
Machine Learning Applications

CS 4644 / 7643-A
ZSOLT KIRA

Topics:
• Backpropagation / Automatic Differentiation
• Jacobians

Administrivia

• Assignment Due Feb 5th
• Resources:

• These lectures
• Matrix calculus for deep learning
• Gradients notes and MLP/ReLU Jacobian notes.
• Assignment (@41) and matrix calculus (@46)

• Project: Teaming thread on piazza

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

⬣ Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Directed Acyclic Graphs (DAGs)

• Exactly what the name suggests
– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay

(C) Dhruv Batra 4

Directed Acyclic Graphs (DAGs)

• Concept
– Topological Ordering

(C) Dhruv Batra 5

Directed Acyclic Graphs (DAGs)

(C) Dhruv Batra 6

Example

𝟏

𝟐

Machine Learning Example

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Backpropagation

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Note that we must store the intermediate outputs of all layers!

⬣ This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3

Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

⬣ We want to to compute:

⬣ We will use the chain rule to do this:

Chain Rule:

Computing the Gradients of Loss

ℓି𝟏 ℓ ℓି𝟏ℓ
Loss⬣ 𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

𝝏𝒉ℓ

𝝏𝑾

⬣ We will use the chain rule to compute:
𝝏𝑳

𝝏𝒉ℓష𝟏

𝝏𝑳

𝝏𝑾

⬣ Gradient of loss w.r.t. inputs:
𝝏𝑳

𝝏𝒉ℓష𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

⬣ Gradient of loss w.r.t. weights:
𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝑾

Computing the Gradients of Loss

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

ℓି𝟏 ℓ

Given by upstream
module (upstream
gradient)

Calculated
Analytically

19

Chain rule:

e.g. x = -2, y = 5, z = -4

Want:
Upstream
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Duality in Fprop and Bprop

(C) Dhruv Batra 21

+

+

FPROP BPROP
SU

M
CO

PY

22

* top_diff (chain rule)

Caffe is licensed under BSD 2-Clause

Caffe Sigmoid Layer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Linear
Algebra

View:
Vector and

Matrix Sizes

Closer Look at a Linear Classifier

Sizes:

Where is number of classes

is dimensionality of input

Dimensionality of Derivatives

Conventions:
⬣ Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar 𝟏, vector 𝒎, i.e. 𝟏 𝟐 𝒎
𝑻

and matrix 𝒌×ℓ

M

M
𝟏

𝟐

𝟏

𝟐

Tensors

Dimensionality of Derivatives

Conventions:

⬣ Size of derivatives for scalars, vectors, and matrices:
Assume we have scalar 𝟏, vector 𝒎, i.e. 𝟏 𝟐 𝒎

𝑻

and matrix 𝒌×ℓ

⬣ What is the size of
𝝏𝒗

𝝏𝒔
? 𝒎×𝟏 (column vector of size)

⬣ What is the size of
𝝏𝒔

𝝏𝒗
? 𝟏×𝒎 (row vector of size)

𝟏

𝟐

𝒎

𝟏 𝟏 𝒎

Conventions:

⬣ What is the size of
𝝏𝒗𝟏

𝝏𝒗𝟐 ?

⬣ This matrix of partial derivatives is called a Jacobian

Dimensionality of Derivatives

Row

Col

𝟐

A matrix:

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

ଵ ଶ

Dimensionality of Derivatives

Conventions:

⬣ What is the size of
𝝏𝒔

𝝏𝑴
? A matrix:

Examples

𝟏

𝟐
𝟐

𝑻
𝒌 𝒌

𝒌

Example 1:

Example 2:

𝟏 𝒎

𝟏 𝒎 because
𝒌 𝒌𝒌

𝒊
𝒊

𝑻

Examples

𝝏(𝒘𝑨𝒘)

𝝏𝒘
𝑻 (assuming A is symmetric)

Example 3:

Example 4:

Row

Col
𝝏𝒚𝟏

𝝏𝒙𝟏
⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯

⋯ ⋯
𝝏𝒚𝒊

𝝏𝒙𝒋
⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯

= 𝒊𝒋 𝒊 𝒊𝒋 𝒋

𝒋

Dimensionality of Derivatives in ML

⬣ What is the size of
𝝏𝑳

𝝏𝑾
?

