Topics:
 Advanced Architectures
e Bias, Fairness, Calibration

CS 4644-DL / 7643-A
ZSOLT KIRA



Assignment 3 out
* Due March 14th 11:59pm EST.

Projects
* Project proposal due March 13t
* Next class: Come with project teams/ideas and run them by TAs!

Meta Office Hours on Fairness/Bias Friday 3pm EST
e NOT recorded!
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Car  Coffee Cup Bird

Classification
(Class distribution per image)

Object Detection

(List of bounding boxes with class distribution per box)

Semantic Segmentation Instance Segmentation
(Class distribution per pixel) (Class distribution per pixel with unique ID)

Computer Vision Tasks Geg;%igﬂ
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3 Classes

) Input & Output

Probability distribution over
classes for this one pixel
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Convolution + Pooling Convolution + Fully Fully Fully
Non-Linear Layer Non-Linear Convolutional  Convolutional  Convolutional
Layer Layer Hidden Layer  Hidden Layer  Output Layer

Each kernel has the size of entire input! (output is 1 scalar)
This is equivalent to Wx+Db!
We have one kernel per output node

) Converting FC Layers to Conv Layers Ge?,g%igﬂ



Convolutional Neural Network (CNN)

Image

We can develop learnable

i

Useful, lower-

dimensional or non-learnable

7

_\_ .

| |
| |
| |
' l features . I
| | Y/ upsampling layers!
| | ’ |
! - Y
| | _ |
Convilutlon | Pooling ! Convc;lutlon ) Decoder
Non-Linear ' Layer ! Non-Linear ' .
Layer Layer (De)Convolution (De)Convolution
+ (Un)Pooling + “Image”
Non-Linear Layer Non-Linear
EnCOder Layer Layer

gl
7///4

Useful, Iower-/
dimensional I
features I

|

Idea 2: “De”Convolution and UnPooling Geqea
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Example : Max pooling
Stride window across image but perform per-patch max operation

X(0:1,0:1) = Egg ;(5)8] I max(0:1,0:1) = 200

Copy value to position chosen as max
in encoder, fill reset of this window

N | with zeros
n = u
-

Idea: Remember max elements in encoder! Copy value from equivalent position,
rest are zeros

) Max Unpooling Gegraia |
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) Max Unpooling Example (one window) Gegrota |
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) Max Unpooling Example Gegrgia |



Convolutional Neural Network (CNN)

Image
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| l | .
ﬂ : , | Useful, lower- corresponding layers
dimensional . .
! | / foatures (requires symmetry in
| l /74
, , ""’ , encoder/decoder)
| l |
| l |
Convolution Pooling | Convolution Decoder
* I Layer l * |
Non-Linear Non-Linear . De)C lution
Layer I Layer (De)Convolution (De) OH:OU “Image”
Non-Linear * Non-Linear
EnCOder Layer (Un)Pooling Layer
Layer

gl
7///4

Useful, Iower-/
dimensional I
features I

|

Symmetry in Encoder/Decoder Ceeh

@

=




How can we upsample using convolutions and learnable kernel?

Normal Convolution

gl 1=} <V
N | lsl > B
N |
= [
k, =3
wW=5 W—k,+1

Transposed Convolution (also known as “deconvolution”, fractionally strided conv)
|ldea: Take each input pixel, multiply by learnable kernel, “stamp” it on output

“De”Convolution (Transposed Convolution) Ge?fg%ﬂ@




120 150 120 1 -1 Contributions from
X=[100 50 110 K = [2 2] ultiole wind
25 25 10 x ultiple windows
are summed
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Convolutional Neural Network (CNN) )
: | We can either learn the kernels,
ﬂ or take corresponding encoder

Useful, lower-

il
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Input
Image

/

CNN

CNN

—» Predictions

We can start with a
pre-trained
trunk/backbone (e.g.
network pretrained on
ImageNet)!

Transfer Learning

Georgia
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input
image
tile

You can
have skip
connections
to bypass
bottleneck!

output
17| segmentation
1 5 map

mp- CONV 3x3, Rel.U
copy and crop
§ max pool 2x2
4 up-conv 2x2
= cONv 1x1

Ronneberger, et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015
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Summary

Various ways to get image-like outputs, for
example to predict segmentations of input
Images

Fully convolutional layers essentially apply
the striding idea to the output classifiers,
supporting arbitrary input sizes
(without output size depending on what
the input size is)

We can have various upsampling layers that
actually increase the size

Encoder/decoder architectures are popular
ways to leverage these to perform general
image-to-image tasks

Georgia
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Single-Stage
Object

Detection




Given an image, output a list of bounding boxes with probability
distribution over classes per box

Problems:
Variable number of boxes!
Need to determine candidate regions (position and scale) first

(List of bounding boxes with class distribution per box)

