Topics:
e Visualization

e Advanced Architectures

CS 4644-DL / 7643-A
ZSOLT KIRA

Given a trained model, we'd like to understand
what it learned. —>

Weights
lane car Gradients
i = Activations) Robustness

Fei-Fei Li, Justin Johnson,
Serena Yeung, from CS
231n

g
Hendrycks & Dietterich,
2019

Zeiler & Fergus, 2014 Simonyan et al, 2013

) Visualizing Neural Networks

Given a trained model, we can Forward Pass
perform:
Freeze the model weights
Forward pass given an input
to get scores, softmax
probabilities, loss and then
Backwards pass to get

gradients

Backward Pass

Note: We are keeping parameters/weights frozen

Do not use gradients w.r.t. weights to perform updates

Instead use gradients to analyze what the network learned

) Visualizing Neural Networks

Normal backprop not always best
choice

Example: You may get parts of
image that decrease the feature
activation

There are probably lots of
such input pixels

Guided backprop can be used to
improve visualizations

Guided Backprop

b) 1 115 1§J01]5
Forward pass aiElE — [k
31214 o214

21011 21 3 1

Backward pass:
backpropagation

0 1) 3 2 113

01310 21 3 1
Backward pass:
; e 6lol1| < |6]3]2

deconvnet

21013 2 1] 3
Backward pass: O I © d K
guided 6JojJoO] «<— |6]3]1
backpropagation olols 21113

From:

VGG Layer-by-Layer Visualization

Note: These images were created
by a slightly different method called
deconvolution, which ends up
being similar to guided backprop

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization, 2016.

E «— Gradients E
L, 1 E —> Activations E
RS \ ;
. S ‘(Guided Backpropagation r
e A 'A € & Bower Image Classification
i ; // —M—_}
| A1 .": ’/’ y
' B Rectified Conv 4
Feature Maps .
% ; v/ (or)
‘P}m . == -7'-,"'A"_
. Any . Q 5 o
TagK:specific A cat lying on Image Captioning
,/Net‘w\ork = the ground
Guided Y A (or)
Grad- / . J\,//ﬁ/,-—bﬂ [
CAM i ~ Q M Fotaer B ’-Questic:ﬁs::lswering
. \ = RNN/LSTI es
i Backprop till " e N
it conv = v
1 (or)

7

Grad-CAM

Grad-CAM

We can perform gradient
ascent on image

argmax S.(I) — 2 ||1|

2,
2

Start from random/zero image Forward Pass
Use scores to avoid
minimizing other class scores —
instead
Often need regularization term

to induce statistics of natural
imagery

E.g. small pixel values, spatial

smoothness I=1+a

G

as.,
ol

Backward Pass

S

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2013

) Gradient Ascent on the Scores

Improved Results

Note: Can generate input images to
maximize any arbitrary activation!

2 & v
Pirate Ship Rocking Chair Teddy Bear Windsor Tie

PP LE TP P p &g A S
| o fidal : A Sk
T A R L R HH Tk H R B R R IR
ri

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2015

We can perform gradient
ascent on image

Rather than start from zero
image, why not real image?

And why not optimize the
score of an arbitrary
(incorrect!) class

Surprising result: You need
very small amount of pixel
changes to make the network
confidently wrong!

G

2,
2

argmax S (I) — 2 ||1|
where ¢ = cat

Forward Pass

Backward Pass

S

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps™, 2013

) Gradient Ascent on the Scores

WL (R B e YL

© sign(VaJ (6, @, y

) e §
esign(VgJ (0,2, y))
“panda” “nematode” “oibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Note this problem is not specific to deep learning!
Other methods also suffer from it
Can show how linearity (even at the end) can bring this about
Can add many small values that add up in right direction

From: Goodfellow et al., “Explaining and Harnessing Adversarial Examples”, 201%

Example of Adversarial Noise

A
DEER
AIRPLANE(85.3%

BIRD
FROG(86.5%)

Single-Pixel
Attacks!

