Topics:
* Backpropagation / Automatic Differentiation
* Jacobians

CS 4644 / 7643-A
ZSOLT KIRA

* Assignment Due Feb 5th

* Resources:
 These lectures
* Matrix calculus for deep learning
* Gradients notes and MLP/RelLU Jacobian notes.
e Assignment (@41) and matrix calculus (@46)

* Project: Teaming thread on piazza

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) A General Framework

Directed Acyclic Graphs (DAGS)

* Exactly what the name suggests
— Directed edges
— No (directed) cycles
— Underlying undirected cycles okay

Georgia ,"|

Tech M

Directed Acyclic Graphs (DAGS)

* Concept

— Topological Ordering

Directed Acyclic Graphs (DAGS)

f(xq1,x2) = In(xy) + x1x, — sin(x;)

Example

wex — —log(p) [—

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Machine Learning Example

Backpropagation

4
Georgi o
oo &

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Note that we must store the intermediate outputs of all layers!

This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

» Y Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Y Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Y Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Y Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

oL Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

-y S

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Georgia @I

Tech

—

oL oL
hf—l) aw}

We want to to compute: {6

JL JL (\ OL JdL
? 7—1| oht ont ? 7—1
oht O0h {ahf’-l’aw} ﬂ» oh Loss
L
! | 2 !
0) OW i

We will use the chain rule to do this:

Chain Rule: 22 = 22 . 2
daln Rule. 9x ay Ox

2 Computing the Gradients of Loss

L adL
hf—l’avv}

We will use the chain rule to compute: {a

|
i i aL dL dh? :
Gradient of loss w.r.t. inputs: = ‘ Given by upstream
P dht~1 9ht oht~1 module (upstream

gradient)
_ : L _ dL ohn'
Gradient of loss w.r.t. weights: —~ =—~ —
oL JL
7-1 ah’
Oh oh Calculated
Analytically

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Computing the Gradients of Loss

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

oz —
~ o7
_ of _ _ of _ Chain rule: Oy
~of of of dy 0q Oy
Want: o Oy Bz

x
Upstream Local
gradient gradient

) Georgia ,"|

Tedh M

Gradients add at branches

7

7

Duality in Fprop and Bprop

FPROP BPROP
< P
(?') -------
PP

COPY
A

S
.
‘e
.

sde <cmath>
je <vector>

de “caffe/layers/signoid_la

r.hpp

namespace caffe {

ylate <typen

oid SigmoidLayer<Dtype>::Forward_cpu(cor
st vector<Blob<Dtype>*>& top) {
const Dtype® bottom_data = bottom[0]->cpu
Dtype* top_data = top[8]->mu pu
const int count = bottom[9]-> t);
for (int 1 = 8; 1 < count; ++1) {
top_data[i] = id(bottom_data[i])

t vector<Blob<Dtype>'>a bottom,

te

plate <typename Dtype>
vold SigmoidLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
'st vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {

it (propagate_down[8]) {

t Dtype* top_data = top[®
t Dtype* top_diff = top
Dtype® bottom diff = bottom[@
const count = bottom[0]->cou
1=6; 1 <count; ++1) {

t Dtype sigmoid x = top_data[i];
bottom diff[i] = top_diff[i] * sigmoid x * (1. - sigmoid x); 4—-

t();

Caffe Sigmoid Layer

(1—o(z))o(x)

#ifdef CPU_ONLY
(SigmoidLayer);

S(SigmoidLayer);

Caffe is licensed under BSD 2-Clause

*top_diff (

chain rule

Linear
Algebra
View:
Vector and
Matrix Sizes

Georgia
Toch ||

Wip Wiz 0 Wy, bl X,
W21 W2z - Wy b2 :
W31 Waz - Wi B3] |,
N
w X

Sizes: [cx(d+1)] [(d+1)x1]
Where ¢ is number of classes

d is dimensionality of input

) Closer Look at a Linear Classifier ‘-‘*‘*-%agéﬁ[&

—

Conventions:
Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar s € R1, vector v € R™, i.e. v = [vq, V3, ..., Uy
and matrix M € R**

s [V“ M
s iy Oy s

ds, ov * : oM

ov | avl- -
V' s] v, | ‘
Mool Tensors

Georgia &

Dimensionality of Derivatives Tech |

Conventions:

