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— Open directions in Deep Learning
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* Projects!
* Due May 1%t (May 3" with grace period)
* Cannot extend due to grade deadlines!

 CIOS

* Please make sure to fill out! Let us know about things you liked and didn’t like in
comments so that we can keep or improve!

 http://b.gatech.edu/cios




Some existing works not covered...

e Current / Recent Past
— Meta-learning
— AutoML
— 3D perception
— :Beyond supervised learning: Semi-supervised, domain adaptation, zero/one/few-shot
earning

— Memory (Neural Turing Machines, etc.)

— Visual question answering, embodied question answering
— Adversarial Examples

— Continual/lifelong learning without forgetting

— World modeling, learning intuitive/physics models

— Visual dialogue, agents, chatbots

— Neural Radiance Fields

— Very Large-Scale Models and what they can do
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Supervised
Learning

Train Input: {X,Y}

Learning output:
f:X =Y, P(ylx)

e.g. classification
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Unsupervised
Learning
Input: {X}

Learning
output: P(x)

Example: Clustering,
density estimation,
etc.
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Reinforcement
Learning

Evaluative
feedback in the
form of reward

No supervision on
the right action

\(\ Rava’d
interpreter

NCHRC S

Agent

) Types of Machine Learning
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There is a large number of different low-labeled settings in DL research

Setting Source Target Shift Type
Semi-supervised Single labeled Single unlabeled None
Domain Adaptation Single labeled Single unlabeled Non-semantic

Domain Generalization Multiple labeled Unknown Non-semantic
Cross-Category Transfer Single labeled Single unlabeled Semantic
Few-Shot Learning Single labeled Single few-labeled Semantic
Un/Self-Supervised Single unlabeled Many labeled Both/Task

Non-Semantic Shift
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Dealing with Low-Labeled Situations
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Lots of
N classes Labels (Base
categories)

Base class data X
(Many)

| query set QQ,

Chen et al., A Closer Look at Few-Shot Learning

Few-Shot Learning Gegrofa )




Do what we always do: Fine-tuning Training stage
Train classifier on base classes Base class data e e |

Feature -
extractor //(}»I_a»_s_g!»!g[‘ :

Optionally freeze feature extractor

Learn classifier weights for new classes using few amounts of
labeled data (during “query” time)

Surprisingly effective compared to more sophisticated approaches
(Chen et al., Dhillon et al., Tian et al.)

Chen et al., A Closer Look at Few-Shot Learning
Dhillon et al., A Baseline for Few-Shot Image Classification
Tian et al., Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need?

) Finetuning Baseline Gegraia |




We can use a cosine (similarity-based) classifier rather than fully
connected linear layer
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Chen et al., A Closer Look at Few-Shot Learning
https.//en.wikipedia.org/wiki/Cosine_similarity

) Cosine Classifier Gegmaia)

similarity = cos(f) =




Cons of Normal Approach

The training we do on the
base classes does not factor
the task into account

No notion that we will be
performing a bunch of N-
way tests

a -
l.\

Idea: simulate what we wiill

see during test time
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Set up a set of smaller tasks during training which simulates what we
will be doing during testing: N-Way K-Shot Tasks

Training task 1

supportset [Mleta-Train

N=3

Queryset - Meta-Test

S@~

Training task2 - - -

Support set
® :
T i P
; b’ ' 47&{
r X o oy
£ » -
Query set

Test task1 - - -

Support set

Query set
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a2 3
=) = § i

Can optionally pre-train features on held-out base classes

Testing stage is now the same, but with new classes

) Meta-Training
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Learning a model conditioned on support set M (-|S)

.
e Support set conditioned model A/ (-|S)
" MatchingNet '  ProtoNet '/  RelationNet
sj\ - S - S u
Cosine - Euclidean ~ Relation
Q‘._'Y Q distance Y : h-'leﬂt;ule
Yy

Chen et al., A Closer Look at Few-Shot Learning
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How to parametrize learning algorithms?

