
CS 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Toeplitz matrices and convolutions = matrix-mult
– Dilated/a-trous convolutions
– Backprop in conv layers
– Transposed convolutions



Administrativia
• HW1 extension

– 09/22 09/25

• HW2 + PS2 both coming out on 09/22 09/25

• Note on class schedule coming up
– Switching to paper reading starting next week. 
– https://docs.google.com/spreadsheets/d/1uN31YcWAG6nhjv

YPUVKMy3vHwW-h9MZCe8yKCqw0RsU/edit#gid=0

• First review due: Tue 09/26

• First student presentation due: Thr 09/28
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Recap of last time
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Convolutional Neural Networks
(without the brain stuff)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Convolutional Neural Networks
a
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INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy
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FC vs Conv Layer



32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Preview: ConvNet is a sequence of Convolutional Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10
24

24

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2
F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(btw, 1x1 convolution layers make perfect sense)

64
56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



By “pooling” (e.g., taking max) filter

responses at different locations we gain 
robustness to the exact spatial location of 
features.

Pooling Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 14



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

dim 1

dim 2

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Max-pooling:

Average-pooling:

L2-pooling:

L2-pooling over features:

Pooling Layer: Examples

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 16
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Classical View

(C) Dhruv Batra 17Figure Credit: [Long, Shelhamer, Darrell CVPR15]



MxMxN, M small

H hidden units

Fully conn. layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 18



Classical View = Inefficient
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Classical View

(C) Dhruv Batra 20Figure Credit: [Long, Shelhamer, Darrell CVPR15]



Re-interpretation
• Just squint a little!
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“Fully Convolutional” Networks
• Can run on an image of any size!

(C) Dhruv Batra 22Figure Credit: [Long, Shelhamer, Darrell CVPR15]



MxMxN, M small

H hidden units / 
1x1xH feature maps

Fully conn. layer /
Conv. layer (H kernels of size MxMxN)

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 23



MxMxN, M small

H hidden units / 
1x1xH feature maps

Fully conn. layer /
Conv. layer (H kernels of size MxMxN)

K hidden units / 
1x1xK feature maps

Fully conn. layer /
Conv. layer (K kernels of size 1x1xH)

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 24



Viewing fully connected layers as convolutional layers enables efficient use 
of convnets on bigger images (no need to slide windows but unroll network 
over space as needed to re-use computation).

CNN
Input

Image

CNN
Input

Image
Input

Image

TRAINING TIME

TEST TIME

x

y

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 25



CNN
Input

Image

CNN
Input

Image

TRAINING TIME

TEST TIME

x

y

Unrolling is order of magnitudes more eficient than sliding windows!

CNNs work on any image size!

Viewing fully connected layers as convolutional layers enables efficient use 
of convnets on bigger images (no need to slide windows but unroll network 
over space as needed to re-use computation).

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 26



Benefit of this thinking
• Mathematically elegant

• Efficiency
– Can run network on arbitrary image 
– Without multiple crops
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Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like 

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GoogLeNet 

challenge this paradigm

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• Convolutional Neural Networks

– Toeplitz matrices and convolutions = matrix-mult
– Dilated/a-trous convolutions
– Backprop in conv layers
– Transposed convolutions
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Toeplitz Matrix
• Diagonals are constants

• Aij = ai-j
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Why do we care?
• (Discrete) Convolution = Matrix Multiplication 

– with Toeplitz Matrices

(C) Dhruv Batra 31

y = w ⇤ x

2

66666666666666666664

wk 0 . . . 0 0
wk�1 wk . . . 0 0
wk�2 wk�1 . . . 0 0
...

...
...

...
...

w1 wk�2 . . . wk 0
...

...
...

...
...

0 w1 . . . wk�1 wk
...

...
...

...
...

0 0
... w1 w2

0 0
... 0 w1

3

77777777777777777775

2

666664

x1

x2

x3
...
xn

3

777775



(C) Dhruv Batra 32

"Convolution of box signal with itself2" by Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk) 
- Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons -

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif#/media/File:Convolution_of_box_signal_wi
th_itself2.gif
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Plan for Today
• Convolutional Neural Networks

– Toeplitz matrices and convolutions = matrix-mult
– Dilated/a-trous convolutions
– Backprop in conv layers
– Transposed convolutions
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Dilated Convolutions
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Dilated Convolutions
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(recall:)
(N - k) / stride + 1



(C) Dhruv Batra 39Figure Credit: Yu and Koltun, ICLR16



Plan for Today
• Convolutional Neural Networks

– Toeplitz matrices and convolutions = matrix-mult
– Dilated/a-trous convolutions
– Backprop in conv layers
– Transposed convolutions
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Backprop in Convolutional Layers
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Backprop in Convolutional Layers

(C) Dhruv Batra 42



Backprop in Convolutional Layers

(C) Dhruv Batra 43



Backprop in Convolutional Layers
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Plan for Today
• Convolutional Neural Networks

– Toeplitz matrices and convolutions = matrix-mult
– Dilated/a-trous convolutions
– Backprop in conv layers
– Transposed convolutions
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Transposed Convolutions
• Deconvolution (bad)
• Upconvolution
• Fractionally strided convolution
• Backward strided convolution
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Class Scores
Cat: 0.9
Dog: 0.05
Car: 0.01
...

