Topics:
e Neural Networks

* Backpropagation

CS 4644-DL / 7643-A
ZSOLT KIRA

Assignment 1 out!

Due Feb 5"

Start now, start now, start now!
Start now, start now, start now!
Start now, start now, start now!

Piazza

Be activelll
Extra credit!

Office hours

Assignment (@41) and matrix calculus (@46)

Example with an image with 4 pixels, and 3 classes (cat/dog/)

Stretch pixels into column

Input image

) Example

1.1

3.2

-1.2

v

56
0.2 | 05| 0.1 | 2.0

231
1.5 113 | 21 | 0.0

24
0 |025]| 0.2 | -0.3

2

w

b

-96.8

437.9

61.95

Cat score

Dog score

Ship score

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Tech

—

Georgia &

We can find the steepest descent direction by
computing the derivative (gradient):

fla+h) - f(a)
h

Steepest descent direction is the negative
gradient

f(a) = lim

Intuitively: Measures how the function
changes as the argument a changes by a small
step size

As step size goes to zero

In Machine Learning: Want to know how the
loss function changes as weights are varied

Can consider each parameter separately
by taking partial derivative of loss
function with respect to that parameter

) Derivatives

Ax

Image and equation from:
https.//en.wikipedia.org/wiki/Derivative#/media/
File:Tangent_animation.gif

Georgia

Tech &

This idea can be turned into an algorithm (gradient descent)

Choose a model: f(x, W) = Wx

Choose loss function: L; = |y — Wx;|?

Calculate partial derivative for each parameter: —

aw,-
Update the parameters: w; = w; — aavﬁ_
Add learning rate to prevent too big of a step: w; = w; — “aa‘t-

Repeat (from Step 3)
) Gradient Descent Gogrota |

—

Often, we only compute the gradients across a small subset of
data

1
Full Batch Gradient Descent L= Nz L(f(x;,;W),y;)

1
Mini-Batch Gradient Descent L = MZ L(f(x;,;W),y;)
Where M is a subset of data
We iterate over mini-batches:

Get mini-batch, compute loss, compute derivatives, and
take a set

) Mini-Batch Gradient Descent Gegrgia |

—

http://demonstrations.wolfram.com/VisualizingTheGradientVector/

W, A

— original W
>

negative gradient direction

» O Gradient Descent e

For some functions, we can analytically derive the partial derivative

Example: Derivation of Update Rule
L= Yh_ (i — wlxy)? (i — wixy)?
Function Loss Ziea O = W) "WJ Z ow; T
N
fw,x;) = wai (y; — wal.)Z Gradient descent tells us _ 2 2(yi - wak)i(yk S
we should update w as e} ow;
(Assume w and x; are column vectors, so same as W - x;) follows to minimize L: N
= -2 Z 6k a—wak
Dataset: N examples (indexed by k) w; « w;j — ,,a_" k=1 g where o
aw; Op = Y — W X
Update Rule N
oL :_225 _Zw.x.
N So what’s —? £y kaw; . M ki
J = i=
W] «— W] + 27] Z 6kxk]- N
— =-2 Skxk]
=1

) Manual Differentiation Georgia &

If we add a non-linearity (sigmoid), derivation is more complex

1
1+e*

N

o(x) =

First, one can derive that: ¢'(x) = a(x)(1 — a(x))

fx) =0 (Zk: wkxk> 2
L= Z (yl- -0 (Z kaik>> —le -4 ~|2 " ; :1 6
i k

oL 5 The sigmoid perception update rule:
=ZZ yi—o<zk:wkxik> ——J<Z kaik>

W] — W] + 27]2 6iai(1 — O'i)x,-j

= Z -2 (yi -0 (Zk: kaik>> o' (Zk: kaik> aiwlzk: Wi Xik k=1 ()
where 0;=0

m
Z ijij
=) ~28,0(d)(1 - o(dD)xy L

i

j=1

where 6i =Yyi— f(xl-) di = Z WirXik 61 = yl - O-l'

—

) Adding a Non-Linear Function Gegrala |

A linear classifier can be broken down into:
Input
A function of the input
A loss function

It's all just one function that can be decomposed into building blocks

- ! N B (p) -
1+e™™ e
Input Model Loss Function

) What Does a Linear Classifier Consist of?