Two approaches to defining a meta-learner:

Take inspiration from a known learning algorithm
kKNN/kernel machine: Matching networks (Vinyals et al. 2016)
Gaussian classifier: Prototypical Networks (Snell et al. 2017)
Gradient Descent: Meta-Learner LSTM (Ravi & Larochelle, 2017) ,
Model-Agnostic Meta-Learning MAML (Finn et al. 2017)

Derive it from a black box neural network
MANN (Santoro et al. 2016)
SNAIL (Mishra et al. 2018)

Slide Credit: Hugo Larochelle
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Learn gradient descent:
Parameter initialization and update rules
Output:
Parameter initialization
Meta-learner that decides how to update parameters

Learn just an initialization and use normal gradient descent (MAML)
Output:
Just parameter initialization!
We are using SGD

Slide Credit: Hugo Larochelle

) More Sophisticated Meta-Learning Approaches Ge‘%;%,fﬁﬁ



* Training a "gradient descent procedure’ applied on some learner M

» gradient descent starts from some initial parameters fy and then performs the following updates:

0; = 0i—1 — “‘rvn,_lﬁr

+ Optimization as a Model for Few-Shot Learning (2017)

Sachin Ravi and Hugo Larochelle

Slide Credit: Hugo Larochelle
Meta-Learner LSTM Georgia @




* Training a "gradient descent procedure’ applied on some learner M

» gradient descent starts from some initial parameters g and then performs the following updates:

0; = 011 — “'IVH,_IEI

v this is quite similar to LSTM cell state updates:

¢t = ft © cp—1

* Optimization as a Model for Few-Shot Learning (2017)

Sachin Ravi and Hugo Larochelle

Slide Credit: Hugo Larochelle
Meta-Learner LSTM Georgia |




* Training a "gradient descent procedure’ applied on some learner M

» gradient descent starts from some inrtial parameters fg and then performs the following updates:

0; = 011 — “‘rvn,_lﬁr

v this is quite similar to LSTM cell state updates:

-

Ct = fr ®ci—1 + 1 @ ¢y

state ¢; is model M's parameter space fl; == cg becomes a learned initialization

* Optimization as a Model for Few-Shot Learning (2017)

Sachin Ravi and Hugo Larochelle

Slide Credit: Hugo Larochelle
Meta-Learner LSTM Georgia |




* Training a "gradient descent procedure’ applied on some learner M

» gradient descent starts from some initial parameters fy and then performs the following updates:

0; = 0i—1 — “‘fvf},_lfﬂr

v this is quite similar to LSTM cell state updates:

5

¢t = [t ©ci—1 + 1t © ¢
tate ¢: is model M's parameter space fly o= oy becomes a learned initialization

- state update & is the negative gradient —Vj,_, L

+ Optimization as a Model for Few-Shot Learning (2017)

Sachin Ravi and Hugo Larochelle

Slide Credit: Hugo Larochelle
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* Training a "gradient descent procedure’ applied on some learner M

» gradient descent starts from some initial parameters g and then performs the following updates:

0y = 0i—1 — “‘rvfj,_lﬁx

» this is quite similar to LSTM cell state updates:

-

¢t = ft @ ci—1 + 4 © ¢
tate ¢: is model M's parameter space fly o= ¢y becomes a learned initialization
- state update ¢ is the negative gradient —Vy, _, L,

Jrand i are LSTM gates: ';r —gir (W; ’ ['i””,_ 1 ﬂr A 1'::,, H,_l. iy 1] + |J;} = adapitive learning rate

fi=0 {WI-' ’ [vu,_.ﬂr-‘:r-ﬁr—[-_}rr—l] 5 IJ.‘-'] &= adaptive weight decay

» Optimization as a Model for Few-Shot Learning (2017)

Sachin Ravi and Hugo Larochelle

Slide Credit: Hugo Larochelle
Meta-Learner LSTM Georgia @




* Training a "gradient descent procedure’ applied on some learner M

Meta-learner
(LSTM)

+ Optimization as a Model for Few-Shot Learning (2017)

