Topics:

* Generative Models / Generative Adversarial Networks

CS 4644-DL / 7643-A
ZSOLT KIRA

* Projects!
* Due May 1 (May 3t with grace period)
* Cannot extend due to grade deadlines!

e Qutline of rest of course:

*NIPS 2016 Tutorial: Generative
Adversarial Networks

W14: Apr 11 Generative Adversarial Networks (GANs).

Guest Lecture by Ishan Misra (Meta) on Self-Supervised

W14: Apr 13 Learning

W15: Apr 18 Variational Autoencoders (VAEs) *Tutorial on Variational Autoencoders

W15: Apr 20 Guest Lecture by Joanne Truong on Embodied Al

Transition and
Reward Function

Yes No
Known?

f Use VaIuelPollcy < (Estimate Transition & Estimate Q values from
Iteratlon L Reward Function data (DQNs, etc)

./

Directly Optimize
Policy v

Obtain "optimal"
policy

Overview Ge%%ﬁn&

= Vg /WQ(T)R(T)CZT Expectation as integral

= /VQWQ(T)R(T)CZT Exchange integral and gradient

Deriving The Policy Gradient Geqctn

AL

Actor-critic

* |In general, replacing the policy evaluation or the “critic”
leads to different flavors of the actor-critic

— REINFORCE: VyJ(mg) = Eqmr, [Vologmg(als)R(s,a)]
— Q- Actor Critic VgJ(7m9) = Egnn, [Vologmg(als)Q™ (s, a)]

— Advantage Actor Critic: VgJ(m9) = Eqrn, [V log ma(als)A™ (s, a)]
— Qﬂe (37 0,) — Ve (S)

Georgia |
Tech |}

Summary

- Policy gradients: very general but suffer from high variance so
requires a lot of samples. Challenge: sample-efficiency

- Q-learning: does not always work but when it works, usually
more sample-efficient. Challenge: exploration

- GQuarantees:

- Policy Gradients: Converges to a local minima of J(8), often good enough!

- Q-learning: Zero guarantees since you are approximating Bellman equation with a complicated function
approximator

Georgia |
Tech|)

Introduction

Supervised
Learning

Train Input: {X,Y}

Learning output:
f:X =Y, P(ylx)

e.g. classification

Less Labels

Spectrum of Low-Labeled Learning

Unsupervised
Learning

Input: {X}

Learning
output: P(x)

Example: Clustering,
density estimation, etc.

Supervised Learning

« = (Elassificsion] —
= [Ressson]) —

Unsupervised Learning

< o= (T == -
= G — -

Discrete

Continuous

Discrete

Continuous

On simplex

Unsupervised Learning

Traditional unsupervised learning methods:

Density
estimation

Modeling P(x)

Deep Generative Models

i o 1

iR S .

. .9 _ j | Principal
Jseap o Clustering 2 ' Component
”,“ LJ Analysis
sy :

Comparing/ Representation
Grouping Learning

Metric learning & clustering

J

Almost all deep learning!

Similar in deep learning, but from neural network/learning perspective

) What to Learn?

Discriminative vs. Generative Models
Discriminative models model P(y|x)
Example: Model this via neural network, SVM, etc.

Generative models model P(x)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Nefviorks

) Generative Models Ge‘%f

Discriminative vs. Generative Models
Discriminative models model P(y|x)
Example: Model this via neural network, SVM, etc.

Generative models model P(x)

We can parameterize our model as P(x, 8) and use maximum likelihood to optimize the
parameters given an unlabeled dataset:

6% = arg max H}?model (m(i): 9)
¢ i

m
= arg max log H Pmodel (J:(”"'}; 6')
6 ,
=1

m

= arg max E log Prmodel (mm: 9) .
0 ;
i=1

They are called generative because they can otten generate samples

Example: Multivariate Gaussian with estimated parameters u, o
Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Nefviorks

Generative Models

l Dnm t ‘
Maximum Likelihood

/ \ / GAN

Explicit density Implicit density ‘

-\ o

, : . : Markov Cha.in‘
Tractable density | Approximate density

-Fully visible belief nets GSN
x/ \.

-NADE - :
_MADE Variational | Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models

PixeIRNN &

PixelCNN

N
Maximum Likelihood / GAN
.

