
CS 7643: Deep Learning

Dhruv Batra
Georgia Tech

Topics:
– Toeplitz matrices and convolutions = matrix-mult
– Dilated/a-trous convolutions
– Backprop in conv layers
– Transposed convolutions

Administrativia
• HW1 extension

– 09/22 09/25

• HW2 + PS2 both coming out on 09/22 09/25

• Note on class schedule coming up
– Switching to paper reading starting next week.
– https://docs.google.com/spreadsheets/d/1uN31YcWAG6nhjv

YPUVKMy3vHwW-h9MZCe8yKCqw0RsU/edit#gid=0

• First review due: Tue 09/26

• First student presentation due: Thr 09/28

(C) Dhruv Batra 2

Recap of last time

(C) Dhruv Batra 3

Convolutional Neural Networks
(without the brain stuff)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Convolutional Neural Networks
a

(C) Dhruv Batra 5

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy

6

FC vs Conv Layer

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10
24

24

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2
F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(btw, 1x1 convolution layers make perfect sense)

64
56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location of
features.

Pooling Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 14

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

dim 1

dim 2

max pool with 2x2 filters
and stride 2 6 8

3 4

MAX POOLING

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Max-pooling:

Average-pooling:

L2-pooling:

L2-pooling over features:

Pooling Layer: Examples

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 16

hn
i (r, c) = max

r̄2N(r), c̄2N(c)
hn�1
i (r̄, c̄)

hn
i (r, c) = mean

r̄2N(r), c̄2N(c)
hn�1
i (r̄, c̄)

hn
i (r, c) =

s X

r̄2N(r), c̄2N(c)

hn�1
i (r̄, c̄)2

hn
i (r, c) =

s X

j2N(i)

hn�1
i (r, c)2

Classical View

(C) Dhruv Batra 17Figure Credit: [Long, Shelhamer, Darrell CVPR15]

MxMxN, M small

H hidden units

Fully conn. layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 18

Classical View = Inefficient

(C) Dhruv Batra 19

Classical View

(C) Dhruv Batra 20Figure Credit: [Long, Shelhamer, Darrell CVPR15]

Re-interpretation
• Just squint a little!

(C) Dhruv Batra 21Figure Credit: [Long, Shelhamer, Darrell CVPR15]

“Fully Convolutional” Networks
• Can run on an image of any size!

(C) Dhruv Batra 22Figure Credit: [Long, Shelhamer, Darrell CVPR15]

MxMxN, M small

H hidden units /
1x1xH feature maps

Fully conn. layer /
Conv. layer (H kernels of size MxMxN)

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 23

MxMxN, M small

H hidden units /
1x1xH feature maps

Fully conn. layer /
Conv. layer (H kernels of size MxMxN)

K hidden units /
1x1xK feature maps

Fully conn. layer /
Conv. layer (K kernels of size 1x1xH)

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 24

Viewing fully connected layers as convolutional layers enables efficient use
of convnets on bigger images (no need to slide windows but unroll network
over space as needed to re-use computation).

CNN
Input

Image

CNN
Input

Image
Input

Image

TRAINING TIME

TEST TIME

x

y

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 25

CNN
Input

Image

CNN
Input

Image

TRAINING TIME

TEST TIME

x

y

Unrolling is order of magnitudes more eficient than sliding windows!

CNNs work on any image size!

Viewing fully connected layers as convolutional layers enables efficient use
of convnets on bigger images (no need to slide windows but unroll network
over space as needed to re-use computation).

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 26

Benefit of this thinking
• Mathematically elegant

• Efficiency
– Can run network on arbitrary image
– Without multiple crops

(C) Dhruv Batra 27

Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GoogLeNet

challenge this paradigm

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Plan for Today
• Convolutional Neural Networks

– Toeplitz matrices and convolutions = matrix-mult
– Dilated/a-trous convolutions
– Backprop in conv layers
– Transposed convolutions

(C) Dhruv Batra 29

Toeplitz Matrix
• Diagonals are constants

• Aij = ai-j

(C) Dhruv Batra 30

Why do we care?
• (Discrete) Convolution = Matrix Multiplication

– with Toeplitz Matrices

(C) Dhruv Batra 31

y = w ⇤ x

2

66666666666666666664

wk 0 . . . 0 0
wk�1 wk . . . 0 0
wk�2 wk�1 . . . 0 0
...

...
...

...
...

w1 wk�2 . . . wk 0
...

...
...

...
...

0 w1 . . . wk�1 wk
...

...
...

...
...