⬣ Remember that loss is a scalar and is a matrix:

𝟏𝟏 𝟏𝟐 𝟏𝒎

𝟐𝟏 𝟐𝟐 𝟐𝒎

𝟑𝟏 𝟑𝟐 𝟑𝒎

𝟏𝟏 𝟏𝟐 𝟏𝒎 𝟏

𝟐𝟏 𝟐𝒎 𝟐

𝟑𝒎 𝟑

Jacobian is also a matrix:

Jacobians of Batches

Batches of data are matrices or tensors (multi-
dimensional matrices)

Examples:

⬣ Each instance is a vector of size , our batch is of
size

⬣ Each instance is a matrix (e.g. grayscale image) of
size , our batch is

⬣ Each instance is a multi-channel matrix (e.g. color
image with R,B,G channels) of size , our
batch is

Jacobians become tensors which is complicated

⬣ Instead, flatten input to a vector and get a vector of
derivatives!

⬣ This can also be done for partial derivatives
between two vectors, two matrices, or two tensors

Flatten

𝟏𝟏

𝟏𝟐

𝟐𝟏

𝟐𝟐

𝒏𝟏

𝒏𝒏

𝟏𝟏 𝟏𝟐 𝟏𝒏

𝟐𝟏 𝟐𝟐 𝟐𝒏

𝒏𝟏 𝒏𝟐 𝒏𝒏

Fully Connected (FC) Layer: Forward Function

ℓି𝟏 ℓ

FunctionInput Output

Parameters

𝒊
𝑻

ℓ ℓି𝟏ℓ ℓି𝟏

Define:

Fully Connected (FC) Layer

ℓି𝟏 ℓ

ℓ

ℓష𝟏

ℓି𝟏 ℓ

ℓ

ℓି𝟏

ℓି𝟏 ℓ ℓି𝟏ℓ

Define:

Fully Connected (FC) Layer

ℓି𝟏 ℓ Note doing this on full
matrix would result in
Jacobian tensor!

But it is sparse – each
output only affected by
corresponding weight row

ℓ

ℓష𝟏

𝒊
ℓ

ℓ

𝒊

𝝏𝒉𝒊
ℓ

𝝏𝒘𝒊

ℓି𝟏 ℓ ℓି𝟏ℓ

Define:

We can employ any differentiable
(or piecewise differentiable)
function

A common choice is the Rectified
Linear Unit

⬣ Provides non-linearity but better
gradient flow than sigmoid

⬣ Performed element-wise

How many parameters for this layer?

Rectified Linear Unit (ReLU)

ReLU

Logisti
c

2

1.
8
1.
6
1.
4
1.
2
1

0.
8
0.
6
0.
4
0.
2
0

-2 -
1.
5

-1 -
0.
5

0 0.
5

1 1.
5

2

max(0,_)

Full Jacobian of ReLU layer is large
(output dim x input dim)

⬣ But again it is sparse

⬣ Only diagonal values non-zero
because it is element-wise

⬣ An output value affected only by
corresponding input value

Max function funnels gradients
through selected max

⬣ Gradient will be zero if input
<= 0

Jacobian of ReLU

ℓି𝟏 ℓ

FunctionInput Output

Parameters

Forward: ℓ ℓି𝟏

Backward:
𝝏𝑳

𝝏𝒉ℓష𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

ℓ ℓି𝟏

ℓ

ℓି𝟏

ℓି𝟏

For diagonal

Vectorization
and

Jacobians of
Simple
Layers

Composition of Functions & Chain Rule

ℓ ℓି𝟏 𝟏

Composition of Functions:

A complex function (e.g. defined by a neural network):

(Note you might find the opposite notation as well!)