The same two-layered neural network
corresponds to adding another
weight matrix

We will prefer the linear algebra
view, but use some terminology
from neural networks (& biology)

input layer

hidden layer
X W1 Wz

f(x,W1,W3) = a(Wy0(W;x))

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

ﬁa
The Linear Algebra View 69%2925

Large (deep) networks can be built by
adding more and more layers

Three-layered neural networks can
represent any function

)
Q
N

A

The number of nodes could grow

<
)

unreasonably (exponential or worse) %% % N 87
with respect to the complexity of the ;;:é ?,%“e
function ‘\‘ 75N

We will show them without edges:

input
layer hidden hidden
layer 1 layer 2
output
nput . _ layer fx, W, Wy, W3) = a(Wr0(W;1X))
laver hidden hidden
y layer 1 layer 2

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

A » 0&
) Adding More Layers! 69%3%5

=

Demo

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT

aset d.-:= h properties J Test loss 0.5
you want to use? you want to feed in? m, 2 i Training loss 0.517
. 7 neurons 2 neurons

0

Ratio of training to

test data: 50%

e
’
MNoise: 0
®
Batch size: 10 ya
—iy |
REGENERATE i

-
Colors
n and ! "

weight values

L I O O

[Showtestdata [J Discretize output

Georgia "|

Tech)

Computation
Graphs

’6
Geol o
Tagfm

Functions can be made arbitrarily complex (subject to memory and

computational limits), e.g.:
fx, W) =oWso(Weo(W30(Wo0(Wx))

We can use any type of differentiable function (layer) we want!
At the end, add the loss function

Composition can have some structure

Loss
Function

» Adding Even More Layers

The world is compositional!
We want our model to reflect this

Empirical and theoretical
evidence that it makes learning
complex functions easier

Note that prior state of art
engineered features often had
this compositionality as well

VISION
pixels edge texton motif part object
SPEECH
sample spectral formant motif phone word
band
NLP
character word NP/VP/.. clause sentence story

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Pixels -> edges -> object parts -> objects

) Compositionality

We are learning complex models with significant amount of
parameters (millions or billions)

How do we compute the gradients of the loss (at the end) with
respect to internal parameters?

Intuitively, want to understand how small changes in weight deep
inside are propagated to affect the loss function at the end

Loss
Function

» Computing Gradients in Complex Function

Given a library of simple functions

Compose into a 1
Em) o
complicate function 5 14+ e VWX
u 14 L
1+e™ 5P

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

—

) Decomposing a Function Gegrata)

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) A General Framework

Directed Acyclic Graphs (DAGS)

* Exactly what the name suggests
— Directed edges
— No (directed) cycles
— Underlying undirected cycles okay

Directed Acyclic Graphs (DAGS)

* Concept

— Topological Ordering

Directed Acyclic Graphs (DAGS)

f(xq1,x2) = In(xy) + x1x, — sin(x;)

Example

wex — —log(p) [—

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Machine Learning Example

Backpropagation

4
Georgi o
oo &

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Note that we must store the intermediate outputs of all layers!

This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

» Y Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Y Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Y Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Y Neural Network Training

JL oL
hf—l) aw}

JL JL (\ OL
? £—1| ?
)
2
|
|
|

' oL
: F17%

We want to compute: {6

Loss

We will use the chain rule to do this:

Chain Rule: 22 = 22 . 2
daln Rule. 9x ay Ox

2 Computing the Gradients of Loss

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

oL Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

-y S

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Georgia @I

Tech

—

Given this computation graph, the training
algorithm will:

Calculate the current model’s outputs Input Function Output

(called the forward pass)

-1
Calculate the gradients for each h

module (called the backward pass)

Backward pass is a recursive algorithm that:

Starts at loss function where we know
how to calculate the gradients

Progresses back through the modules w

Ends in the input layer where we do Parameters

not need gradients (no parameters)
This algorithm is called backpropagation

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) Overview of Training

In the backward pass, we seek to oL
calculate the gradients of the loss with dht-1
respect to the module’s parameters

Assume that we have the
gradient of the loss with respect
to the module’s outputs (given
to us by upstream module)

Problem:
We will also pass the gradient of

W | | ' :
the loss with respect to the e can compute local gradients

_ dht ohn’
module’s inputs Gni=1’ 2w’
This is not required for We are given: %
update the module’s weights, aLah{)aL
but passes the gradients Compute: {——=——

back to the previous module

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) Backward Pass Computations

ont on?)
oht—1’ gw

We can compute local gradients: {

This is just the derivative of our function with respect to its
parameters and inputs!

Example: If h! = Wh'1
aht
ohf—1 — W
(a sparse matrix with

oh _
and = pt-1T
in the j-th row

then

Computing the Local Gradients: Example

oL oL
hf—l) aw}

We want to to compute: {6

JL JL (\ OL JdL
? -1 £ -1
dh dh 6h| dh Loss
t . y
: | S :
i) OW I

We will use the chain rule to do this:

Chain Rule: 22 = 22 . 2
daln Rule. 9x ay Ox

2 Computing the Gradients of Loss

L adL
hf—l’avv}

We will use the chain rule to compute: {a

|
i i aL dL dh? :
Gradient of loss w.r.t. inputs: = ‘ Given by upstream
P dht~1 9ht oht-1 module (upstream

gradient)

aL dL oht

Gradient of loss w.r.t. weights: —~ =—~ —

JdL
oht-1

oL
dht

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Computing the Gradients of Loss

Backpropagation: a simple example

f(z,y,2) = (z +y)=z

Georgia "|
Tedh)

Backpropagation: a simple example

X

q

f(@,y,2) = (x +y)z y

z

Georgia "|
Te¢h)

Backpropagation: a simple example

X -2

g 3

f(.’L',y,Z):(w‘l'y)z y5
eg.x=-2,y=5z=-4

z 4

Georgia ,"|
Teeh|)

Backpropagation: a simple example

X -2

g 3

f(.’L',y,Z):(w‘l'y)z y5
eg.x=-2,y=5z=-4

z 4

~ Of of of
Want:; 5z By’ bz

Georgia "|
Tee¢h)

Backpropagation: a simple example

X -2

g 3

f(.’L',y,Z):(w‘l'y)z y5
eg.x=-2,y=5z=-4

z 4

~ Of of of
Want:; 5z By’ bz

Georgia ,"|
Te¢h |

Backpropagation: a simple example

% -2
g 3
f(.’L',y,Z):(w‘l'y)z y5
eg.x=-2,y=5z=-4 =
z -4
g=—x+Yy %:1,%:1
of of

f=gz %= %% — 4

~ Of of of
Want: >~ By Bz

) Georgia ,"|
Tee¢h |

Backpropagation: a simple example

X -2
g 3
f(.’L',y,Z):(w‘l'y)z y5
eg.x=-2,y=5z=-4 =
z -4
)) f
g=z+y ngl,@q:l !
of
of of of
f=gz %= %% — 4
~of of of
Want: 5z By’ bz

) Georgia ,"|
Te¢h ||

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5z=-4

'1
_ 0qg , 0q f
=ty 5_1,@—1 /
of
of of of
f=gz %= %% — 4
_Of of oFf
Want:; 5z By’ bz

) Georgia ,"|
Te¢h ||

Backpropagation: a simple example

X -2
g 3
f(.’L',y,Z):(w‘l'y)z y5
eg.x=-2,y=5z=-4 f}n
z -4
of
of of 0z
f=gz %= %% — 4
_ of of Of
Want: 5z By’ bz