Object Detection Tasks Gegraia |
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i ! : i ! Full
Convolution + | Pooling Convolution + ' ully Fully Fully
Non-Linear Layer Non-Linear : Convolutional Convolutional Convolutional
Layer : : Layer ' Hidden Layer Hidden Layer Output Layer

We can use the same idea of fully-convolutional networks

Use ImageNet pre-trained model as backbone (e.g. taking in 224x224
image)

Feed in larger image and get classifications for different windows in image

) Object Detection Tasks Gegrota |
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Loss

Cross-
a C ) & d == =P Entrop)

P

Mean
= &R W — souerd
Error (MSE)
Convolution + Pooling Convolution + FuIIy_ Fully Fully
Non-Linear Layer Non-Linear CanqutlonaI Convolutional Convolutional X,y
Layer Layer Hidden Layer Hidden Layer Output Layer
w,
We can have a multi-headed architecture

One part predicting distribution over class labels (classification)

One part predicting a bounding box for each image region (regression)
Refinement to fit the object better (outputs 4 numbers)

Both heads share features! Jointly optimized (summing gradients)

=

) Object Detection Tasks Gegrota |




Can also do this at multiple scales to result in a large number of detections
Various tricks used to increase the resolution (decrease subsampling ratio)

Redundant boxes are combined through Non-Maximal Suppression (NMS)

Sermanet, et al., “OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks”, 2013

Object Detection Tasks Georgia iﬁ
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|
Single-shot detectors | A
use a similar idea of | =D IEEEIHE
grids as anchors, l i L i1 |
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Liu, et al., “SSD: Single Shot MultiBox Detector”, 2015

Single-Shot Detector (SSD) Gec o




Similar network architecture but single-scale (and hence faster for same size)

\ YOLO Customized Architecture

Fully Connected  Fully Connected S

YOLO
g
4

Detections: 98 per class
| Non-Maximum Suppression |

Final detections

Class probability map

Redmon, et al., “You Only Look Once:Unified, Real-Time Object Detection”, 2016

You Only Look Once (YOLO) Gegrola




| m coco

Instances per category

A\

i captioning dataset

a
COCO has several features:

Fawi

COCO is a large-scale object detection,

segmentation

«" 1.5 million object instances

& 330K images (>200K labeled)
& 80 object categories

What is COCO?
& Superpixel stuff segmentation

& Object segmentation
& Recognition in context

| ™ PASCAL VOC

1,000,000

10,000
1,000
100

100,000

Instances per image

Categories per image

N
wied
Q
7))
©
wied
1]
)

Lin, et al., “Microsoft COCO: Common Objects in Context”, 2015. https://cocodataset.org/#explore



For each bounding box,
calculate intersection over union

(|0U) 0.8
(e L
Keep only those with loU > Ground .% g
threshold (e.g. 0.5) Truth S
O
Calculate precision/recall curve o o

across classification probability
threshold

0.2 {

Calculate average precision
(AP) over recall of [0, 0.1, 0.2, o

..., 1.0]

1
Average over all categories to mAP = 11 AP;
get mean Average Precision i€[0,0.1,..1.0]
(mAP)

) » Evaluation — Mean Average Precision (mAP) Gegrola




Results

EfficientDet-D7 =@=PP-YOLO (ours)

De et Y OLOVA

D5

== fficientDet

AmoebaNet + NAS-FPN + AA Hicient rr— = YOLOVI+ASFE* |

-
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' Mask R-CNN

N
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COCO AP

™
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|AP  FLOPs (ratio)
EfficientDet-D0 338 2.3B
YOLOV3 [ ] 33.0 T1B (28%)

,r YOLOv3 EfficientDet-D1 39.6 6.1B
RetinaNet [ 2] 39.2 97B (16x)
EfficientDet-D7x7 5.1 410B g

AmoebaNet+ NAS-FPN +AA [45]1|50.7 3045B (13x)
TNot plotted.
600 800 1000 1200 3 5 70 80 90
FLOPs (Billions) FPS(V100)

MS-COCO(test-dev) mAP(%)

EfficientDet PP-YOLO

Tan, et al., “EfficientDet: Scalable and Efficient Object Detection”, 2020

Long et al., “PP-YOLO: An Effective and Efficient Implementation of Object Detector”, 2020 Ge?r'é%iﬁ[ﬂ]
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Two-Stage
Object

Detectors




For each crop,
Resize

=)

Instead of making dense predictions across an image, we can decompose the
problem:

Find regions of interest (ROIs) with object-like things
Classifier those regions (and refine their bounding boxes)

Girshick, et al., “Rich feature hierarchies for accurate object detection and semantic segmentation”, 2014

Georgia P&
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We can use unsupervised
(non-learned!) algorithms for
finding candidates

Downsides:

Takes 1+ second per image

Return thousands of (mostly
background) boxes

Resize each candidate to full
input size and classify

Uijlings, et al., “Selective Search for Object Recognition”, 2012

=

) Extracting Region Proposal Gegraia |




What is the problem with this?
Computation for

convolutions re-done
for each image patch,
even if overlapping!

