
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Generative Models / Generative Adversarial Networks



Administrivia

• Projects!
• Due May 1rd (May 3th with grace period)
• Cannot extend due to grade deadlines!

• Outline of rest of course:

W14: Apr 11 Generative Adversarial Networks (GANs). •NIPS 2016 Tutorial: Generative 
Adversarial Networks

W14: Apr 13 Guest Lecture by Ishan Misra (Meta) on Self-Supervised 
Learning 

W15: Apr 18 Variational Autoencoders (VAEs) •Tutorial on Variational Autoencoders

W15: Apr 20 Guest Lecture by Joanne Truong on Embodied AI 



Overview



Deriving The Policy Gradient

Expectation as integral

Exchange integral and gradient



Actor-critic
• In general, replacing the policy evaluation or the “critic” 

leads to different flavors of the actor-critic
– REINFORCE:

– Q – Actor Critic

– Advantage Actor Critic:

“how much better is an action than 
expected?



Summary
- Policy gradients: very general but suffer from high variance so 

requires a lot of samples. Challenge: sample-efficiency
- Q-learning: does not always work but when it works, usually 

more sample-efficient. Challenge: exploration

- Guarantees:
- Policy Gradients: Converges to a local minima of J(𝜃), often good enough!
- Q-learning: Zero guarantees since you are approximating Bellman equation with a complicated function 

approximator

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Introduction



Spectrum of Low-Labeled Learning

Supervised 
Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output:    
𝑓 ∶ 𝑋 → 𝑌, 𝑃(𝑦|𝑥)

⬣ e.g. classification

Sheep
Dog
Cat
Lion
Giraffe

Unsupervised 
Learning

⬣ Input: 𝑋

⬣ Learning 
output: 𝑃 𝑥

⬣ Example: Clustering, 
density estimation, etc.

Less Labels



Unsupervised Learning

Density 
Estimation

Classification

Regression

Clustering

Dimensionality
Reduction

x y

x y

Discrete

Continuous

x c Discrete

x z Continuous

Supervised Learning

Unsupervised Learning

x p(x) On simplex



What to Learn? 

Traditional unsupervised learning methods:

Similar in deep learning, but from neural network/learning perspective

Modeling Comparing/
Grouping

Representation 
Learning

Principal 
Component 

Analysis

Clustering
Density 

estimation

Almost all deep learning!Metric learning & clusteringDeep Generative Models



⬣ Discriminative models model 𝑃 𝑦 𝑥

⬣ Example: Model this via neural network, SVM, etc. 

⬣ Generative models model 𝑃(𝑥)

Generative Models

Discriminative vs. Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



⬣ Discriminative models model 𝑃 𝑦 𝑥

⬣ Example: Model this via neural network, SVM, etc. 

⬣ Generative models model 𝑃(𝑥)

⬣ We can parameterize our model as 𝑃(𝑥, 𝜃) and use maximum likelihood to optimize the 
parameters given an unlabeled dataset:

⬣ They are called generative because they can often generate samples

⬣ Example: Multivariate Gaussian with estimated parameters 𝝁, 𝝈

Generative Models

Discriminative vs. Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



PixelRNN & 
PixelCNN



Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



Factorizing P(x)

We can use chain rule to decompose the joint distribution

⬣ Factorizes joint distribution into a product of conditional distributions

⬣ Similar to Bayesian Network (factorizing a joint distribution)

⬣ Similar to language models!

⬣ Requires some ordering of variables (edges in a probabilistic graphical model)

⬣ We can estimate this conditional distribution as a neural network

Oord et al., Pixel Recurrent Neural Networks

𝒊 𝟏 𝒊ି𝟏

𝒏𝟐

𝒊ୀ𝟏



Modeling language as a sequence

next
word

history



Language Models as an RNN

⬣ Language modeling involves estimating a probability distribution over 
sequences of words.

next
wor
d

history

⬣ RNNs are a family of neural architectures for modeling sequences.