) Georgia ,"|
Te¢h ||

Backpropagation: a simple example

X -2
g 3
f(.’L',y,Z):(w‘l'y)z y5
eg.x=-2,y=5z=-4 f}n
z -4
g=c+y L=1g4=1 | "——
of
of of 0z
f=gz %= %% — 4
~of of of
Want: 5z By’ bz

) Georgia ,"|
Ted¢h ||

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5z=-4

_ 0g . 0q
g=x+vy %_1,5—1
of of
f=gz %= %% — 4
~ Of of of
Want: 5z By’ bz

) Georgia ,"|
Te¢h |

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5z=-4

_ 0g . 0q
g=x+vy %_1,5—1
of of
f=gz %= %% — 4
~ Of of of
Want: 5z By’ bz

>

Backpropagation: a simple example

f(@,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

_ oq dq
_ of _ _ of _ Chain rule: Ay
f_qz Bq_z’az_q a_f_a_faq
of of of 8y — 9q oy
Want: Bt Byl Dz

x
Upstream Local
gradient gradient

>

Backpropagation: a simple example

f(@,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

_ oq dq
_ of _ _ of _ Chain rule: Ay
f_qz Bq_z’az_q a_f_a_faq
of of of 8y — 9q oy
Want: Bt Byl Dz

x
Upstream Local
gradient gradient

>

Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=5,z=-4

g=—x+Yy %:1,%:1
- of _ of _ Chain rule: Ox
f_qz aq—Zaaz q 6_f_ af 6q
0 0 0 or —(9_6_:1:
Want: f of of q

Oz’ Oy’ 0z

x
Upstream Local
gradient gradient

>

Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=5,z=-4

g=—x+Yy %:1,%:1
- of _ of _ Chain rule: Ox
f_qz aq—Zaaz q 6_f_ af 6q
0 0 0 or —(9_6_:1:
Want: f of of q

Oz’ Oy’ 0z

x
Upstream Local
gradient gradient

>

Backpropagation: a simple example

Georgia ,"|
Tech |}

Backpropagation: a simple example

1000 /5> 2000
A

Georgia ,"|

Tech M

Patterns in backward flow

1000 /5> 2000
A

Georgia ,"|

Tech M

Patterns in backward flow

Q: What is an add gate?

-10.00 @2\ -20.00
200 _/ 1.00

Georgia ,"|

Tech M

Patterns in backward flow

add gate: gradient distributor

-10.00 @2\ -20.00
200 _/ 1.00

Georgia ,"|

Tech M

Patterns in backward flow

add gate: gradient distributor
Q: What is a max gate?

-10.00 @2\ -20.00
200 _/ 1.00

Georgia ,"|

Tech M

Patterns in backward flow

add gate: gradient distributor

max gate: gradient router

-10.00 @2\ -20.00
200 _/ 1.00

0.00

Georgia ,"|

Tech M

Patterns in backward flow

add gate: gradient distributor
max gate: gradient router

Q: What is a mul gate?

-10.00 @2\ -20.00
200 _/ 1.00

0.00

Georgia ,"|

Tech M

Patterns in backward flow

add gate: gradient distributor
max gate: gradient router

mul gate: gradient switcher

-10.00 @2\ -20.00
200 _/ 1.00

Georgia "|

Tech)

Gradients add at branches

7

7

Duality in Fprop and Bprop

FPROP BPROP
< P
(?') -------
PP

COPY
A

S
.
‘e
.

Deep Learning = Differentiable Programming

 Computation = Graph
— Input = Data + Parameters
— Qutput = Loss
— Scheduling = Topological ordering

e What do we need to do?

— Generic code for representing the graph of modules
— Specify modules (both forward and backward function)

>

Modularized implementation: forward / backward API

Graph (or Net) object (rough psuedo code)

;:yka:, class ComputationalGraph(object):
0 o0/ O\

o Y)i #Feao

SN e \ . _ def forward(inputs):
_— # 1. [pass inputs to input gates...]
.