Girshick, et al., “Rich feature hierarchies for accurate object detection and semantic segmentation”, 2014

Inefficiency of R-CNN Gegrgia |
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Map each ROl in image to corresponding region in feature maps

Extract Feature

Map Region
= (F =

Idea: Reuse computation by finding regions in feature maps
Feature extraction only done once per image now!
Problem: Variable input size to FC layers (different feature map sizes)

Girshick, “Fast R-CNN”, 2015

2 Fast R-CNN Seal
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. For each grid element, max pool however many
| values there are to one scalar

—{120 150 120] |:>
100 50 110

25 25 10

65 —75—10.

Given an arbitrarily-sized feature map, we can use pooling across a grid
(ROI Pooling Layer) to convert to fixed-sized representation

) ROI Pooling Ge‘-’r'é‘gﬁ@




Map each ROl in image to corresponding are in feature maps

Extract Feature
Map Region

|=> S I=> P(I;{ocl)i:\g

We can now train this model end-to-end (i.e. backpropagate through
entire model including ROI Pooling)!

=

) » Fast R-CNN Gegrgia |



~  classifier

Idea: Why not have the neural 74

network also generate the proposals?

¥ Rol pooling

Region Proposal Network (RPN) s;

uses same features! pmpoy I~ /
"/ L7
H £ /
Outputs objectness score and -8
bounding bOX Region Proposal Networky

feature maps

Top k selected for classification

T
Note some parts (gradient w.r.t.
bounding box coordinates) not p— §
differentiable so some complexity in 4 /
implementation P

Ren, et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, 2016

) Faster R-CNN CegZhl
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RPN also uses notion
of anchors in a grid

Boxes of various sizes
and scales classified
with objectness score
and refined bounding
boxes refined

2k scores

4k coordinates

cls layer \

’ reg layer
256-d

t mtermediate layer

AN

sliding window

conv feature map

~eem

k anchor boxes

LL LT ]

Ren, et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, 2016

) Faster R-CNN
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Many new
advancements have
been made

For example,
combining detection
and segmentation

60 —

EfficientDet-D7x {single—scau?;

AC-FPN Cascade R-CNN (X—l52-32x8d-FPN-IN_E_E,_Lngtti.S_calefi?ﬁIVCEM)
Ao

50
D-RFCN + SNIP (DPN-98 with flip, mu!tE—sc{a’lM

Extract foreground

Mask R-CNN (ResNeXt-101-FPR)
-—————

(O bJ e Ct) m a S k p e r < : Faster R-CNN (box refinement, context, mulfzscaletesting)
bounding bOX s 30 S§D51?

Jan'16 Jul'16 lan'17 Jul'17 Jan'18 Jul'18 Jan'19 Jul'19 Jan'20 Jul'20

He, et al., “Mask R-CNN”, 2018 https.//paperswithcode.com/sota/object-detection-on-coco

Mask R-CNN Ssctoia |
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A range of problems characterized by density and type of output
Semantic/instance segmentation: Dense, spatial output
Leverage encoder/decoder architectures
Object detection: Variable-length list of objects
Two-stage versus one-stage architectures

(Not covered): Anchor-based versus anchor-free methods

=

) Summary Ge‘-};%ﬂ@




Bias &
Fairness
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ML and Fairness

Al effects our lives in many ways
Widespread algorithms with many small interactions
— e.g. search, recommendations, social media

Specialized algorithms with fewer but higher-stakes
interactions

— e.g. medicine, criminal justice, finance

At this level of impact, algorithms can have unintended
conseguences

Low classification error is not enough, need fairness

>




BUSINESS NEWS OCTOBER 10, 2018 f 3:12 AM / 6 MONTHS AGO

Amazon scraps secret Al recruiting tool that
showed bias against women

Jeffrey Dastin 8 MIN READ

SAN FRANCISCO (Reuters) - Amazon.com Inc’s (AMZNO) machine-learning

specialists uncovered a big problem: their new recruiting engine did not like women.

The team had been building computer programs since 2014 to review job applicants’
resumes with the aim of mechanizing the search for top talent, five people familiar with

the effort told Reuters.

Automation has been key to Amazon’s e-commerce dominance, be it inside warehouses

or driving pricing decisions. The company’s experimental hiring tool used artificial

intelligence to give job candidates scores ranging from one to five stars - much like




17H

Gender and racial bias found in Amazon’s facial
recognition technology (again)

Research shows that Amazon’s tech has a harder time identifying gender in darker-skinned and female faces

By James Vincent | Jan 25, 2019, 9:45am EST

£ W [/ sHARE

\ MOST READ

My Samsung Galaxy Fold screen broke after
just a day

We finally know why the Instagram founders
really quit

v

Command Line

Command Line delivers daily updates
from the near-future.



