Topics:

 Variational Autoencoders

CS 4803-DL / 7643-A
ZSOLT KIRA

A4 grades slated for this weekend

Projects!
* Due May 1 (May 3t with grace period)
* Cannot extend due to grade deadlines!

CIOS

* Please make sure to fill out! Let us know about things you liked and didn’t like in
comments so that we can keep or improve!

* http://b.gatech.edu/cios

Introduction

Supervised
Learning

Train Input: {X,Y}

Learning output:
f:X =Y, P(ylx)

e.g. classification

Less Labels

Spectrum of Low-Labeled Learning

Unsupervised
Learning

Input: {X}

Learning
output: P(x)

Example: Clustering,
density estimation, etc.

l Dnm t ‘
Maximum Likelihood

/ \ / GAN

Explicit density Implicit density ‘

-\ o

, : . : Markov Cha.in‘
Tractable density | Approximate density

-Fully visible belief nets GSN
x/ \.

-NADE - :
_MADE Variational | Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models

2

p() = PP lx)PCslxn) | [Pl . xi0)
i=1

Training:

We can train similar to language models:
Teacher/student forcing

Maximum likelihood approach

Downsides:
Slow sequential generation process
Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks

Factorized Models for Images

Input can be a vector with (independent) Gaussian random numbers
We can use a CNN to generate images!

Generator

Vector of
Random
Numbers

Generating Images

Generator: Update weights to improve
realism of generated images

Discriminator: Update weights to better
discriminate

Generator Discriminator

Vector of Mini-batch of Cross-entropy

Random real & fake data (Real or Fake?)

Numbers We know the
answer (self-

supervised)

Question: What loss functions can we use (for each network)?

) Generative Adversarial Networks (GANSs)

Generator

Vector of
Random
Numbers

Vo, 2o s (120 (6 ().

Generator Loss

Discriminator

Mini-batch of Cross-entropy
real & fake data (Real or Fake?)
We know the
answer (self-
supervised)

m

ng]i ?Z; [logD (:c(i)) + log (1 — 1 (G (z“))))] :

Discriminator Loss

) Generative Adversarial Networks (GANSs)

-
-

Low-resolution
images but look
decent!

AL

- LHE
e T W '

'\

1‘ h!*‘
| it

Last column are
nearest neighbor
matches in dataset

y
-
it '
-
‘T
=
#.s

P
&

hog Sy .
=
H A

Early Results

GANs are very difficult to train due to the mini-max objective

Advancements include:
More stable architectures
Regularization methods to improve optimization
Progressive growing/training and scaling

Goodfellow, NeurlPS 2016 Generative Adversarial Nets

) Difficulty in Training

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.
e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

Stride 2 186

CONV 2 CONV 3 64

CONV 4 ”
G(2)

Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

Training GANs is difficult due to:

Minimax objective — For example, what if generator learns to memorize
training data (no variety) or only generates part of the distribution?

Mode collapse — Capturing only some modes of distribution

Several theoretically-motivated regularization methods
Simple example: Add noise to real samples!

. 2
A EINPTM_;,(SNN,:;(O,cI) “‘VKDH{r T O)H B kJ

Kodali et al., On Convergence and Stability of GANs (also known as How to Train your DRAGAN)

) Regularization

Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016

Generative Adversarial Nets: Convolutional Architectures

Interpolating
between
random
points in
latent space

Radford et al,
ICLR 2016

‘Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Example Generated Images - BigGAN

(a) 128128 (b) 256 <256

Figure 4: Samples from our model with truncation threshold 0.5 (a-c) and an example of class
leakage in a partially trained model (d).

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Failure Examples - BigGAN

Source Video

Detected

Pore

Source to Terget 1 Result Source 1o Target 2 R‘I

Pl o) 000/315

https://www.youtube.com/watch?v=PCBTZh41Ris

) Video Generation Ge%&bg

A few other examples:
Deep nostalgia: https://www.myheritage.com/deep-nostalgia

High-resolution outputs: https://compvis.qgithub.io/taming-
transformers/

) Video Generation

GANS

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player

game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can’t solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)

- Conditional GANs, GANs for all kinds of applications

Georgia |

Tech |}

Mode Collapse

* Optimization of GANs is tricky
— Not guaranteed to find Nash equilibrium

* Large number of methods to combat:
— Use history of discriminators
— Regularization
— Different divergence measures

