CS 7643: Deep Learning

Topics:

- Toeplitz matrices and convolutions = matrix-mult
- Dilated/a-trous convolutions
- Backprop in conv layers
- Transposed convolutions

Dhruv Batra Georgia Tech

Administrativia

- HW1 extension
 - 09/22 09/25
- HW2 + PS2 both coming out on 09/22 09/25
- Note on class schedule coming up
 - Switching to paper reading starting next week.
 - <u>https://docs.google.com/spreadsheets/d/1uN31YcWAG6nhjv</u> <u>YPUVKMy3vHwW-h9MZCe8yKCqw0RsU/edit#gid=0</u>
- First review due: Tue 09/26
- First student presentation due: Thr 09/28

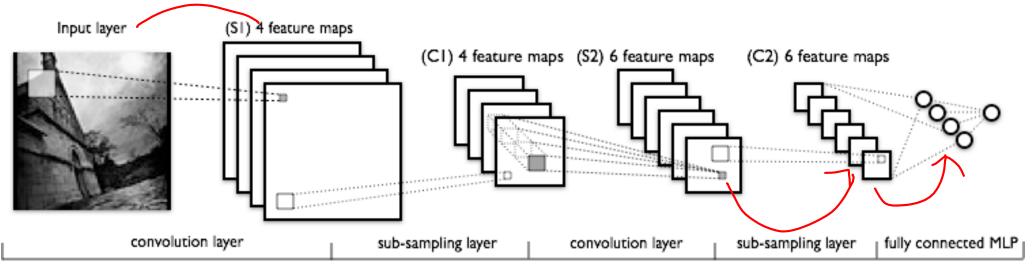
Recap of last time

Convolutional Neural Networks

(without the brain stuff)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Convolutional Neural Networks



