
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:
• Convolutional Neural Networks
• Visualization



Administrivia

• Assignment 2
• Due soon!
• Resources (in addition to lectures):

• DL book: Convolutional Networks
• CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf

• Backprop notes 
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_backprop_notes.pdf

• HW2 Tutorial @113, Conv @116, Focal Loss @117
• Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) 

(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0) 



Adding a Fully Connected Layer

Image Pooling
Layer

Fully 
Connected 

Layers

Convolution +
Non-Linear

Layer

Convolution +
Non-Linear

Layer

Loss



Typical Depiction of CNNs 

Input
Image

PredictionsCNN

Convolutional Neural
Networks

Input
Image

Predictions



LeNet Architecture

These architectures have existed since 1980s
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From: https://paperswithcode.com

The Importance of Benchmarks



AlexNet - Architecture

From: Krizhevsky et al., ImageNet Classification with Deep ConvolutionalNeural Networks, 2012.



AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Key aspects:

ReLU instead of sigmoid or tanh

Specialized normalization layers

PCA-based data augmentation

Dropout

Ensembling



VGGNet

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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VGG

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



Parameters and Memory

Most memory usage in 
convolution layers

Most parameters in FC 
layers

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



VGG – Key Characteristics

Key aspects:

Repeated application of: 

3x3 conv (stride of 1, padding 
of 1)

2x2 max pooling (stride 2)

Very large number of parameters 
(138M)

From: Simonyan & Zimmerman, Very Deep Convolutional Networks for Large-Scale Image Recognition
From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



Inception Architecture

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolutions



Inception Module

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolutions

Filter
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Inception Module

Key idea: Repeated blocks and multi-scale features

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



Inception Module

Apply 1x1 convolutions as bottleneck layer (decrease 
number of channels!)

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



Inception Module

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n 



Inception Architecture

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolutions



The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition 

Optimizing very deep networks is challenging!



Residual Blocks and Skip Connections

From: He et al., Deep Residual Learning for Image Recognition 

Key idea: Allow information from a layer to propagate 
to any future layer (forward)

Same is true for gradients! 

weight layer

weight layer

+
relu

relu

identity



Evolving Architectures and AutoML

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html 

Several ways to learn 
architectures:

Evolutionary learning 
and reinforcement 
learning

Prune over-
parameterized 
networks

Learning of 
repeated blocks
typical



Computational Complexity

From: An Analysis Of Deep Neural Network Models For Practical Applications



Transfer 
Learning & 

Generalization



Generalization

Reality
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From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Reality
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Generalization

model class
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Transfer Learning – Training on Large Dataset

What if we don’t have 
enough data?

Step 1: Train on large-scale 
dataset

Convolutional Neural
Networks

Input
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Predictions



Initializing with Pre-Trained Network

Step 2: Take your custom data and initialize the network with weights 
trained in Step 1

Replace last layer with new fully-connected for 
output nodes per new category



Finetuning on New Dataset

Step 3: (Continue to) train on new dataset

Finetune: Update all parameters

Freeze feature layer: Update only last layer weights (used when not 
enough data)

Replace last layer with new fully-connected for 
output nodes per new category



Surprising Effectiveness of Transfer Learning

From: Razavian et al., CNN Features off-the-shelf: an Astounding 
Baseline for Recognition

This works 
extremely well! It 
was surprising upon 
discovery.

Features learned 
for 1000 object 
categories will 
work well for 
1001st!

Generalizes even 
across tasks 
(classification to 
object detection)



But it doesn’t always work that 
well!

If the source dataset you train on 
is very different from the target
dataset, transfer learning is not as 
effective

If you have enough data for the 
target domain, it just results in 
faster convergence

See He et al., “Rethinking 
ImageNet Pre-training”

Learning with Less Labels



Effectiveness of More Data

From: Hestness et al., Deep Learning Scaling Is 
Predictable

From: Revisiting the Unreasonable 
Effectiveness of Data 
https://ai.googleblog.com/2017/07/revisiting-
unreasonable-effectiveness.html



Dealing with Low-Labeled Situations

Setting Source Target Shift Type

Semi-supervised Single labeled Single unlabeled None

Domain Adaptation Single labeled Single unlabeled Non-semantic

Domain Generalization Multiple labeled Unknown Non-semantic

Cross-Task Transfer Single labeled Single unlabeled Semantic

Few-Shot Learning Single labeled Single few-labeled Semantic

Un/Self-Supervised Single unlabeled Many labeled Both/Task

There is a large number of different low-labeled settings in DL research

Non-Semantic Shift Semantic Shift



Data 
Augmentation



Data augmentation – Performing a range of transformations to 
the data

⬣ This essentially “increases” your dataset

⬣ Transformations should not change meaning of the data (or 
label has to be changed as well)

Simple example: Image Flipping

Data Augmentation: Motivation



Random crop

⬣ Take different crops during training

⬣ Can be used during inference too!

Random Crop

CutMix



Color Jitter

Color Jitter

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html



We can apply generic affine 
transformations:

⬣ Translation

⬣ Rotation

⬣ Scale

⬣ Shear

Geometric Transformations



We can combine these transformations to add even more variety!

Combining Transformations

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html



Other Variations

CowMix
From French et al., “Milking CowMask for Semi-Supervised Image Classification”
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Visualization 
of Neural 
Networks



Visualizing Neural Networks

Given a trained model, we’d like to understand 
what it learned. 

Fei-Fei Li, Justin Johnson, 
Serena Yeung, from CS 

231n

Zeiler & Fergus, 2014

Weights

Activations

Simonyan et al, 2013

Gradients

Hendrycks & Dietterich, 
2019

Robustness



Visualizing Weights

FC Layer: Reshape weights for a node back into size of image, scale 0-255

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Conv layers: 
For each kernel, 
scale values 
from 0-255 and 
visualize

Problem: 
3x3 filters 
difficult to 
interpret!



Visualizing Output Maps

We can also produce 
visualization output 
(aka activation/filter) 
maps

These are larger early 
in the network.



Visualizing Output Maps

Highly 
Activating 

Image 
Patches

From: Yosinski et 
al., “Understanding 

Neural Networks 
Through Deep 
Visualization”, 

2015



Activations of last conv layer in VGG network

Problem: Small conv 
outputs also hard to 
interpret

Activations – Small Output Sizes



https://poloclub.github.io/cnn-explainer/ https://fredhohman.com/papers/cnn101 

CNN101 and CNN Explainer



Dimensionality Reduction: t-SNE

Van der Maaten & Hinton, “Visualizing Data using t-SNE”, 2008.

We can take the activations of 
any layer (FC, conv, etc.) and 
perform dimensionality 
reduction

Often reduce to two 
dimensions for plotting

E.g. using Principle 
Component Analysis (PCA) 

t-SNE is most common

Performs non-linear mapping 
to preserve pair-wise 
distances 



Visualizing Neural Networks

Fei-Fei Li, Justin Johnson, 
Serena Yeung, from CS 

231n

Zeiler & Fergus, 2014
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While these methods provide some visually 
interpretable representations, they can be 
misleading or uninformative (Adebayo et al., 
2018)

Assessing interpretability is difficult

Requires user studies to show usefulness 

E.g. they allow a user to predict mistakes 
beforehand

Neural networks learn distributed 
representation 

(no one node represents a particular feature)

This makes interpretation difficult

Adebayo et al., “Sanity Checks for Saliency Maps”, 2018.

Summary & Caveats


