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Topics:
• Neural Networks
• Backpropagation



Administrivia

• Assignment 1 out!
• Due Feb 5th

• Start now, start now, start now!
• Start now, start now, start now!
• Start now, start now, start now!

• Piazza
• Be active!!! 
• Extra credit!

• Office hours 
• Assignment (@41) and matrix calculus (@46)
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Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
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Derivatives

⬣ We can find the steepest descent direction by 
computing the derivative (gradient):

⬣ Steepest descent direction is the negative 
gradient

⬣ Intuitively: Measures how the function 
changes as the argument a changes by a small 
step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the 
loss function changes as weights are varied

⬣ Can consider each parameter separately 
by taking partial derivative of loss 
function with respect to that parameter

ᇱ

𝒉→𝟎

Image and equation from: 
https://en.wikipedia.org/wiki/Derivative#/media/
File:Tangent_animation.gif



Gradient Descent

This idea can be turned into an algorithm (gradient descent)

⬣ Choose a model: 

⬣ Choose loss function: 

⬣ Calculate partial derivative for each parameter: 
𝒊

⬣ Update the parameters: 
𝒊

⬣ Add learning rate to prevent too big of a step: 
𝒊

⬣ Repeat (from Step 3)



Mini-Batch Gradient Descent

Often, we only compute the gradients across a small subset of 
data

⬣ Full Batch Gradient Descent

⬣ Mini-Batch Gradient Descent

⬣ Where M is a subset of data

⬣ We iterate over mini-batches:

⬣ Get mini-batch, compute loss, compute derivatives, and 
take a set



Gradient Descent

original W

negative gradient direction
w1

w2

http://demonstrations.wolfram.com/VisualizingTheGradientVector/



Manual Differentiation

For some functions, we can analytically derive the partial derivative

Example: 

Function Loss

Update Rule

𝒊
𝑻

𝒊 𝒊
𝑻

𝒊
𝟐

𝒋 𝒋 𝒌 𝒌𝒋

𝑵

𝒌ୀ𝟏

Derivation of Update Rule

Gradient descent tells us 
we should update 𝒘 as 
follows to minimize 𝐿:

So what’s 
𝝏𝑳

𝝏𝒘𝒋
?

…where…

L= ∑ (𝒚𝒌 − 𝒘𝑻𝒙𝒌)𝟐𝑵
𝒌ୀ𝟏

𝒘𝒋 ← 𝒘𝒋 − 𝜼
𝝏𝑳

𝝏𝒘𝒋

𝝏𝑳

𝝏𝒘𝒋
= ෍

𝝏

𝝏𝒘𝒋
(𝒚𝒌 − 𝒘𝑻𝒙𝒌)𝟐

𝑵

𝒌ୀ𝟏

= ෍ 𝟐 𝒚𝒌 − 𝒘𝑻𝒙𝒌

𝝏

𝝏𝒘𝒋

𝑵

𝒌ୀ𝟏

(𝒚𝒌 − 𝒘𝑻𝒙𝒌)

= −𝟐 ෍ 𝜹𝒌

𝝏

𝝏𝒘𝒋

𝑵

𝒌ୀ𝟏

𝒘𝑻𝒙𝒌

= −𝟐 ෍ 𝜹𝒌

𝝏

𝝏𝒘𝒋

𝑵

𝒌ୀ𝟏

෍ 𝒘𝒊𝒙𝒌𝒊

𝒎

𝒊ୀ𝟏

= −𝟐 ෍ 𝜹𝒌𝒙𝒌𝒋

𝑵

𝒌ୀ𝟏

𝜹𝒌 = 𝒚𝒌 − 𝒘𝑻𝒙𝒌

(Assume 𝒘 and 𝐱𝐢 are column vectors, so same as 𝒘 ⋅ 𝒙𝒊)

Dataset: N examples (indexed by 𝑘)



𝝈 𝒙 =
𝟏

𝟏 + 𝒆ି𝒙

𝝈ᇱ 𝒙 = 𝝈(𝒙)(𝟏 − 𝝈 𝒙 )First, one can derive that: 

Adding a Non-Linear Function

If we add a non-linearity (sigmoid), derivation is more complex

𝐟 𝐱 = 𝝈 ෍ 𝒘𝒌𝒙𝒌

𝒌

L = ෍ 𝒚𝒊 − 𝝈 ෍ 𝒘𝒌𝒙𝒊𝒌

𝒌

𝟐

𝒊

𝝏𝑳
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= ෍ 𝟐 𝒚𝒊 − 𝝈 ෍ 𝒘𝒌𝒙𝒊𝒌

𝒌

−
𝝏

𝝏𝒘𝒋
𝝈 ෍ 𝒘𝒌𝒙𝒊𝒌

𝒌𝒊

= ෍ −𝟐 𝒚𝒊 − 𝝈 ෍ 𝒘𝒌𝒙𝒊𝒌

𝒌

𝝈′ ෍ 𝒘𝒌𝒙𝒊𝒌

𝒌𝒊

𝝏

𝝏𝒘𝒋
෍ 𝒘𝒌𝒙𝒊𝒌

𝒌

= ෍ −𝟐𝜹𝒊𝝈(𝐝𝒊)(𝟏 − 𝝈 𝐝𝒊 )𝒙𝒊𝒋

𝒊

𝜹𝒊 = 𝒚𝒊 − 𝐟(𝒙𝒊) 𝒅𝒊 = ෍ 𝒘𝒌𝒙𝒊𝒌where

The sigmoid perception update rule:

𝒘𝒋 ← 𝒘𝒋 + 𝟐𝜼 ෍ 𝜹𝒊𝝈𝒊(𝟏 − 𝝈𝒊)𝒙𝒊𝒋

𝑵

𝒌ୀ𝟏

𝝈𝒊 = 𝝈 ෍ 𝒘𝒋𝒙𝒊𝒋

𝒎

𝒋ୀ𝟏

𝜹𝒊 = 𝒚𝒊 − 𝝈𝒊

where



A linear classifier can be broken down into:

⬣ Input

⬣ A function of the input

⬣ A loss function 

It’s all just one function that can be decomposed into building blocks

What Does a Linear Classifier Consist of?

Input Model Loss Function



The same two-layered neural network 
corresponds to adding another 
weight matrix

⬣ We will prefer the linear algebra 
view, but use some terminology 
from neural networks (& biology)

The Linear Algebra View

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer
hidden layer

output layer

𝟏 𝟐

𝟏 𝟐 𝟐 𝟏



Large (deep) networks can be built by 
adding more and more layers

Three-layered neural networks can 
represent any function

⬣ The number of nodes could grow 
unreasonably (exponential or worse) 
with respect to the complexity of the 
function

We will show them without edges:

Adding More Layers!

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer

input 
layer

hidden 
layer 1

hidden 
layer 2

output 
layer 𝟏 𝟐 𝟑 𝟐 𝟏



Demo
• http://playground.tensorflow.org



Computation 
Graphs



Functions can be made arbitrarily complex (subject to memory and 
computational limits), e.g.:

𝟓 𝟒 𝟑 𝟐 𝟏

We can use any type of differentiable function (layer) we want!

⬣ At the end, add the loss function

Composition can have some structure

Adding Even More Layers

Loss 
Function



The world is compositional!

We want our model to reflect this 

Empirical and theoretical 
evidence that it makes learning 
complex functions easier

Note that prior state of art 
engineered features often had 
this compositionality as well

Compositionality

⬣ Pixels -> edges -> object parts -> objects

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

pixels edge texton motif part object

sample spectral 
band

formant motif phone word

character NP/VP/.. clause sentence storyword

VISION

SPEECH

NLP



⬣ We are learning complex models with significant amount of 
parameters (millions or billions)

⬣ How do we compute the gradients of the loss (at the end) with 
respect to internal parameters?

⬣ Intuitively, want to understand how small changes in weight deep 
inside are propagated to affect the loss function at the end

Computing Gradients in Complex Function

Loss 
Function

𝒊
?



Decomposing a Function 

Compose into a

complicate function

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

Given a library of simple functions

𝟑



To develop a general algorithm for 
this, we will view the function as a 
computation graph

Graph can be any directed acyclic 
graph (DAG)

⬣ Modules must be differentiable to 
support gradient computations 
for gradient descent

A training algorithm will then 
process this graph, one module at a 
time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Directed Acyclic Graphs (DAGs)

• Exactly what the name suggests
– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay

(C) Dhruv Batra 20



Directed Acyclic Graphs (DAGs)

• Concept
– Topological Ordering

(C) Dhruv Batra 21



Directed Acyclic Graphs (DAGs)

(C) Dhruv Batra 22



Example

𝟏

𝟐



Machine Learning Example

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Backpropagation



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Note that we must store the intermediate outputs of all layers!

⬣ This is because we will need them to compute the gradients (the gradient 
equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3



⬣ We want to compute: 

⬣ We will use the chain rule to do this:

Chain Rule: 

Computing the Gradients of Loss

κି𝟏 κ κି𝟏κ
Loss



Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

Backpropagation is the application of 
gradient descent to a computation 
graph via the chain rule!



