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Topics:
• Wrap-up: 

– Open directions in Deep Learning



• Projects!
• Due May 1st (May 3rd with grace period)
• Cannot extend due to grade deadlines!

• CIOS
• Please make sure to fill out! Let us know about things you liked and didn’t like in 

comments so that we can keep or improve!
• http://b.gatech.edu/cios



Some existing works not covered…

• Current / Recent Past
– Meta-learning
– AutoML
– 3D perception
– Beyond supervised learning: Semi-supervised, domain adaptation, zero/one/few-shot 

learning
– Memory (Neural Turing Machines, etc.)
– Visual question answering, embodied question answering
– Adversarial Examples
– Continual/lifelong learning without forgetting
– World modeling, learning intuitive/physics models
– Visual dialogue, agents, chatbots
– Neural Radiance Fields
– Very Large-Scale Models and what they can do



Few-Shot 
Learning
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Types of Machine Learning

Supervised 
Learning

⬣ Train Input: 

⬣ Learning output:    
, 

⬣ e.g. classification

Sheep
Dog
Cat
Lion
Giraffe

Unsupervised 
Learning

⬣ Input: 

⬣ Learning 
output: 

⬣ Example: Clustering, 
density estimation, 
etc.

Reinforcement 
Learning

⬣ Evaluative 
feedback in the 
form of reward

⬣ No supervision on 
the right action



Dealing with Low-Labeled Situations

Setting Source Target Shift Type

Semi-supervised Single labeled Single unlabeled None

Domain Adaptation Single labeled Single unlabeled Non-semantic

Domain Generalization Multiple labeled Unknown Non-semantic

Cross-Category Transfer Single labeled Single unlabeled Semantic

Few-Shot Learning Single labeled Single few-labeled Semantic

Un/Self-Supervised Single unlabeled Many labeled Both/Task

There is a large number of different low-labeled settings in DL research

Non-Semantic Shift Semantic Shift



Few-Shot Learning

Chen et al., A Closer Look at Few-Shot Learning

Lots of 
Labels (Base 
categories)

Very Few 
Labels (New 
categories)



Finetuning Baseline

Chen et al., A Closer Look at Few-Shot Learning
Dhillon et al., A Baseline for Few-Shot Image Classification

Tian et al., Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need?

⬣ Do what we always do: Fine-tuning

⬣ Train classifier on base classes

⬣ Optionally freeze feature extractor

⬣ Learn classifier weights for new classes using few amounts of 
labeled data (during “query” time)

⬣ Surprisingly effective compared to more sophisticated approaches 
(Chen et al., Dhillon et al., Tian et al.)



Cosine Classifier

Chen et al., A Closer Look at Few-Shot Learning
https://en.wikipedia.org/wiki/Cosine_similarity

⬣ We can use a cosine (similarity-based) classifier rather than fully 
connected linear layer



Cons of Normal Approach

⬣ The training we do on the 
base classes does not factor 
the task into account

⬣ No notion that we will be 
performing a bunch of N-
way tests

⬣ Idea: simulate what we will 
see during test time



Meta-Training

Set up a set of smaller tasks during training which simulates what we 
will be doing during testing: N-Way K-Shot Tasks

⬣ Can optionally pre-train features on held-out base classes

Testing stage is now the same, but with new classes

Meta-Train

Meta-Test



Approaches using Meta-Training

Learning a model conditioned on support set

Chen et al., A Closer Look at Few-Shot Learning



How to parametrize learning algorithms?

Two approaches to defining a meta-learner:

Take inspiration from a known learning algorithm

kNN/kernel machine: Matching networks (Vinyals et al. 2016)

Gaussian classifier: Prototypical Networks (Snell et al. 2017)

Gradient Descent: Meta-Learner LSTM (Ravi & Larochelle, 2017) , 
Model-Agnostic Meta-Learning MAML (Finn et al. 2017)

Derive it from a black box neural network

MANN (Santoro et al. 2016)

SNAIL (Mishra et al. 2018)

14Meta-Learner

Slide Credit: Hugo Larochelle



Learn gradient descent: 

Parameter initialization and update rules

Output: 

Parameter initialization

Meta-learner that decides how to update parameters

Learn just an initialization and use normal gradient descent (MAML)

Output: 

Just parameter initialization! 