Su et al., “One Pixel
Attack for Fooling Deep
Neural Networks”, 2019.

Variations of Attacks

Misclassification
Targeted
Misclassification
Source / Target
Misclassification

Misclassification
Targeted
Misclassification
Source / Target
Misclassification
Confidence
Reduction

Confidence
Reduction

. Increasing

. Increasing " Complexity

~ Complexity

White-Box Attack Logic Corruption

Non-Adaptive
Black-Box Attack
Data Modification
Adaptive Black-

Box Attack

Strict Black-Box

Attack Increasing Increasing

Attack Difficulty Attack Difficulty
A 4 4

Decreasing Decreasing
Capability Capability

Data Injection

White vs. Black-Box Attacks of Increasing Complexity
Chakraborty et al., Adversarial Attacks and Defences: A Survey, 2018

Summary of dversarial
Attacks/Defenses

Similar to other security-related
areas, it's an active cat-and-mouse
game

Several defenses such as:

Training with adversarial
examples

Perturbations, noise, or re-
encoding of inputs

There are not universal methods
that are robust to all types of attacks

Other Forms of Robustness Testing

Gaussian Noise Shot Noise Impulse Noise Defocus Blur Frosted Glass Blur

Architecture Corruption Robustness

® mCE
@® Relative mCE

@

e ————

Xk V6611 T T » R

AlexNet) ‘P .\‘RESNEt“5Q
SqueezeNet 1.1

iResNet-18 .
VGG-19+BN

60 65 70 75
Architecture Accuracy (%)

Brightness

We can try to understand the biases of CNNs
& Can compare to those of humans

Example: Shape vs. Texture Bias

Geirhos, “ImageNet-trained CNNs are biased towards texture;

increasing shape bias improves accuracy and robustness”, 2018.

(a) Texture image (b) Content image

81.4% Indian elephant 71.1% tabby cat
10.3% indri 17.3% grey fox
8.2% black swan 3.3% Siamese cat

(c) Texture-shape cue conflict

63.9% Indian elephant
26.4% indri
9.6% black swan

Analyzing Bias

Shape vs. Texture Bias

Fraction of 'shape' decisions

1 09 08 07 06 05 04 03 02 01 O

| | | |
on A
¢0

® Humans
@ AlexNet
A GG

® GoogleNet
B ResNet-50

0]
]
=
o
o
Q
2
©
]
]
Q
©
=
0

=
=
=
]
=
(]

=
1 O O

G
al
&)

0o 01 02 03 04 05 06 07 08 09 1

Geirhos, “ImageNet-trained CNNs are biased towards texture;
increasing shape bias improves accuracy and robustness”, 2018.

Summary

Various ways to test the
robustness and biases of
neural networks

Adversarial examples have
implications for understanding
and trusting them

Exploring the gain of different
architectures in terms of
robustness and biases can also
be used to understand what has
been learned

Style

Transfer

We can generate images through
backprop

o Forward Pass
Regularization can be used to

ensure we match image

statistics Forward Pass

Idea: What if we want to preserve
the content of the image?

Match features at different
layers!

We can have a loss for this Backward Pass

) Generating Images with Content

We can generate images through e

backprop - _
Regularization can be used to AN
ensure we match image |

statistics

content - (FC FP)Z

sl

) Matching Features to Replicate Content

Idea: What if we want to preserve
the content of a particular image C?

Match features at different
layers!

We can have a loss for this

How do we deal with multiple
losses?

Remember, backwards edges
going to same node summed

We can have this content loss at
many different layers and sum them
tool!

Multiple Content Losses

=l

Leontent = Z(Fﬁ-—Ff;)z
?

;

Idea: Can we have the content of one image
and texture (style) of another image?

Yes!
| —
| —
content %

e

t
 m—
=

Replicating Content and Style

How do we represent similarity in terms of
textures?

Long history in image processing!

