
Machine Learning Applications

CS 4644 / 7643-A
ZSOLT KIRA

Topics:
• Backpropagation / Automatic Differentiation
• Jacobians



Administrivia

• Assignment Due Feb 5th
• Resources: 

• These lectures
• Matrix calculus for deep learning
• Gradients notes and MLP/ReLU Jacobian notes. 
• Assignment (@41) and matrix calculus (@46)

• Project: Teaming thread on piazza



To develop a general algorithm for 
this, we will view the function as a 
computation graph

Graph can be any directed acyclic 
graph (DAG)

⬣ Modules must be differentiable to 
support gradient computations 
for gradient descent

A training algorithm will then 
process this graph, one module at a 
time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Directed Acyclic Graphs (DAGs)

• Exactly what the name suggests
– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay
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Directed Acyclic Graphs (DAGs)

• Concept
– Topological Ordering
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Directed Acyclic Graphs (DAGs)
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Example

𝟏

𝟐



Machine Learning Example

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Backpropagation



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun
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Layer 1 Layer 2 Layer 3



Note that we must store the intermediate outputs of all layers!

⬣ This is because we will need them to compute the gradients (the gradient 
equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3
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Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

Backpropagation is the application of 
gradient descent to a computation 
graph via the chain rule!



⬣ We want to to compute: 

⬣ We will use the chain rule to do this:

Chain Rule: 

Computing the Gradients of Loss

ℓି𝟏 ℓ ℓି𝟏ℓ
Loss⬣ 𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

𝝏𝒉ℓ

𝝏𝑾



⬣ We will use the chain rule to compute: 
𝝏𝑳

𝝏𝒉ℓష𝟏

𝝏𝑳

𝝏𝑾

⬣ Gradient of loss w.r.t. inputs: 
𝝏𝑳

𝝏𝒉ℓష𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

⬣ Gradient of loss w.r.t. weights: 
𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝑾

Computing the Gradients of Loss

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

ℓି𝟏 ℓ

Given by upstream 
module (upstream 
gradient)

Calculated 
Analytically
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Duality in Fprop and Bprop
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* top_diff  (chain rule)

Caffe is licensed under BSD 2-Clause

Caffe Sigmoid Layer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Linear 
Algebra 

View: 
Vector and 

Matrix Sizes



Closer Look at a Linear Classifier

Sizes: 

Where is number of classes

is dimensionality of input



Dimensionality of Derivatives

Conventions:
⬣ Size of derivatives for scalars, vectors, and matrices: 

Assume we have scalar 𝟏, vector 𝒎, i.e. 𝟏 𝟐 𝒎
𝑻

and matrix 𝒌×ℓ

M

M
𝟏

𝟐

𝟏

𝟐

Tensors



Dimensionality of Derivatives

Conventions:

⬣ Size of derivatives for scalars, vectors, and matrices: 
Assume we have scalar 𝟏, vector 𝒎, i.e. 𝟏 𝟐 𝒎

𝑻

and matrix 𝒌×ℓ

⬣ What is the size of 
𝝏𝒗

𝝏𝒔
? 𝒎×𝟏 (column vector of size )

⬣ What is the size of 
𝝏𝒔

𝝏𝒗
? 𝟏×𝒎 (row vector of size )

𝟏

𝟐

𝒎

𝟏 𝟏 𝒎



Conventions:

⬣ What is the size of 
𝝏𝒗𝟏

𝝏𝒗𝟐 ? 

⬣ This matrix of partial derivatives is called a Jacobian

Dimensionality of Derivatives

Row 

Col 

𝟐

A matrix:

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used. 

ଵ ଶ



Dimensionality of Derivatives

Conventions:

⬣ What is the size of 
𝝏𝒔

𝝏𝑴
? A matrix:



Examples

𝟏

𝟐
𝟐

𝑻
𝒌 𝒌

𝒌

Example 1:

Example 2:

𝟏 𝒎

𝟏 𝒎 because 
𝒌 𝒌𝒌

𝒊
𝒊

𝑻



Examples

𝝏(𝒘𝑨𝒘)

𝝏𝒘
𝑻 (assuming A is symmetric) 

Example 3:

Example 4:

Row 

Col 
𝝏𝒚𝟏

𝝏𝒙𝟏
⋯ ⋯ ⋯ ⋯  

⋯  ⋯ ⋯ ⋯ ⋯

⋯ ⋯
𝝏𝒚𝒊

𝝏𝒙𝒋
⋯ ⋯  

⋯ ⋯ ⋯ ⋯ ⋯  
⋯ ⋯ ⋯ ⋯ ⋯  

= 𝒊𝒋 𝒊 𝒊𝒋 𝒋

𝒋



Dimensionality of Derivatives in ML

⬣ What is the size of 
𝝏𝑳

𝝏𝑾
?

