacobians

CS 4644 / 7643-A ZSOLT KIRA

• Assignment Due Feb 5th

- Resources:
	- These lectures
	- Matrix calculus for deep learning
- **Assignment Due Feb 5th**
Resources:
• These lectures
• <u>Matrix calculus for deep learning</u>
• Gradients notes and <u>MLP/ReLU Jacobian notes.</u>
Assignment (@41) and <u>matrix calculus</u> (@46) • **Assignment Due Feb 5th**
• Resources:
• These lectures
• <u>Matrix calculus for deep learning</u>
• <u>Gradients notes</u> and <u>MLP/ReLU Jacobian notes</u>.
• <u>Assignment</u> (@41) and <u>matrix calculus</u> (@46)
• **Project:** Teaming thread
	-
-

To develop a general algorithm for this, we will view the function as a computation graph

Graph can be any directed acyclic graph (DAG)

⬣ Modules must be differentiable to support gradient computations for gradient descent

A training algorithm will then process this graph, one module at a time

Directed Acyclic Graphs (DAGs)

- Exactly what the name suggests
	- Directed edges
	- No (directed) cycles
	- Underlying undirected cycles okay

(C) Dhruv Batra

Directed Acyclic Graphs (DAGs)

- Concept
	- Topological Ordering

(C) Dhruv Batra

Directed Acyclic Graphs (DAGs)

(C) Dhruv Batra

Backpropagation

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 1: Compute Loss on Mini-Batch: Forward Pass

Note that we must store the intermediate outputs of all layers!

This is because we will need them to **compute the gradients** (the gradient equations will have terms with the output values in them)

Step 1: Compute Loss on Mini-Batch: Forward Pass Step 1: Compute Loss on Mini-Batch: <mark>Forward Pass</mark>
Step 2: Compute Gradients wrt parameters: B<mark>ackward Pass</mark>

Step 1: Compute Loss on Mini-Batch: Forward Pass Step 1: Compute Loss on Mini-Batch: <mark>Forward Pass</mark>
Step 2: Compute Gradients wrt parameters: B<mark>ackward Pass</mark>

Step 1: Compute Loss on Mini-Batch: Forward Pass Step 1: Compute Loss on Mini-Batch: <mark>Forward Pass</mark>
Step 2: Compute Gradients wrt parameters: B<mark>ackward Pass</mark>

Step 1: Compute Loss on Mini-Batch: Forward Pass Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end Step 3: Use gradient to update all parameters at the end

$$
w_i = w_i - \alpha \frac{\partial L}{\partial w_i}
$$

Neural Neura
Neural Neural Neura Backpropagation is the application of gradient descent to a computation graph via the chain rule!

We want to to compute:
$$
\left\{\frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W}\right\}
$$

We will use the *chain rule* to do this:

Chain Rule: $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$

Computing the Gradients of Loss

Computing the Gradients of Loss

Backpropagation: a simple example

Gradients add at branches

Duality in Fprop and Bprop

Linear Algebra View: Vector and Matrix Sizes

Sizes: $[c \times (d+1)]$ $[(d+1) \times 1]$

Where c is number of classes

 d is dimensionality of input

Closer Look at a Linear Classifier

Conventions:

Size of derivatives for scalars, vectors, and matrices: Assume we have scalar $s \in \mathbb{R}^1$, vector $v \in \mathbb{R}^m$, i.e. $v = [\nu_1, \nu_2, ..., \nu_m]^T$ \boldsymbol{T} and matrix $M \in \mathbb{R}^{k \times \ell}$

Conventions:

- Size of derivatives for scalars, vectors, and matrices: Assume we have scalar $s \in \mathbb{R}^1$, vector $v \in \mathbb{R}^m$, i.e. $v = [\nu_1, \nu_2, ..., \nu_m]^T$ \boldsymbol{T} and matrix $M \in \mathbb{R}^{k \times \ell}$
- What is the size of $\frac{\partial v}{\partial s}$? $\mathbb{R}^{m \times 1}$ (column vector of size m) $\left|\begin{array}{cc} 0.8 \\ 0.2 \end{array}\right|$
- What is the size of $\frac{\partial s}{\partial v}$? $\mathbb{R}^{1 \times m}$ (row vector of size m) $\begin{array}{c|c} \hline \vdots & \hline \vdots & \hline \end{array}$

$$
\left[\begin{array}{ccc}\n\frac{\partial s}{\partial v_1} & \frac{\partial s}{\partial v_1} & \cdots & \frac{\partial s}{\partial v_m}\n\end{array}\right]
$$

$$
\begin{bmatrix}\n\frac{\partial v_1}{\partial s} \\
\frac{\partial v_2}{\partial s} \\
\vdots \\
\frac{\partial v_m}{\partial s}\n\end{bmatrix}
$$

