Topics:

- Convolutional Neural Networks
- Visualization

CS 4644-DL / 7643-A ZSOLT KIRA

• Assignment 2

- Due soon!
- Resources (in addition to lectures):
	- DL book: Convolutional Networks
	- CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
	- Backprop notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
	- HW2 Tutorial @113, Conv @116, Focal Loss @117
	- Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) (https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0)

These architectures have existed since 1980s

The Importance of Benchmarks

 \Rightarrow

 \Rightarrow

 \Rightarrow

27x3 images

28 11 x 11

3

296 = 35K

28 Fro \Rightarrow

Full (simplified) AlexNet architecture: [224k224k3] INPUT 11x11 filters at stride 4, pad 2

mail: 3x3 filters at stride 1, pad 2
 $\frac{2.3 \times 3$ filters at stride 1, pad 2

Sinces at stride 1, pad 2

Sinces at stride 1, pad 1

4.3x3 filters at stride 1, pad 1

4.3x3 filters at stri

Key aspects:

-
- Specialized normalization layers
- PCA-based data augmentation
- Dropout
- **Ensembling**

Small filters, Deeper networks

8 layers (AlexNet) -> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

-> 7.3% top 5 error in ILSVRC'14

Q: Why use smaller filters? (3x3 conv)

has same effective receptive field as one 7x7 conv layer

three 3x3 conv (stride 1) layers?

of three 3x3 conv (stride 1) layers?

one 7x7 conv layer

But deeper, more non-linearities

7²C² for C channels per layer

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(not counting biases) INPUT: [224x224x3] memory: 224*224*3=150K params: 0 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728 CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864 POOL2: [112x112x64] memory: 112*112*64=800K params: 0 memory. 11271212254. Fally params: (3°3142)128-1*47,46*

memory. 11271121224-1.6M params: (3°31128)128-147,466

memory. Sefect226-400K params: (3°3128)128-147,466

memory. Sefect28-600K params: (3°3128)1286-589,824

memory

Most memory usage in convolution layers

Most parameters in FC layers

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Key aspects:

Repeated application of:

- **aspects:**

Ated application of:
 $3x3$ conv (stride of 1, padding
 $\frac{1}{\frac{1}{\text{exp}(\frac{1}{x})}}$
 $\frac{1}{\text{exp}(\frac{1}{x})}$
 $\frac{1}{\text{exp}(\frac{1}{x})}$
 $\frac{1}{\text{exp}(\frac{1}{x})}$
 $\frac{1}{\text{exp}(\frac{1}{x})}$
 $\frac{1}{\text{exp}(\frac{1}{x})}$
 $\frac{1}{\text{exp}(\frac{1}{$ of 1)
- 2x2 max pooling (stride 2)

Very large number of parameters (138M)

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

But have become deeper and more complex

Inception Architecture

Key idea: Repeated blocks and multi-scale features

Key idea: Repeated blocks and multi-scale features

Apply 1x1 convolutions as bottleneck layer (decrease number of channels!)

Using same parallel layers as naive example, and adding "1x1 conv. 64 filter" bottlenecks:

Conv Ops:

[1x1 conv, 64] $28x28x64x1x1x256$

[1x1 conv, 64] $28x28x64x1x1x256$

[1x1 conv, 128] $28x28x128x12x1256$

[3x3 conv, 96] $28x28x192x3x3x64$

[5x6 conv, 96] $28x28x96x5x5x64$

[1x1 conv, 64] $28x28x96x5x5x64$

But have become deeper and more complex

Inception Architecture

The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging!

Key idea: Allow information from a layer to propagate to any future layer (forward)

Same is true for gradients!

From: He et al., Deep Residual Learning for Image Recognition

Residual Blocks and Skip Connections

Several ways to learn architectures:

- Evolutionary learning \int_{s}^{s} and reinforcement

learning

Prupe over learning
- Prune overparameterized networks and the contract of the contract of \mathbb{R}^n

Learning of repeated blocks typical

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html

Evolving Architectures and AutoML

Computational Complexity

 \Rightarrow

Geo

From: An Analysis Of Deep Neural Network Models For Practical Applications

Transfer Learning & **Generalization**

What if we don't have enough data?