⬣ Remember that loss is a scalar and is a matrix:

𝟏𝟏 𝟏𝟐 𝟏𝒎

𝟐𝟏 𝟐𝟐 𝟐𝒎

𝟑𝟏 𝟑𝟐 𝟑𝒎

𝟏𝟏 𝟏𝟐 𝟏𝒎 𝟏

𝟐𝟏 𝟐𝒎 𝟐

𝟑𝒎 𝟑

Jacobian is also a matrix:



Jacobians of Batches

Batches of data are matrices or tensors (multi-
dimensional matrices)

Examples:

⬣ Each instance is a vector of size , our batch is of 
size 

⬣ Each instance is a matrix (e.g. grayscale image) of 
size , our batch is 

⬣ Each instance is a multi-channel matrix (e.g. color 
image with R,B,G channels) of size , our 
batch is 

Jacobians become tensors which is complicated

⬣ Instead, flatten input to a vector and get a vector of 
derivatives!

⬣ This can also be done for partial derivatives 
between two vectors, two matrices, or two tensors

Flatten

𝟏𝟏

𝟏𝟐

𝟐𝟏

𝟐𝟐

𝒏𝟏

𝒏𝒏

𝟏𝟏 𝟏𝟐 𝟏𝒏

𝟐𝟏 𝟐𝟐 𝟐𝒏

𝒏𝟏 𝒏𝟐 𝒏𝒏



Fully Connected (FC) Layer: Forward Function 

ℓି𝟏 ℓ

FunctionInput Output

Parameters

𝒊
𝑻

ℓ ℓି𝟏ℓ ℓି𝟏

Define: 



Fully Connected (FC) Layer

ℓି𝟏 ℓ

ℓ

ℓష𝟏

ℓି𝟏 ℓ

ℓ

ℓି𝟏

ℓି𝟏 ℓ ℓି𝟏ℓ

Define: 



Fully Connected (FC) Layer

ℓି𝟏 ℓ Note doing this on full 
matrix would result in 
Jacobian tensor!

But it is sparse – each 
output only affected by 
corresponding weight row

ℓ

ℓష𝟏

𝒊
ℓ

ℓ

𝒊

𝝏𝒉𝒊
ℓ

𝝏𝒘𝒊

ℓି𝟏 ℓ ℓି𝟏ℓ

Define: 



We can employ any differentiable 
(or piecewise differentiable) 
function

A common choice is the Rectified 
Linear Unit 

⬣ Provides non-linearity but better 
gradient flow than sigmoid

⬣ Performed element-wise

How many parameters for this layer?

Rectified Linear Unit (ReLU)

ReLU

Logisti
c

2
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2
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Full Jacobian of ReLU layer is large 
(output dim x input dim)

⬣ But again it is sparse

⬣ Only diagonal values non-zero 
because it is element-wise

⬣ An output value affected only by 
corresponding input value

Max function funnels gradients 
through selected max

⬣ Gradient will be zero if input 
<= 0

Jacobian of ReLU

ℓି𝟏 ℓ

FunctionInput Output

Parameters

Forward: ℓ ℓି𝟏

Backward: 
𝝏𝑳

𝝏𝒉ℓష𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓష𝟏

ℓ ℓି𝟏

ℓ

ℓି𝟏

ℓି𝟏

For diagonal



Vectorization 
and 

Jacobians of 
Simple 
Layers



Composition of Functions & Chain Rule

ℓ ℓି𝟏 𝟏

Composition of Functions:

A complex function (e.g. defined by a neural network):

(Note you might find the opposite notation as well!)