= " & 7 EEmRe! Emmm | ———
‘ - - - Ll - - . -
Al -
® - - -
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

Georgia |

Tech)

Application: Data Augmentation

Strain

g N

I' I'I““ =)

Georgia |
Tech|)

Application: Domain Adaptation

* Idea: Train a model on source data and adapt to target data using unlabeled examples from target

é)
source . &?]mm "n B g target
0 Ty
| e
N Y,

Geor la
¥ xamm SOGR Y

Approach

Pre-training Adversarial Adaptation Testing
) source images))
source images Fe-al.
+ labels i , Source | |
i ' CNN ! _ targetimage . __ rTo
' 2 class - % |, domain i Target\:_i SE | class
L E" label | | target images £ ES i CN[\LJ i ﬁ H label
o = L--" : O
Target 8 tttT
CNN
A A 4
MNIST — USPS USPS — MNIST SVHN — MNIST
Method B - NS NS - a8 1155 - dkB3
Source only 0.752 £ 0.016 0.571 £0.017 0.601 = 0.011
Gradient reversal 0.771 £ 0.018 0.730 4+ 0.020 0.739 [16]
Domain confusion 0.791 £ 0.005 0.665 £ 0.033 0.681 £ 0.003
CoGAN 0.912 £+ 0.008 0.891 £+ 0.008 did not converge
ADDA (Ours) 0.894 + 0.002 0.901 + 0.008 0.760 + 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

Georgia |

Tech |}

Aside: Other ways to Align

-

-

digital SLR camera low-cost camera, flash

oL
oL, y
5 >
|:> |:> a |:> |:> |:> E class label y
J

Y
label predictor Gy (-;6,)

m

~

Sa1}es]
T

—)\9Lda -
00 ; domain classifier G4(-;04)
& A
j\}- L. r N
Y ©, %,
feature extractor Gr(0f) 4, %, %
p & |:> E> @ domain label d
oL,
0 5 oL oss LD
forwardprop backprop (and produced derivatives) (%?d

Generative Adversarial Networks (GANs) can produce amazing
images!

Several drawbacks
High-fidelity generation heavy to train
Training can be unstable
No explicit model for distribution

Larger number of extensions:

GANSs conditioned on labels or other information
Adversarial losses for other applications

) Summary

Variational
Autoencoders

(VAEs)

N
Maximum Likelihood / GAN
.

Explicit density Implicit e:lensit}-"

-\ o .

, : . : Markov Cha.in‘
Tractable density | Approximate density

-Fully visible belief nets GSN
x/ \.

-NADE R :
_MADE Variational | Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models

Minimize the difference (with MSE)

\

Encoder

_—

Low dimensional embedding

Linear layers with reduced Linear layers with increasing
dimension or Conv-2d dimension or Conv-2d layers
layers with stride with bilinear upsampling

) Autoencoders

What is this?
Hidden/Latent variables
Factors of variation that —
produce an image:
(digit, orientation, scale, etc.)

P(X) = fP(XlZ; 0)P(2)dZ

We cannot maximize this likelihood due to the integral
Instead we maximize a variational lower bound (VLB) that we can compute

Kingma & Welling, Auto-Encoding Variational Bayes

) Formalizing the Generative Model

We can combine the probabilistic view, sampling, autoencoders, and
approximate optimization

Just as before, sample Z from simpler distribution

We can also output parameters of a probability
distribution!

Example: u, o of Gaussian distribution

For multi-dimensional version output
diagonal covariance

How can we maximize
P(X) = [P(X|Z;0)P(Z)dZ

) » Variational Autoencoder: Decoder

We can combine the probabilistic view, sampling, autoencoders, and
approximate optimization

Given an image, estimate Z

Again, output parameters of a
distribution

Encoder

QZ|X; ¢)

Variational Autoencoder: Encoder

We can tie the encoder and decoder together into a probabilistic autoencoder
Given data (X), estimate u,, o, and sample from N(u,, o,)
Given Z, estimate u,, o, and sample from N (i, o,)

P |
Encoder
QZ|X; ¢)

Putting Them Together

How can we optimize the parameters of the two networks?