We are using SGD 
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Slide Credit: Hugo Larochelle

More Sophisticated Meta-Learning Approaches



16Meta-Learner LSTM
Slide Credit: Hugo Larochelle



17Meta-Learner LSTM
Slide Credit: Hugo Larochelle



18Meta-Learner LSTM
Slide Credit: Hugo Larochelle



19Meta-Learner LSTM
Slide Credit: Hugo Larochelle



20Meta-Learner LSTM
Slide Credit: Hugo Larochelle



21Meta-Learner LSTM
Slide Credit: Hugo Larochelle



22Model-Agnostic Meta-Learning (MAML)
Slide Credit: Hugo Larochelle
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Slide Credit: Hugo Larochelle\

Model-Agnostic Meta-Learning (MAML)
Slide Credit: Hugo Larochelle



24

Slide Credit: Hugo Larochelle

Model-Agnostic Meta-Learning (MAML)
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Slide Credit: Hugo Larochelle



Wrap-up



Some current/upcoming topics
• More recent

– Transformers for vision, audio, etc. 
– Fixing reinforcement learning

• First you have to admit you have a problem
– Simulation frameworks, joint perception, planning, and action

• Navigation, mapping
• Use of large-scale multi-modal models (CLIP)

– Neural radiance fields (NeRF) 
– Uncertainty quantification, robustness
– Deep Learning and logic!
– Just scaling everything up and watch the magic!

• Especially multi-modal, multi-task problems 
– Bias, fairness

Research Directions



Transformers

• Transformers are 
extremely flexible

• Vision 
transformers, 
multi-modal 
transformers, etc.

Khan et al., Transformers in Vision: A Survey



Self-Supervised Transformers

• Transformers are 
extremely flexible

• Masking is a 
powerful concept 
for self-supervised 
learning

He et al., Masked Autoencoders Are Scalable Vision Learners



Unified Transformer Models

• Unified models for 
all Modalities

Jaegle et al., Perceiver: General Perception with Iterative Attention



Multi-Modal Large-Scale Models

Radford et al., Learning Transferable Visual Models From Natural Language Supervision



Extracting Knowledge from Large-Scale Models

AlKhamissi et al., A Review on Language Models as Knowledge Bases
Khandelwal et al., Simple but Effective: CLIP Embeddings for Embodied AI



Extracting Knowledge from Large-Scale Models

• Q: The frozen, pre-trained object detector may not 
encode all necessary info of X.

• A: Use CLIP to retrieve a set of text descriptions to 
provide complementary info.

• Q: Conditional relationship P(O|X) is not jointly optimized 
with the target VL task.

• A: Add a simple, trainable MLP between fo and fx to model 
the conditional probability of P(O|X) based on CLIP. 

Kuo & Kira, Beyond a Pre-Trained Object Detector: Cross-Modal Textual and Visual Context for Image Captioning, CVPR 2022



DALL-E

https://openai.com/dall-e-2/



Architecture Search

Slides by Erik Wijmans



Concepts Facilitate Parsing New Sentences
Visual Representation

Obj 1
Feature

Extraction

Semantic
Parsing

Concept Embeddings
red

Filter Query
red shape

Q: What’s the shape of
the red object?

......

Object
Detection

Obj 2

2

1

Filter Same
red shape

Exist

What’s the shape of the red object?

Neuro-Symbolic Reasoning

Answer: Sphere ✓
Groundtruth: Sphere

Any other thing of the same shape as the red object?

Slide by Mao et al.

Neuro-Symbolic Concept Learning



Neural Radiance Fields (NeRF)

https://www.matthewtancik.com/nerf



Limitations of Deep Learning



Things to Watch out For
• Research is cyclical

– SVMs, boosting, probabilistic graphical models & Bayes Nets, Structural Learning, Sparse Coding, 
Deep Learning

– Deep learning is unique in its depth and breadth, but...
– Deep learning may be improved, reinvented, combined, overtaken

• Learn fundamentals for techniques across the field:
– Know the span of ML techniques and choose the ones that fit your problem!
– Be responsible in 1) how you use it, 2) promises you make and how you convey it

• Try to understand landscape of the field
– Look out for what is coming up next, not where we are

• Have fun!