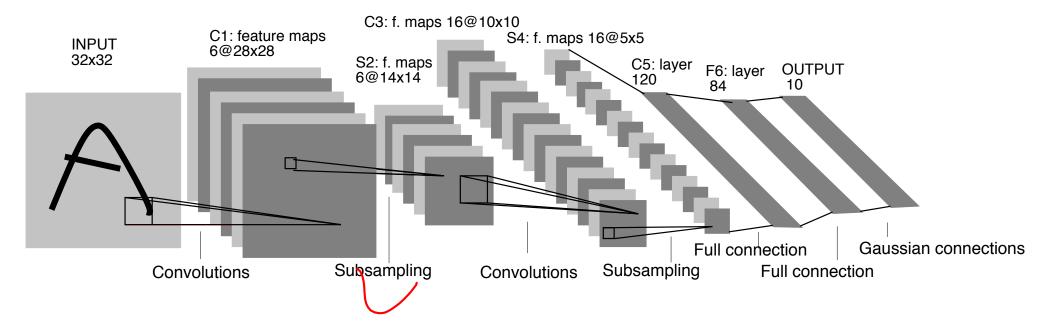
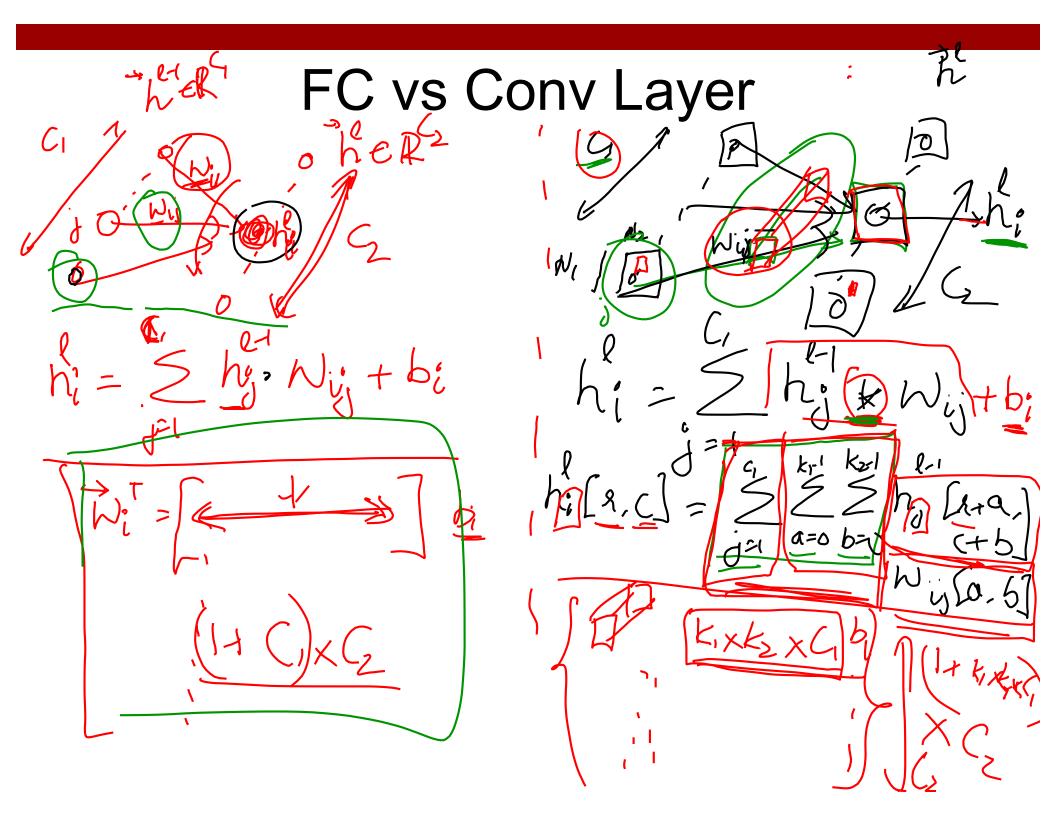
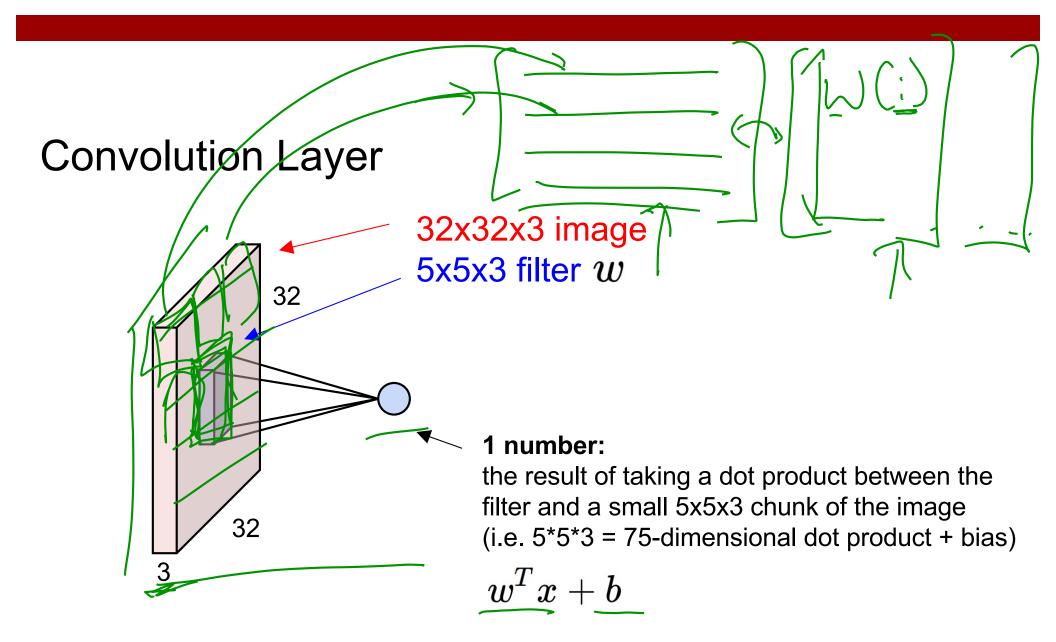
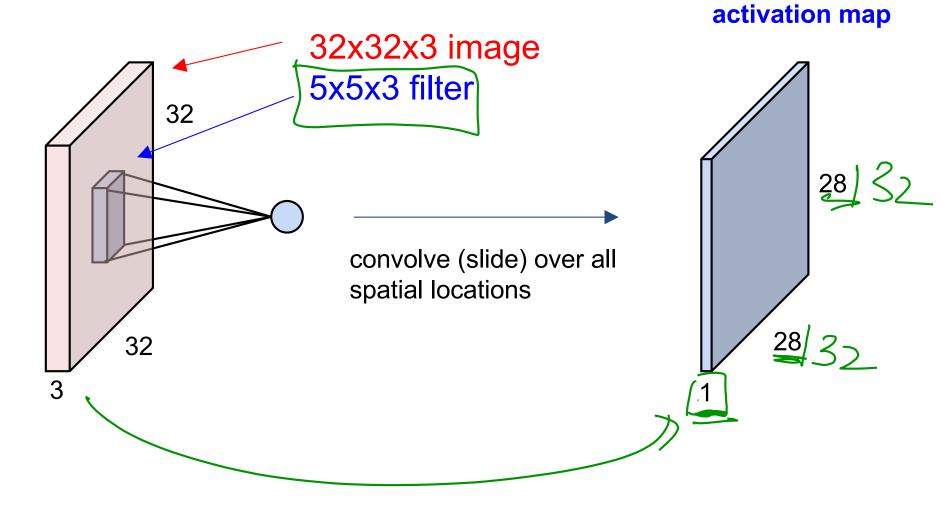