Sachin Ravi and Hugo Larochelle

Slide Credit: Hugo Larochelle
Meta-Learner LSTM Georgia @




* Training a "gradient descent procedure’ applied on some learner M

» MAML proposes not to bother with training an LSTM for the gradient descent updates and constant step-
size updates

» Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (2017)

Chelsea Finn, Pieter Abbeel and Sergey Levine

Slide Credit: Hugo Larochelle

Model-Agnostic Meta-Learning (MAML) Gegrgia |




a general recipe:

training data test set — meta-learning

N ™ ,...r-.,_* | Y ‘ —~== |earning/adaptation
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Lest
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0e08-7 Z Vo L(0 —aVaL(0, Dtrr-iou D)) in general, can take more than one
i L

gradient step here
** we often use 4 - 10 steps

T

“meta-loss” for task i

Finn et al., “Model-Agnostic Meta-Learning”

Slide Credit: Hugo Larochelle
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supervised learning: f(z) — y
supervised meta-learning: f(Dyiyain, ) = ¥

model-agnostic meta-learning: fyiamp (Pirain. ) — ¥

fMAML(Dirain: ) = for () Just another computation graph...

Can implement with any autodiff

' =60—a VoL(fo(x),y)
- package (e.g., TensorFlow)

Slide Credit: Hugo Larochelle

Model-Agnostic Meta-Learning (MAML) Georgia |




RNN-based meta-learning MAML
Ytest +—— test label o

— I § —— Vof— ¢
I ] I |

(z1,31) (@2,92) (T3,¥3) Trest

T test input
this implements the

“learned learning algorithm”

+ Does it converge? * Does it converge?

* What does it converge to? * What does it converge to?

* Who knows... * Alocal optimum (it's gradient descent...)

+ What to do if it’s not good enough? * What to do if it's not good enough?

* Nothing...

Slide Credit: Hugo Larochelle
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Some current/upcoming topics

* More recent

— Transformers for vision, audio, etc.

— Fixing reinforcement learning
* First you have to admit you have a problem

— Simulation frameworks, joint perception, planning, and action
* Navigation, mapping
* Use of large-scale multi-modal models (CLIP)

— Neural radiance fields (NeRF)

— Uncertainty quantification, robustness

— Deep Learning and logic!

— Just scaling everything up and watch the magic!
* Especially multi-modal, multi-task problems

— Bias, fairness

- - ia |
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* Transformers are
extremely flexible

Self-Attention in Vision Models

(§3)

Single-Head

Multi-Head Self-Attention ] Vi S i O n

Self-Attention (§3.1) (Vision Transformers §3.2)

transformers,

B Uniform-scale Multi-scale H?;::ﬂ \;‘I’mfr: wnfh Self-supervised e
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Criss-cross attention Vector attention Panstirass SegFormer Transformer MoCo v3

Token to Token
Local relation nets Transformer Swin Transformer [ Local ViT EsViT
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Transformer
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Focal Transformer ResT, NesT

Image Transformers

Khan et al., Transformers in Vision: A Survey

Transformers
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He et al., Masked Autoencoders Are Scalable Vision Learners

) Self-Supervised Transformers

e Transformers are
extremely flexible

Masking is a
powerful concept
for self-supervised
learning
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Weights optionally shared between repeats

e Unified models for
all Modalities

Logits

Latent array
(Nx D)

Transformer
Transformer

Byte array
MxC)

Figure 1. The Perceiver is an architecture based on attentional principles that scales to high-dimensional inputs such as images, videos,
audio, point-clouds, and multimodal combinations without making domain-specific assumptions. The Perceiver uses a cross-attention
module to project an high-dimensional input byte array to a fixed-dimensional latent bottleneck (the number of input indices M is much
larger than the number of latent indices N') before processing it using a deep stack of Transformer-style self-attention blocks in the latent
space. The Perceiver iteratively attends to the input byte array by alternating cross-attention and latent self-attention blocks.