⬣ This matrix of partial derivatives is called a Jacobian

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

Conventions:

What is the size of $\frac{\partial s}{\partial M}$? A matrix:

$1 \begin{array}{ccc} 1 & 0 \end{array}$ 2 $\left[\begin{array}{cc} x^2 & \theta \end{array} \right]$ $\frac{\partial y}{\partial x} = \begin{bmatrix} 1 \\ 2x \end{bmatrix}$ Example 1:

Example 2:

$$
y = w^T x = \sum_{k} w_k x_k
$$

\n
$$
\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y}{\partial x_1}, \dots, \frac{\partial y}{\partial x_m} \end{bmatrix}
$$

\n
$$
= [w_1, \dots, w_m]
$$
 because
$$
\frac{\partial (\sum_k w_k x_k)}{\partial x_i} = w_i
$$

\n
$$
= w^T
$$

$$
\frac{\partial (\sum_k w_k x_k)}{\partial x_i} = w_i
$$

Examples

Example 3:

 $\partial(WAW)$ $2\pi T A$ (222 ∂w and \int are \int and \int ^{T}A (assuming A is symmetric)

Example 4:

$$
y = Wx \qquad \qquad \frac{\partial y}{\partial x} = W
$$

 $Row i$ $|$ $\mathsf{Col} \, j$ and $\mathsf{Col} \, j$ ∂y_1 $\qquad \qquad$ \qquad ∂x_1 ... assuming A is symmetric)
 x $\frac{\partial y}{\partial x} = W$
 $\frac{\text{Col } j}{\frac{\partial y}{\partial x} + \frac{\partial y}{\partial x}} = W$
 $\frac{\text{Col } j}{\frac{\partial y}{\partial x}} = W$
 $\frac{\text{Col } j}{\frac{\partial y}{\partial x}} = W$
 $\frac{\text{Col } j}{\frac{\partial y}{\partial x} + \frac{\partial y}{\partial x}} = W$
 $\frac{\text{Col } j}{\frac{\partial y}{\partial x} + \frac{\partial y}{\partial x}} = W$
 $\frac{\text{Col } j}{\frac{\partial y}{\$ *A* (assuming A is symmetric)
 Wx $\frac{\partial y}{\partial x} = W$
 $\frac{y_1}{\frac{y_1}{x_1}} \begin{bmatrix} \text{Col } j \\ \text{col$ *A* (assuming A is symmetric)
 Wx $\frac{\partial y}{\partial x} = W$
 $\frac{y_{y_1}}{y_{x_1}} \begin{bmatrix} \text{Col } j \\ \text{col } j$ ∂y_i $=$ \Box ∂x_j | | ⋯ ⋯ Wx $\frac{\partial y}{\partial x} = W$
 $\frac{\partial y_1}{\partial x_1} + \frac{\partial y_2}{\partial x_2} + \cdots + \frac{\partial y_l}{\partial x_l} + \cdots + \frac{\partial y_l}{\partial x_l}$ ⋯ ⋯ ⋯ ⋯ ⋯ =

$$
y_i = \sum_j w_{ij} x_j
$$

Examples

What is the size of $\frac{\partial L}{\partial W}$?

Remember that loss is a scalar and W is a matrix:

11 W_{12} W_{1m} D_1 21 W_{22} W_{2m} U_{2} 31 W_{32} W_{3m} D_{3}

Jacobian is also a matrix:

 W

Batches of data are matrices or tensors (multidimensional matrices)

Examples:

- Each instance is a vector of size m , our batch is of \mathbb{L}^{x} \mathbb{L}^{x} size $[B \times m]$
- size $W \times H$, our batch is $[B \times W \times H]$
- image with R,B,G channels) of size $C \times W \times H$, our batch is $[B \times C \times W \times H]$

Jacobians become tensors which is complicated $\begin{bmatrix} x_{21} \\ x_{32} \end{bmatrix}$

- Instead, flatten input to a vector and get a vector of derivatives!
- ⬣ This can also be done for partial derivatives between two vectors, two matrices, or two tensors

Fully Connected (FC) Layer: Forward Function

Fully Connected (FC) Layer

Fully Connected (FC) Layer

We can employ any differentiable (or piecewise differentiable) function

A common choice is the **Rectified** Linear Unit

- Provides non-linearity but better $\frac{4}{2}$ gradient flow than sigmoid $\frac{1}{2}$
-

How many parameters for this layer?