Size of derivatives for scalars, vectors, and matrices:
Assume we have scalar s € R!, vector v € R™, i.e. v = [V, V3, ..., U]

and matrix M € Rkx? L
avl

s
What is the size of';—: ? R™*1 (column vector of size m) | v,

o
What is the size ofg—z ? R*™ (row vector of size m) a{,m

. Jds |

[05 ds ds

avlavl"'avm

—

) Dimensionality of Derivatives Gegrata)

Conventions:

- : vl] .
What is the size of — ? A matrix: Col /
ov - 1 .
0vy
2
ovy
' 1 1 1
ROW I avi o 00 avi o 00 avi
Vs v} Ve,

Cmy X m,
This matrix of partial derivatives is called a Jacobian

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

—

) Dimensionality of Derivatives Gegrata)

Conventions:

What is the size of:—; ? A matrix:

- ds i
Om[ljl]

ds
amy; j)

Dimensionality of Derivatives Gegrata)

—

Example 1:

_[y1] _x ay 1
Y= [J’zl - sz] ax [2x]
Example 2:
y=wlx=) wixy
2.
dy |0y dy
ax |dxy " ox
o m ATk Wixy)
= [wq,...,wn] because 3 = W;
Xi

) Examples Gograla |

—

Example 3:

d(WAw)
ow

= 2w’ 4 (assuming A is symmetric)

Example 4:

A
axl LRCN] e LR oo oo
" . .“. —_ eo e eo e . eeoe e Qe W"x'
Row i/ |.. .. 9% . = Wi;j Yi z I,) b]
axj eeoe eeoe eoe LR L) j

) Examples Gograla |

—

: : oL
h h 7
What is the size Ofa .

Remember that loss is a scalar and W is a matrix:

Wip Wiz 0 Wy b1
Wz1 Wiz - Wy b2
W31 W3z 0 W3y, b3
Jacobian is also a matrix: W
- dL JL JL OL
owy, 0wy, 0wy, 0by
oL oL JL
w7 we b,
JL JL
ows,, O0b;,

Dimensionality of Derivatives in ML Gograla |

—

Batches of data are matrices or tensors (multi- X11 X120 X1p]
dimensional matrices) Xp1 Xzp Xop
Examples: : : ' :
Each instance is a vector of size m, our batch is of Xn1 Xn2 " Xnn]
size [B x m]
Each instance is a matrix (e.g. grayscale image) of Flatten @
size W X H, our batch is [B x W x H] x
11
Each instance is a multi-channel matrix (e.g. color X12
image with R,B,G channels) of size C X W X H, our :
batch is [B X C x W x H] x.
21
Jacobians become tensors which is complicated X0
Instead, flatten input to a vector and get a vector of :
derivatives! X1
This can also be done for partial derivatives :
between two vectors, two matrices, or two tensors | Xnn.

—

) Jacobians of Batches Gegrgia |

Define:
h; = w{ h*™1

Function

Output

|h?| x 1

Parameters

h* = Wh*1

|h€| % |h€—1

At~ 1 x 1

oL dL ohn*

dh?-1~ 9hf aht1

L JL]

1x |kt~ 1 x|hf| |h*| x |h*7Y

Fully Connected (FC) Layer

oL | 9L oA’
ow; 9h’ ow;

i [0 Jf-e-

oh} o
h .

» Fully Connected (FC) Layer

Note doing this on full W
matrix would result in
Jacobian tensor!

But it is sparse — each
output only affected by
corresponding weight row

We can employ any differentiable
(or piecewise differentiable)
function

A common choice is the Rectified
Linear Unit

Provides non-linearity but better S
gradient flow than sigmoid P

1 0. 5 5
Performed element-wise

R = max(O ht-1)

. O,
How many parameters for this layer? E max0.) a

) Rectified Linear Unit (ReLU)

Full Jacobian of ReLU layer is large
(output dim x input dim)

But again it is sparse

Only diagonal values non-zero
because it is element-wise

An output value affected only by
corresponding input value

Max function funnels gradients
through selected max

Gradient will be zero if input
<=

Backward: p oL

N\

|h? x h*71|

Input

Function Output

|14
Parameters

Forward: h* = max(0, h*™1)

dL ohnt

ht-1 _ oht o9ht-1

For diagonal

dht
ah{’—l

|

1 ifht"1>0
0 otherwise

) Jacobian of ReLU

Vectorization
and
Jacobians of
Simple
Layers

'0
Georgi o
oo &

Composition of Functions: f(g(®) = (f° 9)(x)

A complex function (e.g. defined by a neural network):

f) =g,(gr-1(--91(x)))
f(X)=9r°9¢-1..°91(x)

(Many of these will be parameterized)

(Note you might find the opposite notation as well!)

