
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Reinforcement Learning Part 3

• Policy Gradients

RL: Sequential decision making in an environment with evaluative feedback.

What is Reinforcement Learning?

⬣ Environment may be unknown, non-linear, stochastic and complex.

⬣ Agent learns a policy to map states of the environments to actions.

⬣ Seeking to maximize cumulative reward in the long run.

Agent

Action,
Response,
Control

State,
Stimulus,
Situation

Reward,
Gain, Payoff,
Cost

Environmen
t

(world)
Figure Credit: Rich Sutton

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

: Set of possible states

: Set of possible actions

: Distribution of reward

: Transition probability distribution, also written as p(s’|s,a)

: Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the
environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

: Set of possible states

: Set of possible actions

: Distribution of reward

: Transition probability distribution, also written as p(s’|s,a)

: Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the
environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Summary of Last Time

Definition of optimal policy

What we want

A policy

Some intermediate concepts and terms
A Value function (how good is a state?)

A Q-Value function (how good is a state-action pair?)

We can then derive the Bellman Equation

(Math in previous
lecture)

This must hold true for an optimal Q-Value!
-> Leads to dynamic programming algorithm to find it

Equalities relating optimal quantities

Q-Learning
• We’d like to do Q-value updates to each Q-state:

– But can’t compute this update without knowing T, R

• Instead, compute average as we go
– Receive a sample transition (s,a,r,s’)
– This sample suggests

– But we want to average over results from (s,a)
– So keep a running average

Slide Credit: http://ai.berkeley.edu

⬣ Q-Learning with linear function approximators

⬣ Has some theoretical guarantees

⬣ Deep Q-Learning: Fit a deep Q-Network

⬣ Works well in practice

⬣ Q-Network can take RGB images

Deep Q-Learning

Image Credits: Fei-Fei Li, Justin Johnson,
Serena Yeung, CS 231n

Deep Q-Learning Algorithm

Epsilon-greedy

Q Update

Experience Replay

Case study: Playing Atari Games

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Case study: Playing Atari Games

Atari Games

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.youtube.com/watch?v=V1eYniJ0Rnk

In today’s class, we looked at

⬣ Dynamic Programming

⬣ Value, Q-Value Iteration

⬣ Reinforcement Learning (RL)

⬣ The challenges of (deep) learning based methods

⬣ Value-based RL algorithms

⬣ Deep Q-Learning

Now:

⬣ Policy-based RL algorithms (policy gradients)

Summary

Policy
Gradients,
Actor-Critic

Overview

⬣ Class of policies defined by parameters

⬣ Eg: can be parameters of linear transformation, deep network, etc.

⬣ Want to maximize:

⬣ In other words,

Parametrized Policy

Pong from Pixels

Policy Gradient: Loss Function

Image Source: http://karpathy.github.io/2016/05/31/rl/

⬣ Slightly re-writing the notation

Let denote a trajectory

Gathering Data/Experience

⬣ How to gather data?

⬣ We already have a policy:

⬣ Sample N trajectories by acting according to

Gathering Data/Experience

⬣ Sample trajectories by acting according to

⬣ Compute policy gradient as

⬣ Update policy parameters:

The REINFORCE Algorithm

Run the policy and
sample trajectories

Compute policy
gradient Update policyUpdate policy

Slide credit: Sergey Levine

?

Deriving The Policy Gradient

Expectation as integral

Exchange integral and gradient

Deriving The Policy Gradient

Doesn’t depend on
Transition probabilities!

Continuous Action Space?

⬣ Sample trajectories by acting according to

⬣ Compute policy gradient as

⬣ Update policy parameters:

Run the policy and
sample trajectories

Compute policy
gradient Update policyUpdate policy

The REINFORCE Algorithm

Slide credit: Sergey Levine

Drawbacks of Policy Gradients

Slide credit: Dhruv Batra

Issues with Policy Gradients

• Credit assignment is hard!
– Which specific action led to increase in reward
– Suffers from high variance  leading to unstable training

Variance reduction

Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Variance reduction

Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

Second idea: Use discount factor 𝛾 to ignore delayed effects

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

⬣ Credit assignment is hard!