Step 1: Train on large-scale dataset

Input

Networks

Step 2: Take your custom data and initialize the network with weights trained in Step 1

Step 3: (Continue to) train on new dataset

- Finetune: Update all parameters
- Freeze feature layer: Update only last layer weights (used when not enough data)

This works extremely well! It

was surprising upon discovery.

- **Features learned** so for 1000 object $\begin{array}{|c|c|}\n\hline\n\end{array}$ categories will $\begin{array}{|c|c|c|} \hline & & & & \end{array}$ work well for 1001st!
- across tasks (classification to object detection)

Baseline for Recognition

Surprising Effectiveness of Transfer Learning

Learning with Less Labels

But it doesn't always work that well!

- **If the source** dataset you train on is very different from the target dataset, transfer learning is not as effective
- **If you have enough data for the** target domain, it just results in faster convergence
	- See He et al., "Rethinking ImageNet Pre-training"

Effectiveness of More Data

Effectiveness of Data https://ai.googleblog.com/2017/07/revisitingunreasonable-effectiveness.html

Prom: Revisiting the Unreasonable From: Hestness et al., Deep Learning Scaling Is From: Hestness et al., Deep Learning Scaling Is

There is a large number of different low-labeled settings in DL research

Dealing with Low-Labeled Situations **Separate Labeled Situations**

Data augmentation – Performing a range of **transformations** to the data
the data
● This essentially "**increases**" your dataset the data

- This essentially "increases" your dataset
- ⬣ Transformations should not change meaning of the data (or label has to be changed as well)

Simple example: Image Flipping

Data Augmentation: Motivation

Random crop

- Take different crops during training
- Can be used during inference too!

CutMix

Color Jitter

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

We can apply generic affine transformations:

- **Translation**
- **Rotation**
- **Scale**
- **Shear**

Geometric Transformations

We can combine these transformations to add even more variety!

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

Combining Transformations

Visualization of Neural Networks

Given a trained model, we'd like to understand what it learned.

Weights

Fei-Fei Li, Justin Johnson, Serena Yeung, from CS

Activations

Gradients

Robustness

2019

Visualizing Neural Networks

FC Layer: Reshape weights for a node back into size of image, scale 0-255

For each kernel, scale values from 0-255 and visualize

Problem: 3x3 filters difficult to interpret!ResNet-18: ResNet-101: $64 \times 3 \times 7 \times 7$ 64 x 3 x 7 x 7

AlexNet: 64 x 3 x 11 x 11

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 2314

 $\tilde{\mathscr{O}}$

Geo

Visualizing Weights

We can also produce visualization output (aka activation/filter) maps

These are **larger** early in the network.

Visualizing Output Maps

al., "Understanding Neural Networks Through Deep Visualization", 2015 \Rightarrow **Geor**

Problem: Small conv outputs also hard to interpret

CNN101 and CNN Explainer

We can take the activations of any layer (FC, conv, etc.) and perform dimensionality reduction

- Often reduce to two dimensions for plotting $\begin{array}{ccc} \hline & \hline & \hline \end{array}$
- E.g. using Principle Component Analysis (PCA)

t-SNE is most common

Performs non-linear mapping to preserve pair-wise distances

Dimensionality Reduction: t-SNE

Weights

Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Activations

Gradients

Robustness

2019

Visualizing Neural Networks

Summary & Caveats

While these methods provide some visually interpretable representations, they can be misleading or uninformative (Adebayo et al., 2018)

Assessing interpretability is difficult

- Requires user studies to show usefulness
- E.g. they allow a user to predict mistakes beforehand

Neural networks learn distributed representation

- (no one node represents a particular feature)
- This makes interpretation difficult

Adebayo et al., "Sanity Checks for Saliency Maps", 2018.

