Topics:
* Reinforcement Learning Part 3
* Policy Gradients

CS 4644-DL / 7643-A
ZSOLT KIRA

RL: Sequential decision making in an environment with evaluative feedback.

Agent
.State, Reward, Action,
StlmU“{S, Gain, Payoff, Response,
Situation Cost Control
Environmen
t D
(world)

Figure Credit: Rich Sutton

Environment may be unknown, non-linear, stochastic and complex.
Agent learns a policy to map states of the environments to actions.
Seeking to maximize cumulative reward in the long run.

) What is Reinforcement Learning? SEE

MDPs: Theoretical framework underlying RL
An MDP is defined as a tuple (S, A, R, T,)
S : Set of possible states
A : Set of possible actions
R(s,a,s’) : Distribution of reward
T(s,a, s’) : Transition probability distribution, also written as p(s’|s,a)
Y : Discount factor

Markov Decision Processes (MDPs) iy

MDPs: Theoretical framework underlying RL
An MDP is defined as a tuple (S, A, R, T,)
S : Set of possible states
A : Set of possible actions
R(s,a,s’) : Distribution of reward
T(s,a, s’) : Transition probability distribution, also written as p(s’|s,a)
Y : Discount factor
Interaction trajectory: ... S¢, Q¢, T¢41,St4+1,A¢4+1,T¢4+2, St4+2, .- - -

) Markov Decision Processes (MDPs) Gegutia)

What we want Some intermediate concepts and terms

A Value function (how good is a state?)
V:S—R Vis)=E Z'}’tTt|SO =8,

t>0
A Q-Value function (how good is a state-action pair?)

Q:SxA—-R Q(s,a)= [Zvrﬂso—sao—aw]

t>0

SEICH. UL A policy T

7 = argmax E Z'ytrthr
s
20 Q'(s,¢) = E [(s,a) +~V*(s")] (Mathin previous
Definition of optimal policy “p(&’]g0) lecture)

Equalities relating optimal quantities =~ We can then derive the Bellman Equation

V*(s) :mng*(Saa) Q*(s,a) = Zp(._c, 5, a) [r(s,a) -1—1(111}1}: Q““{H’fn.."}]

This must hoId true for an optimal Q-Value!
-> Leads to dynamic programming algorithm to find it

(s) = arg max Q(s,a)

) Summary of Last Time Gograla

Q-Learning

* We'd like to do Q-value updates to each Q-state:
Qt1(s:0) & Y T(s,a,5) [R(s,a,5) +7 maxQu(s',a))
/ a

— But can’t compute this update without knowing T, R
* Instead, compute average as we go
— Receive a sample transition (s,a,r,s’)

— This sample suggests

Q(s,a) = 1+ ymaxQ(s', a')

— But we want to average over results from (s,a)
— Sokeep a running average

Qs,0) — (1 -)Q(s,0) + (@) |7 +7MaxQ(s',a')

Georgia |

Tech |}

Q-Learning with linear function approximators

Q(s,a;w,b) = w, s+ b,

Has some theoretical guarantees FC-4 (Q-values)

FC-256

Deep Q-Learning: Fit a deep Q-Network Q (S, a, (9)

Works well in practice

11—
Q-Network can take RGB images JJJ

Image Credits: Fei-Fei Li, Justin Johnson,
Serena Yeung, CS 231n

) Deep Q-Learning Gectran

Algorithm 1 Deep O-learning with Experience Replay
Initialize replay memory D to capacity N)
Initialize action-value function () with random weights Experience Replay
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1.7T do _
With probability € select a random action a; Epsnon-greedy
otherwise select a; = max, Q*(o(s;),a;)
Execute action a; in emulator and observe reward 7, and image x; .,
Set 84,1 = 84, a4, Tr+1 and preprocess ¢ro1 = O(S¢11)
Store transition (¢, a;, 7y, @y+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
Setiiiy = { T for terminal ¢; Q Update
J r; + ymax, Q(d;.1,a’;6) for non-terminal ¢, ;
Perform a gradient descent step on (y; — Q(d;, a;; 6'))2 according to equation 3
end for
end for

) Deep Q-Learning Algorithm Gegrata |

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Case study: Playing Atari Games Gecrin)