Explicit density Implicit e:lensit}-"

-\ o .

, : . : Markov Cha.in‘
Tractable density | Approximate density

-Fully visible belief nets GSN
_NADE ./ _

_MADE Variational | Markov Chain

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

models (nonlinear ICA)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models

We can use chain rule to decompose the joint distribution

Factorizes joint distribution into a product of conditional distributions
Similar to Bayesian Network (factorizing a joint distribution)
Similar to language models!

n2
e = | [pry, . xi0)
i=1

Requires some ordering of variables (edges in a probabilistic graphical model)
We can estimate this conditional distribution as a neural network

Oord et al., Pixel Recurrent Neural Networks

) Factorizing P(x) ceolll

= p(Wq) p(Wz | wy) p(W3 | Wy, Wp) (Wn | Wn_1,..., W)
— Hp Wi ‘ Wi_ 1,)

next hlstory

word

Modeling language as a sequence

Language modeling involves estimating a probability distribution over
sequences of words.

p(S):p(W1,W2,... Hp WI‘W,_‘|,... W)
i next history
wor
d

RNNs are a family of neural architectures for modeling sequences.

h1 ho
-

XA X2 Xn

) Language Models as an RNN

p(x) — l_[p(xl X1 ---;xi—l)
p(x) = plxp) rp(xnxl, K1)

Oord et al., Pixel Recurrent Neural Networks

Factorized Models for Images

2

p() = PP lx)PCslxn) | [Pl . xi0)
i=1

Training:

We can train similar to language models:
Teacher/student forcing

Maximum likelihood approach

Downsides:
Slow sequential generation process
Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks

Factorized Models for Images

Idea: Represent conditional distribution
as a convolution layer!

Considers larger context (receptive field)

o |l o | = | =] =
o |l o|~|~|F
== — | =
o | OO | ==
= | = | = Hmll=

Practically can be implemented by
applying a mask, zeroing out “future”
pixels

Faster training but still slow generation
Limited to smaller images

Oord et al., Conditional Image Generation with PixelCNN Decoders

) Pixel CNN Ge*%ﬁ

occluded completions original

Example Images (PixelCNN)

Generative
Adversarial

Networks
(GANS)

l Dnm t ‘
Maximum Likelihood

/ \ / GAN

Explicit density Implicit density ‘

-\ o

, : . : Markov Cha.in‘
Tractable density | Approximate density

-Fully visible belief nets GSN
_NADE ./ _

-MADE Variational | Markov Chain

-PixelRNN Variational autoencoder Boltzmann machine
-Change of variables

models (nonlinear ICA)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models

Implicit generative models do not actually learn an explicit model for p(x)

Instead, learn to generate samples from p(x)
Learn good feature representations
Perform data augmentation

Learn world models (a simulator!) for reinforcement learning

How?
Learn to sample from a neural network output

Adversarial training that uses one network’s predictions to train the other
(dynamic loss function!)

Lots of tricks to make the optimization more stable

) Implicit Models cogBliS

We would like to sample from p(x) using a neural network
Idea:
Sample from a simple distribution (Gaussian)
Transform the sample to p(x)

Samples Samples
/’/f\\
/ A
// \\
//‘v \'\
// \\

N(u, o) Neural Network p(x)

) Learning to Sample Ge%:i’

Input can be a vector with (independent) Gaussian random numbers
We can use a CNN to generate images!

Generator

Vector of
Random
Numbers

Generating Images

Goal: We would like to generate realistic images. How can we drive the
network to learn how to do this?

Idea: Have another network try to distinguish a real image from a generated
(fake) image

Why? Signal can be used to determine how well it's doing at generation

Generator Discriminator

Vector of
Random

Numbers Real or

Adversarial Networks

Generator: Update weights to improve
realism of generated images

Discriminator: Update weights to better
discriminate

Generator Discriminator

Vector of Mini-batch of Cross-entropy

Random real & fake data (Real or Fake?)

Numbers We know the
answer (self-

supervised)

Question: What loss functions can we use (for each network)?