(Many of these will be parameterized)

ℓ ℓି𝟏 𝟏

Scalar Case

Vector Case

Jacobian View of Chain Rule

Graphical View of Chain Rule

Chain Rule: Cascaded

⬣ Input: 𝑫

⬣ Binary label:

⬣ Parameters: 𝑫

⬣ Output prediction:
𝟏

𝟏ା𝒆ష𝒘𝑻𝒙

⬣ Loss:
𝟏

𝟐
𝟐

Linear Classifier: Logistic Regression

𝒘𝑻𝒙

𝟏

𝟏

𝑳

𝒘𝑻𝒙𝒚

Log Loss

Adapted from slide by Marc'Aurelio Ranzato

We have discussed computation
graphs for generic functions

Machine Learning functions
(input -> model -> loss function)
is also a computation graph

We can use the computed
gradients from
backprop/automatic
differentiation to update the
weights!

Neural Network Computation Graph

𝑻
ି𝒖

ି𝒘𝑻𝒙

Example Gradient Computations

𝑻
ି𝒖

𝑳ത = 𝟏

𝒑ഥ =
𝝏𝑳

𝝏𝒑
= −

𝟏

𝒑

where 𝒑 = 𝝈 𝒘𝑻𝒙 and 𝝈 𝒙 =
𝟏

𝟏ା𝒆ష𝒙

𝒖ഥ =
𝝏𝑳

𝝏𝒖
=

𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖
= 𝒑ഥ 𝝈 𝟏 − 𝝈

𝒘ഥ =
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒖

𝝏𝒖

𝝏𝒘
= 𝒖ഥ𝒙𝑻

We can do this in a combined way to see all terms
together:

𝒘ഥ =
𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖

𝝏𝒖

𝝏𝒘
= −

𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙)𝒙𝑻

 = − 𝟏 − 𝝈 𝒘𝑻𝒙 𝒙𝑻

This effectively shows gradient flow along path from
L to w

The chain rule can be
computed as a series of
scalar, vector, and matrix
linear algebra operations

Extremely efficient in
graphics processing units
(GPUs)

Vectorized Computations

𝑻
ି𝒖

𝟏

𝝈 𝒘𝑻𝒙
𝑻 𝑻 𝑻

Automatic differentiation:

⬣ Carries out this procedure for us
on arbitrary graphs

⬣ Knows derivatives of primitive
functions

⬣ As a result, we just define these
(forward) functions and don’t
even need to specify the
gradient (backward) functions!

Example Gradient Computations

𝑻
ି𝒖

𝑳ത = 𝟏

𝒑ഥ =
𝝏𝑳

𝝏𝒑
= −

𝟏

𝒑

where 𝒑 = 𝝈 𝒘𝑻𝒙 and 𝝈 𝒙 =
𝟏

𝟏ା𝒆ష𝒙

𝒖ഥ =
𝝏𝑳

𝝏𝒖
=

𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖
= 𝒑ഥ 𝝈 𝟏 − 𝝈

𝒘ഥ =
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒖

𝝏𝒖

𝝏𝒘
= 𝒖ഥ𝒙𝑻

We can do this in a combined way to see all terms
together:

𝒘ഥ =
𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖

𝝏𝒖

𝝏𝒘
= −

𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙)𝒙𝑻

 = − 𝟏 − 𝝈 𝒘𝑻𝒙 𝒙𝑻

This effectively shows gradient flow along path from
L to w

Computation Graph /
Global View of Chain Rule

Computational / Tensor View

Backpropagation View
(Recursive Algorithm)

Graph View

Different Views of Equivalent Ideas

Summary

• Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

• When we move to vectors and matrices:

• Composition of functions (scalar)

• Composition of functions (vectors/matrices)

• Jacobian view of chain rule

• Can view entire set of calculations as linear algebra operations (matrix-vector or
matrix-matrix multiplication)

• Automatic differentiation:

• Reduction of modules to simple operations we know (simple multiplication, etc.)

• Automatically build computation graph in background as write code

• Automatically compute gradients via backward pass