Now equipped with our encoder and decoder networks, let’'s work out the (log)
data likelihood:

log py (ﬂf(i)) = B, o) [logpg(x(i))} (pg(ﬂ’}(i)) Does not depend on z)

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yel:'g

) Maximizing Likelihood Ge%ibbg

log py (33(?:)) = E,ngy(2]z®) [logpg(a:(":))} (pg(:l?(i)) Does not depend on z)

P e]
=E, {log po(z” | z)p(;(z)] (Bayes’ Rule)
po(z | z?)
po(z) | 2)pg(2) gg(z | 9] .
=E, |log —— = — Multiply by constant
[po(z | 2D) \go(z | 2®)] (!)

: (1))7 (%)
—E, {logpg(:z:(z) | z)] —-E, {log q(z | 2)J + E;-llog 4z | @ .)] (Logarithms)
[Spo(z | 20)

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yel:'g

) Maximizing Likelihood ceolllS

Aside: KL Divergence (distance measure for distributions), always >=0

KL(pllq) = H.(p,q) — H(p) = X p (x)logp(x) — Y p(x)log q(x)

Definition of Expectation
E[f] = Eonglf(2)] =) _ a(2)£(2)
zel)

a(x)
b(x)

KL(a||b) = Ellog a(x)] — E[log b(x)] = E[log |

KL-Divergence

log py (33(?:)) = E,ngy(2]z®) [logpg(a:(":))} (pg(:l?(i)) Does not depend on z)

po (2D | 2)pg(2)
po(z | z®)

=E, {log] (Bayes” Rule)

(2) (i)
=B, [log pol” | z)p(;(z) do(z | @ .)] (Multiply by constant)
po(z | 2V) gg(z | 2®)
. () (%)
—E. {logpg(:r;(z) | z)] -E, {log 4(2 |2)] +E, [log 4z | @ ,)] (Logarithms)
po(2) po(z |)
= E. [logps(a? | 2)| = Dicr(as(z | 2?) ||po(2)) + Dicr(as(z | 2”) || po(z | 2®))

B

The expectation wrt. z (using
encoder network) let us write
nice KL terms

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yel:'g

) Maximizing Likelihood ceolllS

log py (LE(?:)) = E,ngy(2]z®) [logpg(a:(":))} (pg(:l?(i)) Does not depend on z)

pa(2®
=E, [log Po(2 ; ‘| Z)é?)@\(z)-‘ (Bayes” Rule)

[1 po (x| 2)pa(2) go(z | z®)
og . -
pe(z | z®) qu(z | @)

] (Multiply by constant)

(1) 2 (9
=E, {logpg(@ | z)] —E, |log 9(| =) + E, |log 4z | @ ,) (Logarithms)
Po(2) po(z [#)

— E. |logpe(z? | 2)| — Dicr(as(z | 29) || pe(2)) + Dicr(gs(z | 2®) || pa(z | 2?))

f f +

Decoder network gives p,(x|z), can This KL term (between Pg(z|Xx) intractable (saw
compute estimate of this term through ~ Gaussians for encoder and z ~ earlier), can't compute this KL
sampling. (Sampling differentiable prior) has nice closed-form term :(But we know KL
throuah reparam. trick. see paper.) solution! divergence always >=0.

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yel:'g
-

) Maximizing Likelihood

log py (33(?:)) = E,ngy(2]z®) [logpg(:v(":))} (pg(:l?(i)) Does not depend on z)

O]
=E, {log po(z” | z)p(;(z)] (Bayes’ Rule)
po(z | 1)

_ po(x™) | 2)pe(2) g4(z |)

=E, |lo : ;
po(z [2®) gs(z |a®@)] |

gs(z |) gp(z | 29)

- (4) _

E. {logpe(|z)]1 E, {log pg(z) pa(Z|$(*) :

~ B [logpo(e” | 9] ~ Diculaols | #) |) + Dicslaols 1) otz |)
L(zD 6,) 20

log ?)()(.’j_f:("’»)) > E(:r:("),f?,) , Q% = arg maxz (; 65

Variational lower bound (“ELBQO”) Training: IVIaXIm;ze Iower bound

] (Multiply by constant)

) pr——

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yel:'g
-

) Maximizing Likelihood

Putting it all together: maximizing the
likelihood lower bound

B, [logpo(? | 2)] ~ D (as(= | =) llpo(2))

£(x,0,6)
Make approximate
posterior distribution

o e]

Encoder
QZ|X; ¢)
From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

) Forward and Backward Passes

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e” | 2)| — Dic1(gs(= |) || po(2))