(Many of these will be parameterized)

ℓ ℓି𝟏 𝟏



Scalar Case



Vector Case



Jacobian View of Chain Rule



Graphical View of Chain Rule



Chain Rule: Cascaded



⬣ Input: 𝑫

⬣ Binary label: 

⬣ Parameters: 𝑫

⬣ Output prediction: 
𝟏

𝟏ା𝒆ష𝒘𝑻𝒙

⬣ Loss: 
𝟏

𝟐
𝟐

Linear Classifier: Logistic Regression

𝒘𝑻𝒙

𝟏

𝟏

𝑳

𝒘𝑻𝒙𝒚

Log Loss

Adapted from slide by Marc'Aurelio Ranzato



We have discussed computation 
graphs for generic functions

Machine Learning functions 
(input -> model -> loss function) 
is also a computation graph

We can use the computed 
gradients from 
backprop/automatic 
differentiation to update the 
weights! 

Neural Network Computation Graph

𝑻
ି𝒖

ି𝒘𝑻𝒙



Example Gradient Computations

𝑻
ି𝒖

𝑳ത = 𝟏

𝒑ഥ =
𝝏𝑳

𝝏𝒑
= −

𝟏

𝒑

where 𝒑 = 𝝈 𝒘𝑻𝒙 and 𝝈 𝒙 =
𝟏

𝟏ା𝒆ష𝒙

𝒖ഥ =
𝝏𝑳

𝝏𝒖
=

𝝏𝑳

𝝏𝒑
  

𝝏𝒑

𝝏𝒖
= 𝒑ഥ 𝝈 𝟏 − 𝝈

𝒘ഥ =
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒖
  

𝝏𝒖

𝝏𝒘
= 𝒖ഥ𝒙𝑻

We can do this in a combined way to see all terms 
together:

𝒘ഥ =
𝝏𝑳

𝝏𝒑
  

𝝏𝒑

𝝏𝒖
  

𝝏𝒖

𝝏𝒘
= −

𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙 )𝒙𝑻

     = − 𝟏 − 𝝈 𝒘𝑻𝒙 𝒙𝑻

This effectively shows gradient flow along path from 
L to w



The chain rule can be 
computed as a series of 
scalar, vector, and matrix 
linear algebra operations

Extremely efficient in 
graphics processing units 
(GPUs)

Vectorized Computations

𝑻
ି𝒖

𝟏

𝝈 𝒘𝑻𝒙
𝑻 𝑻 𝑻



Automatic differentiation:

⬣ Carries out this procedure for us 
on arbitrary graphs

⬣ Knows derivatives of primitive 
functions

⬣ As a result, we just define these 
(forward) functions and don’t 
even need to specify the 
gradient (backward) functions!

Example Gradient Computations

𝑻
ି𝒖

𝑳ത = 𝟏

𝒑ഥ =
𝝏𝑳

𝝏𝒑
= −

𝟏

𝒑

where 𝒑 = 𝝈 𝒘𝑻𝒙 and 𝝈 𝒙 =
𝟏

𝟏ା𝒆ష𝒙

𝒖ഥ =
𝝏𝑳

𝝏𝒖
=

𝝏𝑳

𝝏𝒑
  

𝝏𝒑

𝝏𝒖
= 𝒑ഥ 𝝈 𝟏 − 𝝈

𝒘ഥ =
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒖
  

𝝏𝒖

𝝏𝒘
= 𝒖ഥ𝒙𝑻

We can do this in a combined way to see all terms 
together:

𝒘ഥ =
𝝏𝑳

𝝏𝒑
  

𝝏𝒑

𝝏𝒖
  

𝝏𝒖

𝝏𝒘
= −

𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙 )𝒙𝑻

     = − 𝟏 − 𝝈 𝒘𝑻𝒙 𝒙𝑻

This effectively shows gradient flow along path from 
L to w



Computation Graph / 
Global View of Chain Rule

Computational / Tensor View

Backpropagation View 
(Recursive Algorithm)

Graph View

Different Views of Equivalent Ideas



Summary

• Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

• When we move to vectors and matrices:

• Composition of functions (scalar)

• Composition of functions (vectors/matrices)

• Jacobian view of chain rule

• Can view entire set of calculations as linear algebra operations (matrix-vector or 
matrix-matrix multiplication)

• Automatic differentiation: 

• Reduction of modules to simple operations we know (simple multiplication, etc.)

• Automatically build computation graph in background as write code

• Automatically compute gradients via backward pass