⬣ Which specific action led to increase in reward

⬣ Suffers from high variance, leading to unstable training

⬣ How to reduce the variance?

⬣ Subtract an action independent baseline from the reward

⬣ Why does it work? Normalization constant (expected value doesn’t change)

⬣ What is the best choice of b?

Drawbacks of Policy Gradients

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Actor-Critic

• Learn both policy and Q function
– Use the “actor” to sample trajectories
– Use the Q function to “evaluate” or “critic” the policy

Actor-Critic

• Learn both policy and Q function
– Use the “actor” to sample trajectories
– Use the Q function to “evaluate” or “critic” the policy

• REINFORCE:

• Actor-critic:

Actor-Critic

• Learn both policy and Q function
– Use the “actor” to sample trajectories
– Use the Q function to “evaluate” or “critic” the policy

• REINFORCE:

• Actor-critic:

• Q function is unknown too! Update using

Actor-Critic

• Initialize s, (policy network) and (Q network)

Actor-Critic

• Initialize s, (policy network) and (Q network)
• sample action

Actor-Critic

• Initialize s, (policy network) and (Q network)
• sample action
• For each step:

– Sample reward and next state

Actor-Critic

• Initialize s, (policy network) and (Q network)
• sample action
• For each step:

– Sample reward and next state
– evaluate “actor” using “critic”

Actor-Critic

• Initialize s, (policy network) and (Q network)
• sample action
• For each step:

– Sample reward and next state
– evaluate “actor” using “critic” and update policy:

• Initialize s, (policy network) and (Q network)
• sample action
• For each step:

– Sample reward and next state
– evaluate “actor” using “critic” and update policy:

– Update “critic”:
• Recall Q-learning

Actor-Critic

• Initialize s, (policy network) and (Q network)
• sample action
• For each step:

– Sample reward and next state
– evaluate “actor” using “critic” and update policy:

– Update “critic”:
• Recall Q-learning

• Update Accordingly

Actor-Critic

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action at in a state st if
is large. On the contrary, we are unhappy with an action if it’s small.

Using this, we get the estimator:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Actor-critic
• In general, replacing the policy evaluation or the “critic”

leads to different flavors of the actor-critic
– REINFORCE:

– Q – Actor Critic

– Advantage Actor Critic:

“how much better is an action than
expected?

Summary

• Policy Learning:
– Policy gradients
– REINFORCE
– Reducing Variance (Homework!)

• Actor-Critic:
– Other ways of performing “policy evaluation”
– Variants of Actor-critic

Summary
- Policy gradients: very general but suffer from high variance so

requires a lot of samples. Challenge: sample-efficiency
- Q-learning: does not always work but when it works, usually

more sample-efficient. Challenge: exploration

- Guarantees:
- Policy Gradients: Converges to a local minima of J(𝜃), often good enough!
- Q-learning: Zero guarantees since you are approximating Bellman equation with a complicated function

approximator

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

• Sparse long-horizon tasks (Montezuma’s revenge)
• Imitation Learning, inverse reinforcement learning
• Sim2Real – Simulation to real, domain randomization
• Lifelong Learning
• Safety
• World Models

Open Problems / Challenges

Playing Go

Go is a Difficult Game

AlphaGo

• Go is a perfect information game
– See entire board at all times
– Has an optimal value function!

• Key idea: We cannot unroll search tree to learn a policy/value for a large
number of states, instead:
– Reduce depth of search via position evaluation: Replace subtrees with estimated value

function v(s)
– Reduce breadth of search via action sampling: Don’t perform unlikely actions

• Start by predicting expert actions, gives you a probability distribution

• Use Monte Carlo rollouts, with a policy, selecting children with higher values
– As policy improves this search improves too

Monte-Carlo Tree Search

(C) Dhruv Batra & Zsolt Kira 48

From Wikipedia