) Generative Adversarial Networks (GANSs)

Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game

Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is:

min max V (D, G) = By) 108 D(@)] + Exrp () [l0g(1 — D(G(2))]

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game

n}ln Ing’x V(D7 G) — Ewdiara(m) [logD(fB” —I_ EZNPZ(Z) [log(l o D(G(Z)))}

where D (x) is the discriminator outputs probability ([0,1]) of real image
x is a real image and G(z) is a generated image

The discriminator wants to maximize this:
D(x) is pushed up (to 1) because x is a real image
1 —D(G(2)) is also pushed up to 1 (so that D(G(z)) is pushed down to 0)

In other words, discriminator wants to classify real images as real (1) and
fake images as fake (0)

) Discriminator Perspective

n}ln Ing’x V(D7 G) — Ewdiara(m) [logD(fB” —I_ EZNPZ(Z) [log(l o D(G(Z)))}

where D (x) is the discriminator outputs probability ([0,1]) of real image
x is a real image and G(z) is a generated image

The generator wants to minimize this:
1 —D(G(2)) is pushed down to O (so that D(G(z)) is pushed up to 1)

This means that the generator is fooling the discriminator, i.e. succeeding
at generating images that the discriminator can’t discriminate from real

) Generator Perspective

Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is:
Sample from fake

min max V (D, G) = By) 108 D(@)] + Exrp () [l0g(1 — D(G(2))]

Generator minimizes How well discriminator

does (0 for fake)
where D (x) is the discriminator outputs probability ([0,1]) of real image

x is a real image and G(z) is a generated image

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game

Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is:

Sample from real Sample from fake
min max V(D, G) = Egnpy (@) 108 D(@)] + Exnp () llog(1 — D(G(2))
Discriminator maximizes How well discriminator How well discriminator
does (1 for real) does (0 for fake)

where D (x) is the discriminator outputs probability ([0,1]) of real image
x is a real image and G(z) is a generated image

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game

Generator

Vector of
Random
Numbers

Vo, 2o s (120 (6 ().

Generator Loss

Discriminator

Mini-batch of Cross-entropy
real & fake data (Real or Fake?)
We know the
answer (self-
supervised)

m

ng]i ?Z; [logD (:c(i)) + log (1 — 1 (G (z“))))] :

Discriminator Loss

) Generative Adversarial Networks (GANSs)

The generator part of the objective does not have good gradient properties

D}in Hase V(D,G) = Egmppu(a) 108 D(@)] + Exp_ () [log(1 — D(G(2)))]
High gradient when D(G(z)) is high (that is, discriminator is wrong)
We want it to improve when samples are bad (discriminator is right)

— log(l — D(G(2))) |
— —logD(G(2))

Alternative objective, maximize:
H]é%x EZNp(z) Iog(Dﬂd (Gﬂg (Z)))

Plot from CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Converting to Max-Max Game

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k., is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z1), ... 2™} from noise prior p,(2).
e Sample minibatch of 2 examples {z1), .. 2™} from data generating distribution
pdata(l')-

e Update the discriminator by ascending its stochastic gradient:

Vo3~ [loxD (s9) s (1D (6 (=1))]

=

end for
e Sample minibatch of 1 noise samples {z(1), ..., z(™)} from noise prior py(z).

e Update the generator by descending its stochastic gradient:

vizl (1-D(c (=0))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow, NeurlPS 2016 Generative Adversarial Nets

Final Algorithm

Vector of
Random
Numbers

>

Generator

B

At the end, we have:
An implicit generative model!
Features from discriminator

Discriminator

Mini-batch of Cross-entropy
real & fake data . (Real or Fake?)
We know the

answer (self-
supervised)

Generative Adversarial Networks (GANSs)

-
-

Low-resolution
images but look
decent!

AL

- LHE
e T W '

'\

1‘ h!*‘
| it

Last column are
nearest neighbor
matches in dataset

y
-
it '
-
‘T
=
#.s

P
&

hog Sy .
=
H A

Early Results

GANs are very difficult to train due to the mini-max objective

Advancements include:
More stable architectures
Regularization methods to improve optimization
Progressive growing/training and scaling

Goodfellow, NeurlPS 2016 Generative Adversarial Nets

) Difficulty in Training

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.
e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

e Use LeakyReLU activation in the discriminator for all layers.