Given this computation graph, the training 
algorithm will:

⬣ Calculate the current model’s outputs 
(called the forward pass)

⬣ Calculate the gradients for each 
module (called the backward pass)

Backward pass is a recursive algorithm that:

⬣ Starts at loss function where we know 
how to calculate the gradients

⬣ Progresses back through the modules

⬣ Ends in the input layer where we do 
not need gradients (no parameters)

This algorithm is called backpropagation

Overview of Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

κି𝟏 κ

FunctionInput Output

Parameters



In the backward pass, we seek to 
calculate the gradients of the loss with 
respect to the module’s parameters

⬣ Assume that we have the 
gradient of the loss with respect 
to the module’s outputs (given 
to us by upstream module)

⬣ We will also pass the gradient of 
the loss with respect to the 
module’s inputs

⬣ This is not required for 
update the module’s weights, 
but passes the gradients 
back to the previous module

Backward Pass Computations

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Problem:

⬣ We can compute local gradients: 
𝝏𝒉κ

𝝏𝒉κష𝟏

𝝏𝒉κ

𝝏𝑾

⬣ We are given: 
𝝏𝑳

𝝏𝒉κ

⬣ Compute: 
𝝏𝑳

𝝏𝒉κష𝟏,

𝝏𝑳

𝝏𝑾

κି𝟏 κ



⬣ We can compute local gradients: 
𝝏𝒉κ

𝝏𝒉κష𝟏

𝝏𝒉κ

𝝏𝑾

⬣ This is just the derivative of our function with respect to its 
parameters and inputs!

Example: If  κ κି𝟏

then  
𝝏𝒉κ

𝝏𝒉κష𝟏

and  
𝝏𝒉κ

𝝏𝒘𝒊

κି𝟏,𝑻

Computing the Local Gradients: Example

(a sparse matrix with 

in the i-th row



⬣ We want to to compute: 

⬣ We will use the chain rule to do this:

Chain Rule: 

Computing the Gradients of Loss

κି𝟏 κ κି𝟏κ
Loss



⬣ We will use the chain rule to compute: 
𝝏𝑳

𝝏𝒉κష𝟏

𝝏𝑳

𝝏𝑾

⬣ Gradient of loss w.r.t. inputs: 
𝝏𝑳

𝝏𝒉κష𝟏

𝝏𝑳

𝝏𝒉κ

𝝏𝒉κ

𝝏𝒉κష𝟏

⬣ Gradient of loss w.r.t. weights: 
𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉κ

𝝏𝒉κ

𝝏𝑾

Computing the Gradients of Loss

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

κି𝟏 κ

Given by upstream 
module (upstream 
gradient)
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example



40
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:

Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:

Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Chain rule:

e.g. x = -2, y = 5, z = -4

Want: 
Upstream 
gradient

Local
gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation: a simple example



Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Q: What is an add gate?



Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor



add gate: gradient distributor

Q: What is a max gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor

max gate: gradient router

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor

max gate: gradient router

Q: What is a mul gate? 

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor

max gate: gradient router

mul gate: gradient switcher

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Duality in Fprop and Bprop

(C) Dhruv Batra 65

+

+

FPROP BPROP
SU

M
CO

PY



Deep Learning = Differentiable Programming

• Computation = Graph
– Input = Data + Parameters
– Output = Loss
– Scheduling = Topological ordering

• What do we need to do?
– Generic code for representing the graph of modules
– Specify modules (both forward and backward function)

(C) Dhruv Batra 66
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Graph (or Net) object  (rough psuedo code)

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example: Caffe layers

Caffe is licensed under BSD 2-Clause

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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* top_diff  (chain rule)

Caffe is licensed under BSD 2-Clause

Caffe Sigmoid Layer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Jacobians of Batches

Batches of data are matrices or tensors (multi-dimensional matrices)

Examples:

⬣ Each instance is a vector of size , our batch is of size 

⬣ Each instance is a matrix (e.g. grayscale image) of size , 
our batch is 

⬣ Each instance is a multi-channel matrix (e.g. color image with 
R,B,G channels) of size , our batch is 

Jacobians become tensors which is complicated

⬣ Instead, flatten input to a vector and get a vector of derivatives!

⬣ In practice, figure out Jacobians for simpler items (scalars, 
vectors), figure out pattern, and slice or index appropriate 
elements to create Jacobians

Flatten

𝟏𝟏

𝟏𝟐

𝟐𝟏

𝟐𝟐

𝒏𝟏

𝒏𝒏

𝟏𝟏 𝟏𝟐 𝟏𝒏

𝟐𝟏 𝟐𝟐 𝟐𝒏

𝒏𝟏 𝒏𝟐 𝒏𝒏



Fully Connected (FC) Layer: Forward Function 

κି𝟏 κ

FunctionInput Output

Parameters

𝒊
𝑻

κ κି𝟏κ κି𝟏



Fully Connected (FC) Layer

κି𝟏 κ

Note doing this on full 
matrix would result in 
Jacobian tensor!

But it is sparse – each 
output only affected by 
corresponding weight row

κ

κష𝟏

κି𝟏 κ

κ

κି𝟏
𝒊

κ

κ

𝒊

κି𝟏 κ κି𝟏κ

𝝏𝒉κ

𝝏𝒘𝒊

κି𝟏 κ κି𝟏κ