Atari Games

https://www.youtube.com/watch?v=V1eYniJORnk

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Case study: Playing Atari Games Geg;sgg&

In today’s class, we looked at
Dynamic Programming
Value, Q-Value lteration

Reinforcement Learning (RL)
The challenges of (deep) learning based methods
Value-based RL algorithms
Deep Q-Learning

Now:
Policy-based RL algorithms (policy gradients)

) Summary Gectran

Policy
Gradients,

Actor-Critic

Transition and
Reward Function

Yes No
Known?

f Use VaIuelPollcy < (Estimate Transition & Estimate Q values from
Iteratlon L Reward Function data (DQNs, etc)

./

Directly Optimize
Policy v

Obtain "optimal"
policy

Overview Ge%%ﬁn&

Class of policies defined by parameters (9

mo(als) : S — A

Eg: @ can be parameters of linear transformation, deep network, etc.

Want to maximize: A

J(m) =E | R(st,ar)

t=1

In other words,

7 = arg max [E
mS—A

T T
stt,at)] m— (" = argmaxE | > R(si, a)

t=1 t=1

) Parametrized Policy Gectran

raw pixels hidden layer

Pong from Pixels Gegrata |

forward pass Supervised Learning

> log probabilities (correct label is provided)

-1.2 | -0.36
: block of differentiable compute :
'mage (e.g. neural net) P gradients
1.0 0
backward pass
forward pass Reinforcement Learning
» |og probabilities
A5 -0.36 | —— sample an action:
. block of differentiable compute :
'mage (e.g. neural net) i i
0 -1.0

A

eventual reward -1.0
backward pass

Image Source: http://karpathy.github.io/2016/05/31/rl/

Policy Gradient: Loss Function Geqedh

Jh

Slightly re-writing the notation

Let T = (50, ag,...ST, CLT) denote a trajectory

779(7-) — pQ(T) — Do (807%07 “ e ST,CLT)

= p(so) Hp9 (at | st) - p(St+1 | ¢, at)
t=0

arg meax B po () [R(7T)]

Gathering Data/Experience Gegrata |

J(@) — ETNPQ (1) [R(T)]
=K

ay~T(-|8¢),5t41~p(+|s¢,a¢)

How to gather data?
We already have a policy: 779

A
§ R Sta CLt
| t=0

N
Sample N trajectorles{Tz} —1 by acting according to 779

1 N T
~ NS: JT(S;CLZE)

1=1 t=1

) Gathering Data/Experience

Georgia
Tech

411

Sample trajectories 7; = {s1, a1, ... ST, ar}; by acting according to 79

Compute policy gradient as

VeJ(0) = ?

Update policy parameters: O «— @ + aVQ J(@)

Run the pglicy a_nd : Computfe policy
sample trajectories gradient

t |

— Update policy

Slide credit: Sergey Levine

) The REINFORCE Algorithm A

= Vg /WQ(T)R(T)CZT Expectation as integral

= /VQWQ(T)R(T)CZT Exchange integral and gradient

Deriving The Policy Gradient Geqctn

AL

me(7) = p(s0) HPH (ai | s¢) - p(se+1 | se,ae)

Vo (0) = Errpo(r)[Vologmo(T)R(7)

Doesn’t depend on

T T
Vo |lompbon) + > logmg(as]s:) + Z*@g*péswri-m)] Transition probabilities!
t=1 t=1

_ T -
= ETNPQ(T) ZV@ logﬂ'g Clt‘St ZR St,CLt
| t=1

l Vi ——
4

f i | i

\ 0 X "
=
i
¢

jax
4

Continuous Action Space?