0 0
... w1 w2

0 0
... 0 w1

3

77777777777777777775

2

666664

x1

x2

x3
...
xn

3

777775

(C) Dhruv Batra 32

"Convolution of box signal with itself2" by Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk)
- Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons -

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif#/media/File:Convolution_of_box_signal_wi
th_itself2.gif

(C) Dhruv Batra 33

Plan for Today
• Convolutional Neural Networks

– Toeplitz matrices and convolutions = matrix-mult
– Dilated/a-trous convolutions
– Backprop in conv layers
– Transposed convolutions

(C) Dhruv Batra 34

Dilated Convolutions

(C) Dhruv Batra 35

Dilated Convolutions

(C) Dhruv Batra 36

(C) Dhruv Batra 37

(C) Dhruv Batra 38

(recall:)
(N - k) / stride + 1

(C) Dhruv Batra 39Figure Credit: Yu and Koltun, ICLR16

Plan for Today
• Convolutional Neural Networks

– Toeplitz matrices and convolutions = matrix-mult
– Dilated/a-trous convolutions
– Backprop in conv layers
– Transposed convolutions

(C) Dhruv Batra 40

Backprop in Convolutional Layers

(C) Dhruv Batra 41

Backprop in Convolutional Layers

(C) Dhruv Batra 42

Backprop in Convolutional Layers

(C) Dhruv Batra 43

Backprop in Convolutional Layers

(C) Dhruv Batra 44

Plan for Today
• Convolutional Neural Networks

– Toeplitz matrices and convolutions = matrix-mult
– Dilated/a-trous convolutions
– Backprop in conv layers
– Transposed convolutions

(C) Dhruv Batra 45

Transposed Convolutions
• Deconvolution (bad)
• Upconvolution
• Fractionally strided convolution
• Backward strided convolution

(C) Dhruv Batra 46

Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

So far: Image Classification

This image is CC0 public domain Vector:
4096

Fully-Connected:
4096 to 1000

Figure	copyright	Alex	Krizhevsky,	Ilya	Sutskever,	and	
Geoffrey	Hinton,	2012.	Reproduced	with	permission.	

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Other Computer Vision Tasks
Classification
+ Localization

Semantic
Segmentation

Object
Detection

Instance
Segmentation

CATGRASS, CAT,
TREE, SKY

DOG, DOG, CAT DOG, DOG, CAT

Single Object Multiple ObjectNo objects, just pixels This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Semantic Segmentation

Cow

Grass

Sky

Label each pixel in the
image with a category
label

Don’t differentiate
instances, only care about
pixels

This image is CC0 public domain

Grass

Cat

Sky

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Semantic Segmentation Idea: Sliding Window

Full image

Extract patch
Classify center
pixel with CNN

Cow

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Semantic Segmentation Idea: Sliding Window

Full image

Extract patch
Classify center
pixel with CNN

Cow

Cow

Grass
Problem: Very inefficient! Not
reusing shared features between
overlapping patches Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Problem: convolutions at
original image resolution will
be very expensive ...

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W Predictions:

H x W

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W Predictions:

H x W

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Downsampling:
Pooling, strided
convolution

Upsampling:
???

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

In-Network upsampling: “Unpooling”

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Nearest Neighbor

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

“Bed of Nails”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

In-Network upsampling: “Max Unpooling”

Input: 4 x 4

1 2 6 3

3 5 2 1

1 2 2 1

7 3 4 8

1 2

3 4

Input: 2 x 2 Output: 4 x 4

0 0 2 0

0 1 0 0

0 0 0 0

3 0 0 4

Max Unpooling
Use positions from
pooling layer

5 6

7 8

Max Pooling
Remember which element was max!

…
Rest of the network

Output: 2 x 2

Corresponding pairs of
downsampling and
upsampling layers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Learnable Upsampling: Transpose Convolution

Recall:Typical 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

Dot product
between filter
and input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Learnable Upsampling: Transpose Convolution

Input: 4 x 4 Output: 4 x 4

Dot product
between filter
and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Input: 4 x 4 Output: 2 x 2

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Input: 4 x 4 Output: 2 x 2

Dot product
between filter
and input

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Learnable Upsampling: Transpose Convolution

Input: 4 x 4 Output: 2 x 2

Dot product
between filter
and input

Filter moves 2 pixels in
the input for every one
pixel in the output

Stride gives ratio between
movement in input and
output

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Input: 2 x 2 Output: 4 x 4

Input gives
weight for
filter

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Input: 2 x 2 Output: 4 x 4

Input gives
weight for
filter

Sum where
output overlaps

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in
the output for every one
pixel in the input

Stride gives ratio between
movement in output and
input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Input: 2 x 2 Output: 4 x 4

Input gives
weight for
filter

Sum where
output overlaps

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in
the output for every one
pixel in the input

Stride gives ratio between
movement in output and
input

Other names:
-Deconvolution (bad)
-Upconvolution
-Fractionally strided
convolution
-Backward strided
convolution

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Transpose Convolution: 1D Example

a

b

x

y

z

ax

ay

az + bx

by

bz

Input Filter
Output

Output contains
copies of the filter
weighted by the
input, summing at
where at overlaps in
the output

Need to crop one
pixel from output to
make output exactly
2x input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Transposed Convolution
• https://distill.pub/2016/deconv-checkerboard/

(C) Dhruv Batra 69