Figure 2. We train the Perceiver architecture on images from ImageNet (Deng et al., 2009) (left), video and audio from AudioSet (Gemmeke
etal., 2017) (considered both multi- and uni-modally) (center), and 3D point clouds from ModelNet40 (Wu et al., 2015) (right). Essentially
no architectural changes are required to use the model on a diverse range of input data.

Jaegle et al., Perceiver: General Perception with Iterative Attention

Unified Transformer Models




(1) Contrastive pre-training (2) Create dataset classifier from label text
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Radford et al., Learning Transferable Visual Models From Natural Language Supervision
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AlKhamissi et al., A Review on Language Models as Knowledge Bases
Khandelwal et al., Simple but Effective: CLIP Embeddings for Embodied Al

Extracting Knowledge from Large-Scale Models




* Q: The frozen, pre-trained object detector may not . Q: Conditional relationship P(O|X) is not jointly optimized

encode all necessary info of X. with the target VL task.
*  A:Use CLIP to retrieve a set of text descriptions to *  A: Add a simple, trainable MLP between £, and £, to model
provide complementary info. the conditional probability of P(O | X) based on CLIP.
= @ @ O
Cross-Modal Retrieval 1. several kitchen_cabinet 7/, 3] m - W
2. oven located in kitchen / il (T ]
— L."i 3. kitchen oven electric stove 7 7 eB @ il
' 4. black stove top oven i i 1@ ¥ ®m
0 a8 = o
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L [ C Model
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@ B B8
- o e @
il [ | O
Input Image O O o

Kuo & Kira, Beyond a Pre-Trained Object Detector: Cross-Modal Textual and Visual Context for Image Captioning, CVPR 2022

Extracting Knowledge from Large-Scale Models Ge%;%ﬁ.l.




DALL-E 2 can create original, realistic images and art from a
text description. It can combine concepts, attributes, and styles.

TEXT DESCRIPTION DALLEZ2

An astronaut

riding a horse

in a photorealistic style

https://openai.com/dall-e-2/
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Architecture Search

Slides by Erik Wijmans
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Concepts Facilitate Parsing New Sentences

-l

. I N
Obje?t 1 Visual Representation I Slide by Mao et al.
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) Neuro-Symbolic Concept Learning



Abstract & Method

We present a method that achieves state-of-the-art results for synthesizing novel views of complex scenes by optimizing an
underlying continuous volumetric scene function using a sparse set of input views.

(%,%,2,0,¢) > [l["]—» (RGBo)
F

@)

Our algorithm represents a scene using a fully-connected (non-convolutional) deep network, whose input is a single continuous
5D coordinate (spatial location (x, v, z) and viewing direction (8, ©)) and whose output is the volume density and view-dependent
emitted radiance at that spatial location.

4 Ray2 /_"\"
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We synthesize views by querying 5D coordinates along camera rays and use classic volume rendering technigues to project the
output colors and densities into an image. Because volume rendering is naturally differentiable, the only input required to
optimize our representation is a set of images with known camera poses. We describe how to effectively optimize neural
radiance fields to render photorealistic novel views of scenes with complicated geometry and appearance, and demonstrate
results that outperform prior work on neural rendering and view synthesis.

-gt

Neural Radiance Fields (NeRF)

https://www.matthewtancik.com/nerf
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TECHNOLOGY

Deep Learning Is Hitting
a Wall

What would it take for artificial intelligence ta make real
progress?

BY GARY MARCUS March 1o, 2022

Limitations of Deep Learning Gegrgla |




Things to Watch out For

Research is cyclical

— SVMs, boosting, probabilistic graphical models & Bayes Nets, Structural Learning, Sparse Coding,
Deep Learning

— Deep learning is unique in its depth and breadth, but...
— Deep learning may be improved, reinvented, combined, overtaken

Learn fundamentals for techniques across the field:

— Know the span of ML techniques and choose the ones that fit your problem!
— Beresponsible in 1) how you use it, 2) promises you make and how you convey it

Try to understand landscape of the field
— Look out for what is coming up next, not where we are

Have fun!
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