) Deriving The Policy Gradient Gograla

Sample trajectories 7; = {s1, a1, ... ST, ar}; by acting according to 79

Compute policy gradient as

T
VoJ (0 NZ ZVglogwe aj | s}) ZR sy | ap)
7 t=1

Update policy parameters: O «— @ + aVQ J(@)

Run the pglicy a_nd : Computfe policy
sample trajectories gradient

t |

— Update policy

Slide credit: Sergey Levine

) The REINFORCE Algorithm Sy

upP DOWN UP UP

® @ >. @ h.DOWN @ DOWN P. DOWN r® upP P. WIN
® DOWNF. UP r® UP - ® DOWNh. UP -® UP @ LOSE
@ UP -® UP -® DOWN’. DDWN-.DOWN’. DOWN..' uP -® LOSE
® ro— 0oL o0 @ WIN

r r
Ld L

Slide credit: Dhruv Batra

Drawbacks of Policy Gradients SEE

Tech

Issues with Policy Gradients

e Credit assignment is hard!
— Which specific action led to increase in reward
— Suffers from high variance = leading to unstable training

Georgia |

Tech |}

Variance reduction

Gradient estimator: VgJ(6) =~ ZT(‘T)VQ log g (at|st)
t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

YOS (Z r,y) Vo log mo(as|s:)

t>0 \t/>t

Georgia |
Tech |}

Variance reduction

Gradient estimator: VgJ(6) =~ ZT(T)Ve log g (at|st)
t>0

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

YOS (Z r,y) Vo log mo(as|s:)

t>0 \t'>t
Second idea: Use discount factor y to ignore delayed effects

VoJ(0) = Z (Z W’t’_tTt') Vo logmg(ai|st)

t>0 \t/>t

Georgia |
Tech|)

Credit assignment is hard!
Which specific action led to increase in reward
Suffers from high variance, leading to unstable training

How to reduce the variance?
Subtract an action independent baseline from the reward

Zvelogﬂe a | 5¢) Z (5¢,a¢) b(St))]

t=1 t=1

VGJ(H) — ETNpg (7)

Why does it work? Normalization constant (expected value doesn’t change)
What is the best choice of b?

) Drawbacks of Policy Gradients Gectran

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

Georgia |
Tech |}

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!

Georgia |
Tech |}

Actor-Critic

* Learn both policy and Q function
— Use the “actor” to sample trajectories
— Use the Q function to “evaluate” or “critic” the policy

Georgia |

Tech |}

Actor-Critic

* Learn both policy and Q function
— Use the “actor” to sample trajectories
— Use the Q function to “evaluate” or “critic” the policy

* REINFORCE: VyJ(mg) = Eqn, [V logm(a|s)R (s, a)]

* Actor-critic: Vg J(mg) = Eq~r, |Vologmg(a|s)Q™ (s, a)]

Georgia |
Tech |}

Actor-Critic

Learn both policy and Q function
— Use the “actor” to sample trajectories
— Use the Q function to “evaluate” or “critic” the policy

REINFORCE: Vo J(mg) = Eqorr, [V logmg(a

Actor-critic: Vg J(ﬂ'g) = anm :Vg log g (CL

Q function is unknown too! Update using

>

R(s,a)

s)R(s,a)
s)Q™ (s, a)]

Georgia |
Tech |}

Actor-Critic

* |nitialize s, 6 (policy network) and 8 (Q network)

Georgia |

Tech |}

Actor-Critic

* |nitialize s, 6 (policy network) and 5 (Q network)
e sample action a ~ my(+|s)

Georgia |

Tech |}

Actor-Critic

* |nitialize s,9 (policy network) and 8 (Q network)
e sample action a ~ my(-|s)
* For each step:

— Sample reward R(s,a) and next state s ~ p(s'|s,a)

Georgia |

Tech|)

Actor-Critic

* Initialize s, 6 (policy network) and 5 (Q network)
* sample action a ~ my(:|s)
* For each step:

— Sample reward R(s,a) and next state s ~ p(s'|s, a)
— evaluate “actor” using “critic” Qs(s,a)

Georgia |
Tech|)

Actor-Critic

* |nitialize s, 6 (policy network) and 8 (Q network)
* sample action a ~ my(:|s)
* For each step:

— Sample reward R(s,a) and nextstate s’ ~ p(s'|s,a)

— evaluate “actor” using “critic” @Qs(s,a) and update policy:

0« 0+ aVylogmy(a|s)Qs(s,a)

Georgia |
Tech |}

* |nitialize s, 6 (policy network) and 5 (Q network)
e sample action a ~ my(+|s)
* For each step:

— Sample reward R(s,a) and next state s’ ~ p(s'|s,a)
— evaluate “actor” using “critic” Qs(s,a) and update policy:

0« 0+ aVylogm(a|s)Qs(s,a)

2
— Update “critic”:MSE Loss := (Qnew(s, a) — (r + max Quq(s’, a))>
* Recall Q-learning

) Actor-Critic Gacraia |

* Initialize s, ¢ (policy network) and g (Q network)
* sample action a ~ my(:|s)
* For each step:

—Sample reward R(s,a) and next state s’ ~ p(s'|s,a)
— evaluate “actor” using “critic” Qs(s,a) and update policy:

0« 0+ aVylogme(a | s)Qs(s,a)
— Update “critic”: ,
e Recall Q-learning MSE Loss := (Qnew(s, a) — (T + max Qold(sla a))>
a<+a,s+ s

* Update 8 Accordingly

) Actor-Critic Gacraia |

How to choose the baseline?

A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!

Intuitively, we are happy with an action a, in a state s, if @" (S¢,a:) — V™ (s¢)
is large. On the contrary, we are unhappy with an action if it's small.

Using this, we get the estimator: V,J(6) = Z(Q”(st, ar) — V™ (s:))Voglogma(ai|st)

t>0

Georgia |
Tech |}

Actor-critic

* |In general, replacing the policy evaluation or the “critic”
leads to different flavors of the actor-critic

— REINFORCE: VyJ(mg) = Eqmr, [Vologmg(als)R(s,a)]
— Q- Actor Critic VgJ(7m9) = Egnn, [Vologmg(als)Q™ (s, a)]

— Advantage Actor Critic: VgJ(m9) = Eqrn, [V log ma(als)A™ (s, a)]
— Qﬂe (37 0,) — Ve (S)

Georgia |
Tech |}

Summary

e Policy Learning:
— Policy gradients
— REINFORCE
— Reducing Variance (Homework!)
* Actor-Critic:
— Other ways of performing “policy evaluation”
— Variants of Actor-critic

Georgia |
Tech |}

Summary

- Policy gradients: very general but suffer from high variance so
requires a lot of samples. Challenge: sample-efficiency

- Q-learning: does not always work but when it works, usually
more sample-efficient. Challenge: exploration

- GQuarantees:

- Policy Gradients: Converges to a local minima of J(8), often good enough!

- Q-learning: Zero guarantees since you are approximating Bellman equation with a complicated function
approximator

Georgia |
Tech|)

Sparse long-horizon tasks (Montezuma’s revenge)
Imitation Learning, inverse reinforcement learning
Sim2Real — Simulation to real, domain randomization
Lifelong Learning

Safety

World Models

) Open Problems / Challenges

Georgia |

Tech |}

Playing Go

Rules
» Each player puts a stone on the goban, black first

» Each stone remains on the goban, except:

E

o0
g v, &
'il ”;

group w/o degree freedom is killed a group with two eyes can't be killec

» The goal is to control the max. territory

Georgia |
Tech|)

Go is a Difficult Game

Features

» Size of the state space 2.10'7°

» Size of the action space 200

» No good evaluation function

v

Local and global features (symmetries,
freedom, ...)

» A move might make a difference some
dozen plies later

Georgia |
Tech|)

AlphaGo

Go is a perfect information game
— See entire board at all times
— Has an optimal value function!

Key idea: We cannot unroll search tree to learn a policy/value for a large
number of states, instead:

— Reduce depth of search via position evaluation: Replace subtrees with estimated value
function v(s)

— Reduce breadth of search via action sampling: Don’t perform unlikely actions
* Start by predicting expert actions, gives you a probability distribution

Use Monte Carlo rollouts, with a policy, selecting children with higher values
— As policy improves this search improves too

Georgia |
Tech |}

Monte-Carlo Tree Search

Selection Expansion Simulation Backpropagation

OOFEOE OOFO®
@ ®®
@

01

Rollout
(Random Search)

From Wikipedia

Rollout policy

SL policy network

RL policy network Value network

-

.

\
(" p,

P

v i

AR

evaluation

Human expert positions

selection

\‘ e f A
A\:., 4 evaluati

Self-play Positions

MoM@N [ednan

on

Bleg