Key ideas revolve around summary
statistics

Should ideally remove most spatial
information

Deep learning variant: Feature correlations!

Called a Gram Matrix

) Gradient Ascent on the Scores

64
G5(0.) =) FLIOFSG, k)
k

where i,j are particular channels in
the output map of layer £ and k is
the position (convert the map to a
vector)

T =

Compute Feature
Correlations

2
Lstyle = Z(Gﬁ' - Gﬁ)
'

Gl
i —
...] Ltotal - aLcontent + BLstyle

Gradient Ascent on the Scores

Gradient Ascent on the Scores

Gradient Ascent on the Scores

Summary

Generating images through
optimization is a powerful
concept!

Besides fun and art, methods
such as stylization also useful
for understanding what the
network has learned

Also useful for other things such
as data augmentation

Image
Segmentation

Networks

— Car Coffee Cup Bird

20

Classification
(Class distribution per image)

Object Detection

(List of bounding boxes with class distribution per box)

Semantic Segmentation Instance Segmentation
(Class distribution per pixel) (Class distribution per pixel with unique ID)

) Computer Vision Tasks Ge%egg[{j

Given an image, output another image
Each output contains class distribution per pixel

More generally an image-to-image problem

Semantic Segmentation Instance Segmentation
(Class distribution per pixel) (Class distribution per pixel with unique ID)

) Segmentation Tasks Ge%egﬁih

Probability distribution over
classes for this one pixel

3 Classes

iL _V

) Input & Output Gegrota)

7

I I !
I I !
| | |
I I !
I I !
: a : : Loss
I I !
| | |
I I !
I I !
| | |
I I !

Convolution + Pooling Convolution + Fully
Non-Linear Layer Non-Linear Connected
Layer Layer Layers

Fully connected layers no longer explicitly retain spatial information (though the
network can still learn to do so)

Idea: Convert fully connected layer to convolution!

) Idea 1: Fully-Convolutional Network Gegraia |

P
P — —

= == &= —loss

D

Convolution + Pooling Convolution + Fully Fully Fully
Non-Linear Layer Non-Linear Convolutional Convolutional Convolutional
Layer Layer Hidden Layer Hidden Layer Output Layer

Each kernel has the size of entire input! (output is 1 scalar)
This is equivalent to Wx+Db!
We have one kernel per output node

) Converting FC Layers to Conv Layers Gegraia |

Fully

Convolutional
Layer Kernel

=3

Original:

keq

F NEE

Il
w

Conv Kernel Output

Same Kernel, Larger Input Gegrota)

Why does this matter?
We can stride the “fully connected” classifier across larger inputs!
Convolutions work on arbitrary input sizes (because of striding)

“tabby cat”
Original sized image . ﬁjﬁbfﬁmﬁ%&?ﬁe_@p_@

conv olutlonahzatlon

tabby cat heatmap

Larger
Output
Size!

Larger Image

Larger Output Maps

Long, et al., “Fully Convolutional Networks for Semantic Segmentation”, 2015

) Inputting Larger Images Gegraia |

Convolutional Neural Network (CNN)

Image

o

/4 |

0

|

|

Convolution . Convolution
+ Pooling +

Non-Linear Layer Non-Linear l
Layer Layer

Encoder

Useful, lower-

dimensional /
features I
|

-~

We can develop learnable
Useful, lower-
dimensional or non-learnable
features upsampling layers!

Decoder
(De)Convolution (De)Convolution
+ (Un)Pooling + “Image”
Non-Linear Layer Non-Linear
Layer Layer

&

|
|
|
|
/1| —
7/ |
[
|
|
|

Idea 2: “De”’Convolution and UnPooling Gegroia

iu

Example : Max pooling
Stride window across image but perform per-patch max operation

X(0:1,0:1) = [188 ;(5)8] =) max(0:1,0:1) = 200

Copy value to position chosen as max
in encoder, fill reset of this window

N with zeros
=
wﬁiﬁg
EEEEE =
W=5 BER
Pooling UnPooling

Idea: Remember max elements in encoder! Copy value from equivalent position,
rest are zeros