Factorized Models for Images

𝟏 𝒊 𝟏 𝒊ି𝟏

𝒏𝟐

𝒊ୀ𝟐

Oord et al., Pixel Recurrent Neural Networks

𝒊 𝟏 𝒊ି𝟏

𝒏𝟐

𝒊ୀ𝟏



Factorized Models for Images

𝟏 𝟐 𝟏 𝟑 𝟏 𝒊 𝟏 𝒊ି𝟏

𝒏𝟐

𝒊ୀ𝟏

⬣ Training:

⬣ We can train similar to language models: 
Teacher/student forcing

⬣ Maximum likelihood approach

⬣ Downsides: 

⬣ Slow sequential generation process

⬣ Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks



Pixel CNN

Oord et al., Conditional Image Generation with PixelCNN Decoders

⬣ Idea: Represent conditional distribution 
as a convolution layer!

⬣ Considers larger context (receptive field)

⬣ Practically can be implemented by 
applying a mask, zeroing out “future” 
pixels

⬣ Faster training but still slow generation

⬣ Limited to smaller images



Example Results: Image Completion (PixelRNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders



Example Images (PixelCNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders



Generative 
Adversarial 
Networks
(GANs)



Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



Implicit Models

⬣ Implicit generative models do not actually learn an explicit model for 

⬣ Instead, learn to generate samples from 

⬣ Learn good feature representations

⬣ Perform data augmentation

⬣ Learn world models (a simulator!) for reinforcement learning

⬣ How?

⬣ Learn to sample from a neural network output

⬣ Adversarial training that uses one network’s predictions to train the other 
(dynamic loss function!)

⬣ Lots of tricks to make the optimization more stable



Learning to Sample

⬣ We would like to sample from using a neural network

⬣ Idea: 

⬣ Sample from a simple distribution (Gaussian)

⬣ Transform the sample to 

Neural Network

Samples Samples



Generating Images

⬣ Input can be a vector with (independent) Gaussian random numbers

⬣ We can use a CNN to generate images!

Neural Network

Vector of 
Random 
Numbers

Generator



Adversarial Networks

⬣ Goal: We would like to generate realistic images. How can we drive the 
network to learn how to do this?

⬣ Idea: Have another network try to distinguish a real image from a generated 
(fake) image

⬣ Why? Signal can be used to determine how well it’s doing at generation

Neural Network

Vector of 
Random 
Numbers

Generator Discriminator

Real or 
Fake?



Generative Adversarial Networks (GANs)

Vector of 
Random 
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the 
answer (self-
supervised)

Mini-batch of 
real & fake data

Question: What loss functions can we use (for each network)? 

⬣ Generator: Update weights to improve 
realism of generated images

⬣ Discriminator: Update weights to better 
discriminate



⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

⬣ The full mini-max objective is:

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



Discriminator Perspective

⬣ where is the discriminator outputs probability ([0,1]) of real image

⬣ is a real image and is a generated image

⬣ The discriminator wants to maximize this:

⬣ is pushed up (to 1) because is a real image

⬣ is also pushed up to 1 (so that is pushed down to 0)

⬣ In other words, discriminator wants to classify real images as real (1) and 
fake images as fake (0)



Generator Perspective

⬣ where is the discriminator outputs probability ([0,1]) of real image

⬣ is a real image and is a generated image

⬣ The generator wants to minimize this:

⬣ is pushed down to 0 (so that is pushed up to 1)

⬣ This means that the generator is fooling the discriminator, i.e. succeeding 
at generating images that the discriminator can’t discriminate from real



⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

⬣ The full mini-max objective is:

⬣ where is the discriminator outputs probability ([0,1]) of real image

⬣ is a real image and is a generated image

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Generator minimizes How well discriminator 
does (0 for fake) 

Sample from fake



⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

⬣ The full mini-max objective is:

⬣ where is the discriminator outputs probability ([0,1]) of real image

⬣ is a real image and is a generated image

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

How well discriminator 
does (1 for real) 

Discriminator maximizes How well discriminator 
does (0 for fake) 

Sample from fakeSample from real



Generative Adversarial Networks (GANs)

Vector of 
Random 
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the 
answer (self-
supervised)

Generator Loss Discriminator Loss

Mini-batch of 
real & fake data



Converting to Max-Max Game

⬣ The generator part of the objective does not have good gradient properties

⬣ High gradient when is high (that is, discriminator is wrong)

⬣ We want it to improve when samples are bad (discriminator is right)

⬣ Alternative objective, maximize:

Plot from CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Final Algorithm

Goodfellow, NeurIPS 2016 Generative Adversarial Nets



Generative Adversarial Networks (GANs)

Vector of 
Random 
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the 
answer (self-
supervised)

Mini-batch of 
real & fake data

⬣ At the end, we have:

⬣ An implicit generative model!

⬣ Features from discriminator



Early Results

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

⬣ Low-resolution 
images but look 
decent!

⬣ Last column are 
nearest neighbor 
matches in dataset



Difficulty in Training

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

⬣ GANs are very difficult to train due to the mini-max objective

⬣ Advancements include:

⬣ More stable architectures

⬣ Regularization methods to improve optimization

⬣ Progressive growing/training and scaling



DCGAN

Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks



Regularization

Kodali et al., On Convergence and Stability of GANs (also known as How to Train your DRAGAN)

⬣ Training GANs is difficult due to:

⬣ Minimax objective – For example, what if generator learns to memorize 
training data (no variety) or only generates part of the distribution?

⬣ Mode collapse – Capturing only some modes of distribution

⬣ Several theoretically-motivated regularization methods

⬣ Simple example: Add noise to real samples!



Generative Adversarial Nets: Convolutional Architectures

Radford et al,
ICLR 2016

Samples 
from the 
model look 
much 
better!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Nets: Convolutional Architectures

Radford et al,
ICLR 2016

Interpolating 
between 
random 
points in 
latent space

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example Generated Images - BigGAN

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis



Failure Examples - BigGAN

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis



Video Generation

https://www.youtube.com/watch?v=PCBTZh41Ris



Video Generation

⬣ A few other examples:

⬣ Deep nostalgia: https://www.myheritage.com/deep-nostalgia

⬣ High-resolution outputs: https://compvis.github.io/taming-
transformers/



GANs

Don’t work with an explicit density function
Take game-theoretic approach: learn to generate from training distribution through 2-player 
game

Pros:
- Beautiful, state-of-the-art samples!

Cons:
- Trickier / more unstable to train
- Can’t solve inference queries such as p(x), p(z|x)

Active areas of research:
- Better loss functions, more stable training (Wasserstein GAN, LSGAN, many others)
- Conditional GANs, GANs for all kinds of applications

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Mode Collapse
• Optimization of GANs is tricky

– Not guaranteed to find Nash equilibrium

• Large number of methods to combat:
– Use history of discriminators
– Regularization
– Different divergence measures



Application: Data Augmentation

Low-Shot Learning from Imaginary Data, Yu-Xiong Wang, Ross Girshick, 
Martial Hebert, Bharath Hariharan



Application: Domain Adaptation

• Idea: Train a model on source data and adapt to target data using unlabeled examples from target



Approach

Adversarial Discriminative Domain Adaptation, Eric Tzeng, Judy Hoffman, Kate Saenko, Trevor Darrell 



Aside: Other ways to Align

[Ganin et al. , JMLR 2016]



Summary

⬣ Generative Adversarial Networks (GANs) can produce amazing 
images!

⬣ Several drawbacks

⬣ High-fidelity generation heavy to train

⬣ Training can be unstable

⬣ No explicit model for distribution

⬣ Larger number of extensions:

⬣ GANs conditioned on labels or other information

⬣ Adversarial losses for other applications