ML and Fairness

* Fairness is morally and legally motivated

e Takes many forms

e Criminal justice: recidivism algorithms (COMPAS)
— Predicting if a defendant should receive bail
— Unbalanced false positive rates: more likely to wrongly deny a black

person bail Table 1: ProPublica Analysis of COMPAS Algorithm

White Black

Wrongly Labeled High-Risk 23.5%  44.9%
Wrongly Labeled Low-Risk  47.7% 28.0%

https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing

>



Why Fairness is Hard

Suppose we are a bank trying to fairly decide who should get a loan
— i.e. Who is most likely to pay us back?

Suppose we have two groups, A and B (the sensitive attribute)
— This is where discrimination could occur

The simplest apnroach ic ta remave the cencitive attribiite from the data <n that our classier doesn't

know the sens; Table 2: To Loan or Not to Loan?
Age Gender Postal Code Req Amt A or B? Pay
46 F M5E $300 A 1
24 M M4C $1000 B 1
33 M M3H $250 A 1
34 F MoC $2000 A 0
Vi | F M3B $200 A 0
28 M M5W $1500 B 0




Why Fairness is Hard

* However, if the sensitive attribute is correlated with the other attributes, this isn't good enough
* Itis easy to predict race if you have lots of other information (e.g. home address, spending patterns)
* More advanced approaches are necessary

Table 3: To Loan or Not to Loan? (masked)

Age Gender Postal Code Req Amt A or B? Pay

46 F M5E $300 ? 1
24 M M4C $1000 ? 1
33 M M3H $250 ? 1
34 F M9C $2000 ? 0
£l i3 M3B $200 ? 0
28 M M5W $1500 ? 0




Definitions of Fairness — Group Fairness

So we've built our classier . .. how do we know if we're being fair?

One metric is demographic parity | requiring that the same percentage of A and B receive loans
— What if 80% of A is likely to repay, but only 60% of B is?
— Then demographic parity is too strong

Could require equal false positive/negative rates
— When we make an error, the direction of that error is equally likely for both groups

P(loan|no repay.A) = P(loan|no repay, B)
P(no loan|would repay,A) = P(no loan|would repay, B)

These are definitions of group fairness
Treat different groups equally”




Definitions of Fairness — Individual Fairness

* Also can talk about individual fairness | “Treat similar examples similarly"

* Learn fair representations
— Useful for classification, not for (unfair) discrimination
— Related to domain adaptation
— Generative modelling/adversarial approaches

(a) Unfair representations (b) Fair(er) representations

Figure 1: “The Variational Fair Autoencoder” (Louizos et al., 2016)




Conclusion

This is an exciting field, quickly developing

Central definitions still up in the air

Al moves fast | lots of (currently unchecked) power
Law/policy will one day catch up with technology

Those who work with Al should be ready
— Think about implications of what you develop!
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Calibration

Definition

Measuring Calibration
Calibrating models

Limitations of Calibration

Georgia
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A classifier is well-calibrated if the probability of the observations
with a given probability score of having a label is equal to the
proportion of observations having that label

Example: if a binary classifier gives a score of 0.8 to 100
observations, then 80 of them should be in the positive class

Vp € [0,1],P(Y = Y|P =p) =p

where Y is the predicted label and P is the predicted probability
(or score) for class Y

=

) Calibration: Definition FACEBOOK Al Geg.ggg@




Calibration: Definition

RELIABILITY DIAGRAM
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Calibration: Definition S CALIBRATED GROUPS

Group Calibration: the scores for
subgroups of interest are calibrated
(or at least, equally mis-calibrated)

ACCURACY

—— GROUP A
—— GROUP B

MISCALIBRATED GROUPS

o
o

ACCURACY
o 0
- o=
ACCORACY

o
3

— GROUP A
— GROUF B

1o

ec
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Some models (e.g Logistic Regression) tend to have
well-calibrated predictions

Some DL models (e.g. ResNet) tend to be
overconfident (https.//arxiv.org/pdf/1706.04599.pdf)

Logistic calibration/Platt scaling

=

) Calibrating a DL Model FACEBOOK Al Gegrgia)




Post-processing approach requiring an additional validation
dataset

Platt scaling (binary classifier)

Learn parameters a, b so that the calibrated probability is
qd; = o(az; + b) )where z; is the network’s logit output)

Temperature scaling extends this to multi-class classification

Learn a temperature T, and produce calibrated probabilities

q; = ml?x GSoftMax(Zi/T)

=

) Platt/Temperature Scaling L IO Ge%ggg@



Calibration: Limitations

Group based

The Inherent Tradeoffs of
Calibration

Georgia
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