) Composition of Functions & Chain Rule Gegrala |

—

—

) Scalar Case Gegrgia |

—

) Vector Case Gegrgia |

Jacobian View of Chain Rule Gegrgia |

—

Graphical View of Chain Rule Gograla |

—

—

) Chain Rule: Cascaded Gegrgia |

Input: x € RP
Binary label: y € {—1,+1}

Parameters: w € RD i
1

.y 1

Output prediction: =1|x) =
putp p(y =1x) = —7 4 _
1 wlx
Loss: L =3 lw]|* — Alog(p(y|x))
A
L
Log Loss
1 WTxy Adapted from slide by Marc'Aurelio Ranzato

@a
Linear Classifier: Logistic Regression GE%EQJS

We have discussed computation
graphs for generic functions

Machine Learning functions

(input -> model -> loss function)
IS also a computation graph

We can use the computed u 1
gradients from wix |— o
backprop/automatic re

—log(p)

differentiation to update the
weights!

) Neural Network Computation Graph

L=1

u p L _aL 1

1+e™

where p = o(w'x) and o(x) = —
q=9L _90L dp_ 5 _
u_au_ap au_po-(l 0')
o 0L 0L du_ oo
W_aw_au aw_ux

We can do this in a combined way to see all terms

together:
p=2L o u_ _ 1 T _ Tx)) T
W= e w = T swm o(wlx)(1— o (wlx))x

This effectively shows gradient flow along path from
Ltow

Example Gradient Computations

The chain rule can be
computed as a series of
scalar, vector, and matrix
linear algebra operations

Extremely efficient in
graphics processing units
(GPUs)

>

“ 1
wlx
1+e™

p L
l—r —log(p) pP—>

[]] (]
1xd 1x1 1x1
dx1
W= — a(v:Tx) o(w'x)(1— o (wl'x))xT

[L] (1 C]

1x1 1x1 1x1 1xd

Vectorized Computations

L=1

u p L _ dL 1

1 p = —= — —
wix p—> —> —log(p) —> op
1+e™™

where p = a(w'x) and a(x) = —

o 0= P00

Automatic differentiation:
: : _ 9L _ 0L du _ __T
Carries out this procedure for us W=ow " ouow WX

on arbitrary graphs We can do this in a combined way to see all terms

Knows derivatives of primitive together:

functions L d
0L op ou 1 T _ T T
W= e w = T swm o(wlx)(1— o (wlx))x

As a result, we just define these
(forward) functions and don’t

even need to specify the This effectively shows gradient flow along path from
gradient (backward) functions! Lto w

) Example Gradient Computations

3
=
.

{ BN wix g —log(p) —> v B 6y

= : o \Z
1 T ol =7 X; Z %g
=—— ; o 0
> 1 | \z/

where p = o(w'x) and a(x) = 14:3 -

A 4

b

I 1]
QJ| Q-
<~

2 1%(4
i=n=2 L=po1-0) w= a(wa) o(wTx)(1 — o (Wix))xT ;11) = T TQ)\B
W=t g S-S i N < S B (N i

dw du dw 1x1 1x1 ix1 1xd
We can do this in a combined way to see all terms
together: ’
(T — o (W) Computational / Tensor View Graph View
= 7(1 7a(wa))xT
This effectively shows gradient flow along path from aL oL
Lto w We want to to compute: {Oh{)” i W

Computation Graph /

oL oL oL aL_
Global View of Chain Rule l L ‘—H’"‘” a'*—-— i

aw

Backpropagation View
(Recursive Algorithm)

Different Views of Equivalent Ideas

Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

When we move to vectors and matrices:
Composition of functions (scalar)
Composition of functions (vectors/matrices)
Jacobian view of chain rule

Can view entire set of calculations as linear algebra operations (matrix-vector or
matrix-matrix multiplication)

Automatic differentiation:
Reduction of modules to simple operations we know (simple multiplication, etc.)
Automatically build computation graph in background as write code
Automatically compute gradients via backward pass

) Summary Gegrota |

—