ﬁ(x“),@?‘ Sample from Q(Z|X)~N (i, 6,)

= 1] &1 =]
Encoder
QZ|X; ¢)

) Forward and Backward Passes

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yel:'g
-

Putting it all together: maximizing the
likelihood lower bound Maximize likelihood of

A \ original input being
E, [logpg(;c("') | z):| — Drr(gs(z | 29) || pa(2)) reconstructed
e HW [z]

Sample from P(X|Z; 0)~N(u,, o,,)

e 1[0] [[o]
Encoder
QZ|X; ¢)

)' Forward and Backward Passes

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yel:'g
-

IX - £

Problem with respect to the
VLB: updating ¢

D (z .’B) Decoder
Lvag =E log 2%] ICLIN (1(X), S(X)) [N (0, 1)] ()
VAE a4 (z|®) [g Q¢(Z|ﬂ3) ‘ / ‘ A

Sample z from N (p(X)), S(.\'))|

= —Dxr(g4(2[®)||ps(2)) + Eq, (z]e) [log po(z|2

Z~Q(Z|X; d) : need to

differentiate through the i
sampling process wW.r.t ¢ ’
(encoder is probabilistic)

From: Tutorial on Variational Autoencoders
https://arxiv.orqg/abs/1606.05908

From: http://gokererdogan.qithub.io/2016/07/01/reparameterization-trick/

) Reparameterization Trick: Problem

Solution: make the randomness
independent of encoder output,
making the encoder deterministic

Gaussian distribution example:

Previously: encoder output =
random variable z~N(u, o)

Now encoder output =
distribution parameter [y, o]

z=u+exo,e~N(0,1)

From: http://gokererdogan.qithub.io/2016/07/01/reparameterization-trick/

[1X - 7(2)II7]

f(z)

| KLIN (u(X), 2(X))|IN(0, T)]| | Decoder
(P)

%
e
S
o

Encoder ‘ Sample € from .-‘\‘"Uﬁi‘ 1) ‘

Q)

From: Tutorial on Variational Autoencoders
https://arxiv.orqg/abs/1606.05908

) Reparameterization Trick: Solution

DANANANANNANAANNNNSNNNNS
QAP O ALLLLLWN NN~
VAV LLLVYY Y NN~
QUAVVDNININ Ly g toto ©OVOVVW W~~~
QAVVLHLIHINMNWEW VDIV @ - ——
QAOOOOHINININNE N BIOIYDD 9 = ——
QOAOAOOIMIMMNMMoNMBIOID D W - ——
OOQOIMHMNMMMMM®ODD D " — —
QOODMMM MM MM ON O WD DD e e e —
QOODMMOMMME MO W® DD P e e
QAN 02070000000t o~ 0~~~
N N N N N N ol R ol
it cforororororrres oo~
Sl dogororcrorrrrrannn~
SdadadadadocorrrrrrdTITIINN
ddddagorrrrrrdFTFTITIRINN
QAdTTTTrTrrrrr>rrrrR2RNAN
S B e gl gl il ol ol ol ol ol ol O N LN

-
(@)
wied
&
p—
id
c
@
wied
©
—
G
(@)
>
=
e
©
wied
(¢))
| U
Q.
| &
@
wied
c

Kingma & Welling, Auto-Encoding Variational Bayes

Variational Autoencoders (VAEs) provide a principled way to perform
approximate maximum likelihood optimization

Requires some assumptions (e.g. Gaussian distributions)
Samples are often not as competitive as GANs

Latent features (learned in an unsupervised way!) often good for
downstream tasks:

Example: World models for reinforcement learning (Ha et al., 2018)

Ha & Schmidhuber, World Models, 2018

) Summary Ge‘?rf

Several ways to learn generative models via deep learning

PixeIRNN/CNN:
Simple tractable densities we can model via a NN and optimize
Slow generation — limited scaling to large complex images
Generative Adversarial Networks (GANSs):
Pro: Amazing results across many image modalities
Con: Unstable/difficult training process, computationally heavy for good results
Con: Limited success for discrete distributions (language)
Con: Hard to evaluate (implicit model)
Variational Autoencoders:
Pro: Principled mathematical formulation
Pro: Results in disentangled latent representations
Con: Approximation inference, results in somewhat lower quality reconstructions

Ha & Schmidhuber, World Models, 2018

) Overall Summary