So far: Image Classification

This image is CC0 public domain Vector:
4096

Fully-Connected:
4096 to 1000

Figure	copyright	Alex	Krizhevsky,	Ilya	Sutskever,	and	
Geoffrey	Hinton,	2012.	Reproduced	with	permission.	

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Other Computer Vision Tasks
Classification 
+ Localization

Semantic
Segmentation

Object 
Detection

Instance 
Segmentation

CATGRASS, CAT, 
TREE, SKY

DOG, DOG, CAT DOG, DOG, CAT

Single Object Multiple ObjectNo objects, just pixels This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation

Cow

Grass

Sky

Label each pixel in the 
image with a category 
label

Don’t differentiate 
instances, only care about 
pixels

This image is CC0 public domain

Grass

Cat

Sky

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Sliding Window

Full image

Extract patch
Classify center 
pixel with CNN

Cow

Cow

Grass

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Sliding Window

Full image

Extract patch
Classify center 
pixel with CNN

Cow

Cow

Grass
Problem: Very inefficient! Not 
reusing shared features between 
overlapping patches Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network as a bunch of convolutional layers 
to  make predictions for pixels all at once!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W

Convolutions:
D x H x W

Conv Conv Conv Conv

Scores:
C x H x W

argmax

Predictions:
H x W

Design a network as a bunch of convolutional layers 
to  make predictions for pixels all at once!

Problem: convolutions at 
original image resolution will 
be very expensive ...

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W Predictions:

H x W

Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Fully Convolutional

Input:
3 x H x W Predictions:

H x W

Design network as a bunch of convolutional layers, with 
downsampling and upsampling inside the network!

High-res:
D1 x H/2 x W/2

High-res:
D1 x H/2 x W/2

Med-res:
D2 x H/4 x W/4

Med-res:
D2 x H/4 x W/4

Low-res:
D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Downsampling:
Pooling, strided 
convolution

Upsampling:
???

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In-Network upsampling: “Unpooling”

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 1 2 2

1 1 2 2

3 3 4 4

3 3 4 4

Nearest Neighbor

1 2

3 4

Input: 2 x 2 Output: 4 x 4

1 0 2 0

0 0 0 0

3 0 4 0

0 0 0 0

“Bed of Nails”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In-Network upsampling: “Max Unpooling”

Input: 4 x 4

1 2 6 3

3 5 2 1

1 2 2 1

7 3 4 8

1 2

3 4

Input: 2 x 2 Output: 4 x 4

0 0 2 0

0 1 0 0

0 0 0 0

3 0 0 4

Max Unpooling
Use positions from 
pooling layer

5 6

7 8

Max Pooling
Remember which element was max!

… 
Rest of the network

Output: 2 x 2

Corresponding pairs of 
downsampling and 
upsampling layers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Recall:Typical 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

Dot product 
between filter 
and input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Input: 4 x 4 Output: 4 x 4

Dot product 
between filter 
and input

Recall: Normal 3 x 3 convolution, stride 1 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Input: 4 x 4 Output: 2 x 2

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Input: 4 x 4 Output: 2 x 2

Dot product 
between filter 
and input

Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Input: 4 x 4 Output: 2 x 2

Dot product 
between filter 
and input

Filter moves 2 pixels in 
the input for every one 
pixel in the output

Stride gives ratio between 
movement in input and 
output

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Input: 2 x 2 Output: 4 x 4

Input gives 
weight for 
filter

Sum where 
output overlaps

Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Filter moves 2 pixels in 
the output for every one 
pixel in the input

Stride gives ratio between 
movement in output and 
input

Other names:
-Deconvolution (bad)
-Upconvolution
-Fractionally strided
convolution
-Backward strided
convolution

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Transpose Convolution: 1D Example

a

b

x

y

z

ax

ay

az + bx

by 

bz

Input Filter
Output

Output contains 
copies of the filter 
weighted by the 
input, summing at 
where at overlaps in 
the output

Need to crop one 
pixel from output to 
make output exactly 
2x input

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Transposed Convolution
• https://distill.pub/2016/deconv-checkerboard/

(C) Dhruv Batra 69