Stride 2 186

CONV 2 CONV 3 64

CONV 4 ”
G(2)

Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

Training GANs is difficult due to:

Minimax objective — For example, what if generator learns to memorize
training data (no variety) or only generates part of the distribution?

Mode collapse — Capturing only some modes of distribution

Several theoretically-motivated regularization methods
Simple example: Add noise to real samples!

. 2
A EINPTM_;,(SNN,:;(O,cI) “‘VKDH{r T O)H B kJ

Kodali et al., On Convergence and Stability of GANs (also known as How to Train your DRAGAN)

) Regularization

Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016

Generative Adversarial Nets: Convolutional Architectures

Interpolating
between
random
points in
latent space

Radford et al,
ICLR 2016

‘Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Example Generated Images - BigGAN

(a) 128128 (b) 256 <256

Figure 4: Samples from our model with truncation threshold 0.5 (a-c) and an example of class
leakage in a partially trained model (d).

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Failure Examples - BigGAN

Source Video

Detected

Pore

Source to Terget 1 Result Source 1o Target 2 R‘I

Pl o) 000/315

https://www.youtube.com/watch?v=PCBTZh41Ris

) Video Generation Ge%&bg

A few other examples:
Deep nostalgia: https://www.myheritage.com/deep-nostalgia

High-resolution outputs: https://compvis.qgithub.io/taming-
transformers/

) Video Generation

GANS

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player

game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can’t solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)

- Conditional GANs, GANs for all kinds of applications

Georgia |

Tech |}

Mode Collapse

* Optimization of GANs is tricky
— Not guaranteed to find Nash equilibrium

* Large number of methods to combat:
— Use history of discriminators
— Regularization
— Different divergence measures

= " & 7 EEmRe! Emmm | ———
‘ - - - Ll - - . -
Al -
® - - -
Step 0 Step 5k Step 10k Step 15k Step 20k Step 25k Target

Georgia |

Tech)

Application: Data Augmentation

Strain

g N

I' I'I““ =)

Georgia |
Tech|)

Application: Domain Adaptation

* Idea: Train a model on source data and adapt to target data using unlabeled examples from target

é)
source . &?]mm "n B g target
0 Ty
| e
N Y,

Geor la
¥ xamm SOGR Y

Approach

Pre-training Adversarial Adaptation Testing
) source images))
source images Fe-al.
+ labels i , Source | |
i ' CNN ! _ targetimage . __ rTo
' 2 class - % |, domain i Target\:_i SE | class
L E" label | | target images £ ES i CN[\LJ i ﬁ H label
o = L--" : O
Target 8 tttT
CNN
A A 4
MNIST — USPS USPS — MNIST SVHN — MNIST
Method B - NS NS - a8 1155 - dkB3
Source only 0.752 £ 0.016 0.571 £0.017 0.601 = 0.011
Gradient reversal 0.771 £ 0.018 0.730 4+ 0.020 0.739 [16]
Domain confusion 0.791 £ 0.005 0.665 £ 0.033 0.681 £ 0.003
CoGAN 0.912 £+ 0.008 0.891 £+ 0.008 did not converge
ADDA (Ours) 0.894 + 0.002 0.901 + 0.008 0.760 + 0.018

Table 2: Experimental results on unsupervised adaptation among MNIST, USPS, and SVHN.

Georgia |

Tech |}

Aside: Other ways to Align

-

-

digital SLR camera low-cost camera, flash

oL
oL, y
5 >
|:> |:> a |:> |:> |:> E class label y
J

Y
label predictor Gy (-;6,)

m

~

Sa1}es]
T

—)\9Lda -
00 ; domain classifier G4(-;04)
& A
j\}- L. r N
Y ©, %,
feature extractor Gr(0f) 4, %, %
p & |:> E> @ domain label d
oL,
0 5 oL oss LD
forwardprop backprop (and produced derivatives) (%?d

Generative Adversarial Networks (GANs) can produce amazing
images!

Several drawbacks
High-fidelity generation heavy to train
Training can be unstable
No explicit model for distribution

Larger number of extensions:

GANSs conditioned on labels or other information
Adversarial losses for other applications

) Summary