2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):

gate.backward() # little piece of backprop (chain rule applied)

return inputs_gradients

Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
Z = X*y
Z e
recurn z
def backward(dz):
#dx = ... #mz\
y #dy = ... #todo g—L
return [dx, dy] <
(Xx,y,z are scalars) ,<
OL
Ox

>

Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
Z. = X%y
Z self.x = x # must keep these around!
self.y = y
return z
3/ def backward(dz):

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]

(x,y,z are scalars)

return [dx, dy]

>

Example: Caffe layers

master~ caffe

sec | caffe | layers | Creatanewfie Upload files Findfie Wistory

[shothamer committed an GitHub Merge pul

t #4630 from BiGane/ioad_h

= atost commit e687a71

absval_layer.cop dismantie layer headers 2
absval_layer.cu ismantle layer heade 3
aceuracy, layer.cop 2 a

prgmax_layer.cop gismantie layer heade 8

base_con

base_dat 3 month

base_d u 3 months

b n batch.r s

[—— .

bateh_reindex_layer.cop smantie ader 2 year ago
en_reinaex_layer.cu dismantie layer Neaders 2 year

bnil_layer.cop Sismantie

ayer.cop volution 2 year ago
layer.cu ayea

crop_tayer.

erop_layer.cu

Caffe is licensed under BSD 2-Clause

ohu_layercop
eiu_iayor.c
embed_layer.cpp

sde <cmath>
je <vector>

de “caffe/layers/signoid_la

r.hpp

namespace caffe {

ylate <typen

oid SigmoidLayer<Dtype>::Forward_cpu(cor
st vector<Blob<Dtype>*>& top) {
const Dtype® bottom_data = bottom[0]->cpu
Dtype* top_data = top[8]->mu pu
const int count = bottom[9]-> t);
for (int 1 = 8; 1 < count; ++1) {
top_data[i] = id(bottom_data[i])

t vector<Blob<Dtype>'>a bottom,

te

plate <typename Dtype>
vold SigmoidLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
'st vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {

it (propagate_down[8]) {

t Dtype* top_data = top[®
t Dtype* top_diff = top
Dtype® bottom diff = bottom[@
const count = bottom[0]->cou
1=6; 1 <count; ++1) {

t Dtype sigmoid x = top_data[i];
bottom diff[i] = top_diff[i] * sigmoid x * (1. - sigmoid x); 4—-

t();

Caffe Sigmoid Layer

(1—o(z))o(x)

#ifdef CPU_ONLY
(SigmoidLayer);

S(SigmoidLayer);

Caffe is licensed under BSD 2-Clause

*top_diff (

chain rule

. . gy .) X X coe X I
Batches of data are matrices or tensors (multi-dimensional matrices) 11 12 1n
X21 X222 X2p

Examples: : : 3 :
Each instance is a vector of size m, our batch is of size [B x m] Xp1 Xnz X

our batchis [B x W x H]

Each instance is a matrix (e.g. grayscale image) of size W X H,
Flatten @
Each instance is a multi-channel matrix (e.g. color image with

R,B,G channels) of size € x W x H, our batch is [B x C x W x H] X11]
X
Jacobians become tensors which is complicated :12
Instead, flatten input to a vector and get a vector of derivatives! X1
In practice, figure out Jacobians for simpler items (scalars, X2
vectors), figure out pattern, and slice or index appropriate :
elements to create Jacobians x
nl
xnn

—

) Jacobians of Batches Gegrgia |

Function

Output

|h?| x 1

Parameters

h* = Wh*1

|h€| % |h€—1

At~ 1 x 1

Note doing this on full W
matrix would result in
Jacobian tensor!

dL But it is sparse — each
: aw output only affected by
corresponding weight row

dL AL dh’ oL 9L ah’
oht-1 9n’ oht-1 ow; 9n’ ow;

oh? —w - - -
dht-1 ~ |: :] I: :] [:”: :l - agf ~

oh’ — p-D.T - - < 0=
ow; 1x [h'71] 1 x|h?| |hf| x|k 1x |h'7Y] 1 x |hf] |Rf] x |hPY

2 Fully Connected (FC) Layer