) Max Unpooling Gegrgla |

=> ¥=[100110

120 150 120
X=1(100 50 110
25 25 10 2x2 max pool
Encoder
Decoder
2x2 max unpool

0 300 -—
300450

= Y = -

X=[loozs0] ~ EP Y=|0 ©]

) Max Unpooling Example (one window) Gegraia |

X F(z)g lgg ﬁg]l:> Y = l150 150 Contributions from
ene enc = {100 110 - :
25 25 102 multiple windows

are summed

max pool

Encoder

Decoder

2x2 max unpool

_ [300450 ~

0 0 0

[0 300 + 450 0‘

) Max Unpooling Example Gegrota)

Convolutional Neural Network (CNN)

o

l We pull max indices from
| .
| Useful, lower- corresponding layers

dimensional

| |
| | |
| [|
! ! ' features (requires symmetry in
| | | V. /4 |
| | . M) encoder/decoder)
| | | |
| . | | . |
mage : Convcilutlon : Pooling : Convcilutlon : Decode r
Non-Linear Layer Non-Linear)
Layer | Layer (De)Convolution (De)Convolution
! + “Image”
Non-Linear * Non-Linear
E n COde r Layer | (Un)Pooling Layer
Layer

|

|

|

Useful, Iower-/ |
dimensional | [
features | / I
| |

&

Symmetry in Encoder/Decoder Gegraia

How can we upsample using convolutions and learnable kernel?

Normal Convolution

NEEED

o T -
EENT |
= PEET <.
EEEEE ky = 3

W=5

Transposed Convolution (also known as “deconvolution”, fractionally strided conv)
|dea: Take each input pixel, multiply by learnable kernel, “stamp” it on output

“De”Convolution (Transposed Convolution) Gegrgia |

120 150 120 1 -1 Contributions from
X=[100 50 110 K=, _, multiple wind
2e e 10 ultiple windows

are summed

120 —-120 0 O] 120 —-120+ 150 — 150 0]
240 —240 0O O 240 —240+ 300 —300 O
0 0 0O 0 0 0 0O O
0 0 0 0. 0 0 0 0.
Incorporate Incorporate
X(0,0) X(1,0)

) Transposed Convolution Example Gegraia |

Convolutional Neural Network (CNN) .
| | We can either learn the kernels,

or take corresponding encoder
Useful, lower-

| |

| | |

: : : dimensional kernel and rotate 180 degrees

! ! B e (no decoder learning)

| | | |

| | - il

| | | |

| Convolution Pooling | Convolution Decoder

Image + +
l Non-Linear : Layer ! Non-Linear : v .
Layer Layer (De)Convolution (De)Convolution
| + + “Image”
I Non-Linear Non-Linear
| Layer (Un)Pooling Layer
Encoder , Layer

[
|

Useful, Iower-/
dimensional

features

&

Symmetry in Encoder/Decoder Gegraia

We can start with a
mage | CNN | [fl— Precicions e (e
network pretrained on
ImageNet)!

-

CNN

) Transfer Learning Gegmaia)

input
image
tile

output
| .| segmentation
2 & map

You can
have skip
connections
to bypass
bottleneck!

= CONv 3x3, RelLU
copy and crop

I-l-I -»-- § max pool 2x2
0 4 up-conv 2x2
=» cONv 1x1

F""’*]-rfi‘_—‘“ﬁ-lrﬁ_'—l

o

Ronneberger, et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015 Ge({_;gclﬁ [&

Summary

Various ways to get image-like outputs, for
example to predict segmentations of input
images

Fully convolutional layers essentially apply
the striding idea to the output classifiers,
supporting arbitrary input sizes
(without output size depending on what
the input size is)

We can have various upsampling layers that
actually increase the size

Encoder/decoder architectures are popular
ways to leverage these to perform general
image-to-image tasks

Georgia
Tech

[&