Full Jacobian of ReLU layer is **large** lnput
(output dim x input dim) $\frac{h^{\ell-1}}{h}$ (output dim x input dim) Full Jacobian of ReLU layer is **large**

(output dim x input dim)
 • But again it is **sparse**

• Only **diagonal values non-zero**

• because it is element-wise

-
- ⬣ Only diagonal values non-zero because it is element-wise
- An output value affected only by corresponding input value

Max function funnels gradients through selected max

Gradient will be zero if input \leq 0

Vectorization and Jacobians of Simple Layers

Composition of Functions: $f(g(x)) = (f \circ g)(x)$

Composition of Functions: $f(g(x)) = (f \circ g)(x)$
A complex function (e.g. defined by a neural network):
 $f(x) = g_{\ell} (g_{\ell-1}(\ldots g_1(x)))$

A complex function (e.g. defined by a neural network):
\n
$$
f(x) = g_{\ell} (g_{\ell-1}(...g_1(x)))
$$
\n
$$
f(x) = g_{\ell} \circ g_{\ell-1} ... \circ g_1(x)
$$
\n(Many of these will be parameterized)
\n(Note you might find the opposite notation as well.)
\n**Composition of Functions & Chain Rule**

(Many of these will be parameterized)

÷.

- Input: $x \in R^D$
- Binary label: $y \in \{-1, +1\}$
- Parameters: $w \in R^D$
- Output prediction: $p(y = 1|x) = \frac{1}{e^{x}}$ $1+e^{-w^T x}$

Linear Classifier: Logistic Regression

 $1\frac{1}{2}$

We have discussed **computation** graphs for generic functions

Machine Learning functions (input -> model -> loss function) is also a computation graph

We can use the **computed** gradients from backprop/automatic differentiation to update the weights!

 $-\log\left(\frac{1}{1+e^{-w^T x}}\right)$

Neural Network Computation Graph

$$
\bar{L} = 1
$$
\n
$$
\bar{p} = \frac{\partial L}{\partial p} = -\frac{1}{p}
$$
\nwhere $p = \sigma(w^T x)$ and $\sigma(x) = \frac{1}{1 + e^{-x}}$
\n
$$
\bar{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} = \bar{p} \sigma(1 - \sigma)
$$
\n
$$
\bar{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \frac{\partial u}{\partial w} = \bar{u}x^T
$$
\nWe can do this in a combined way to see all terms together:
\n
$$
\bar{w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x)(1 - \sigma(w^T x))x^T
$$
\n
$$
= -\left(1 - \sigma(w^T x)\right)x^T
$$
\nThis effectively shows gradient flow along path from
\n L to w

We can do this in a combined way to see all terms together:) all terms
 $(x))x^T$

ng path from

$$
\overline{w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T
$$

= -\left(1 - \sigma(w^T x)\right) x^T

This effectively shows gradient flow along path from L to W

Example Gradient Computations

The chain rule can be computed as a series of scalar, vector, and matrix linear algebra operations

Extremely efficient in graphics processing units (GPUs)

$$
\overline{w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T
$$

\n
$$
\begin{bmatrix}\n\end{bmatrix}
$$

Automatic differentiation:

- ⬣ Carries out this procedure for us on arbitrary graphs
- ⬣ Knows derivatives of primitive functions
- As a result, we just define these (forward) functions and don't even need to specify the gradient (backward) functions!

$$
\bar{L} = 1
$$
\n
$$
\bar{p} = \frac{\partial L}{\partial p} = -\frac{1}{p}
$$
\nwhere $p = \sigma(w^T x)$ and $\sigma(x) = \frac{1}{1 + e^{-x}}$
\n
$$
\bar{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} = \bar{p} \sigma(1 - \sigma)
$$
\n
$$
\bar{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \frac{\partial u}{\partial w} = \bar{u}x^T
$$
\nWe can do this in a combined way to see all terms together:
\n
$$
\bar{w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x)(1 - \sigma(w^T x))x^T
$$
\n
$$
= -\left(1 - \sigma(w^T x)\right)x^T
$$
\nThis effectively shows gradient flow along path from
\n L to w

We can do this in a combined way to see all terms together:) all terms
 $(x))x^T$

ng path from

$$
\overline{w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T
$$

= -\left(1 - \sigma(w^T x)\right) x^T

This effectively shows gradient flow along path from L to W

Example Gradient Computations

 $\overline{w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T$ $= -\left(1 - \sigma(w^T x)\right) x^T$

This effectively shows gradient flow along path from L to W

Computation Graph / Global View of Chain Rule $\qquad \longrightarrow \qquad \qquad$

Different Views of Equivalent Ideas

Geora

Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

When we move to vectors and matrices:

- Composition of functions (scalar)
- Composition of functions (vectors/matrices)
-
- **Example 31**
 Example 31
 Example 31
 Example 31
 Example 31
 Example 31
 Composition of functions (scalar)

 Composition of functions (vectors/matrices)

 Jacobian view of chain rule

 Can view entire set o • Can view entire set of calculations as linear algebra operations (matrix-vector or matrix-matrix multiplication)

- Automatic differentiation: Reduction of modules to simple operations we know (simple multiplication, etc.)
	- Automatically build computation graph in background as write code
	- Automatically compute gradients via backward pass