Image Credit: Yann LeCun, Kevin Murphy

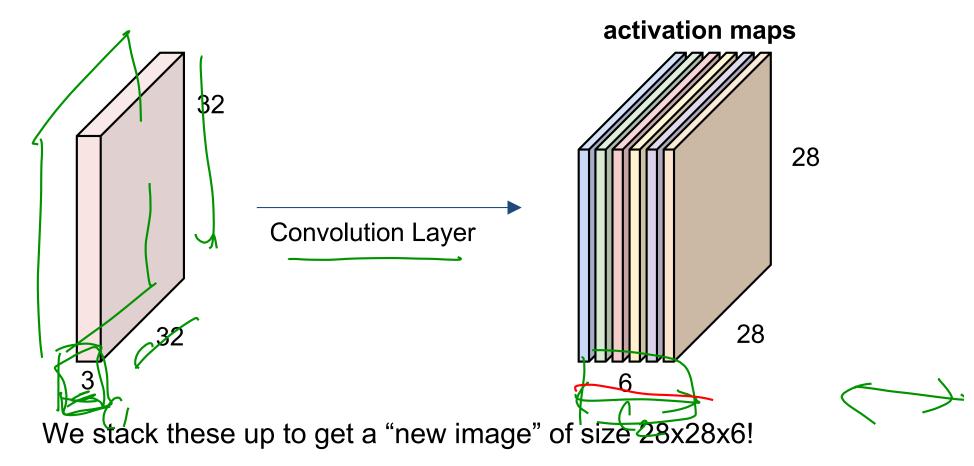




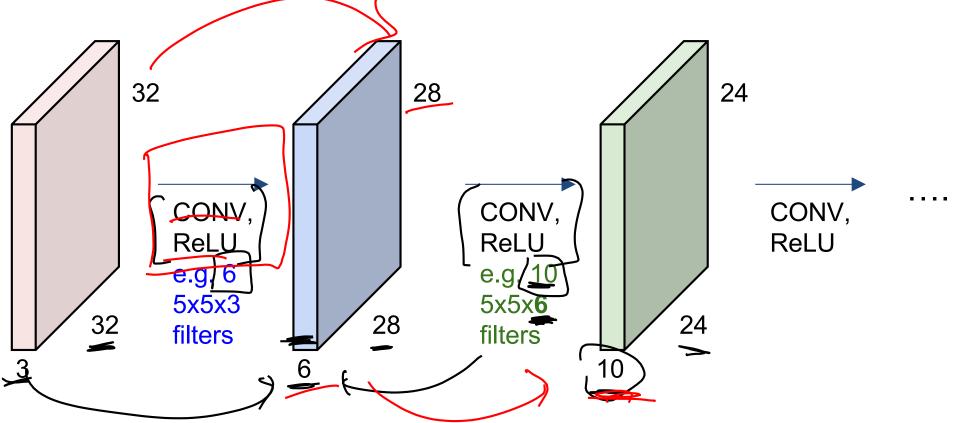
Convolution Layer

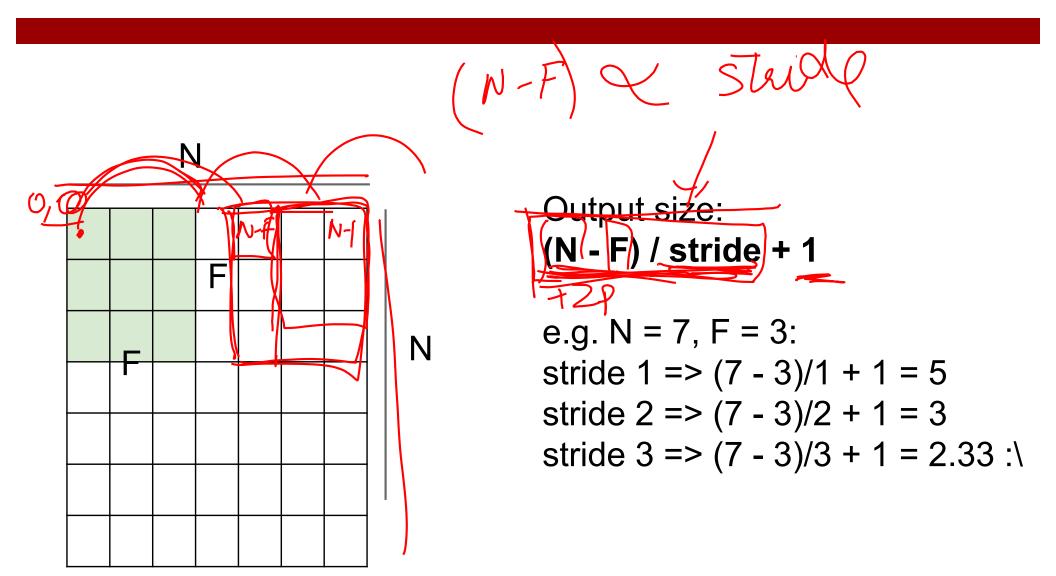


For example, if we had 6 5x5 filters, we'll get 6 separate activation maps:

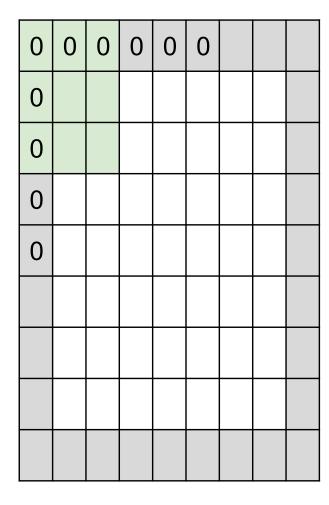


Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions





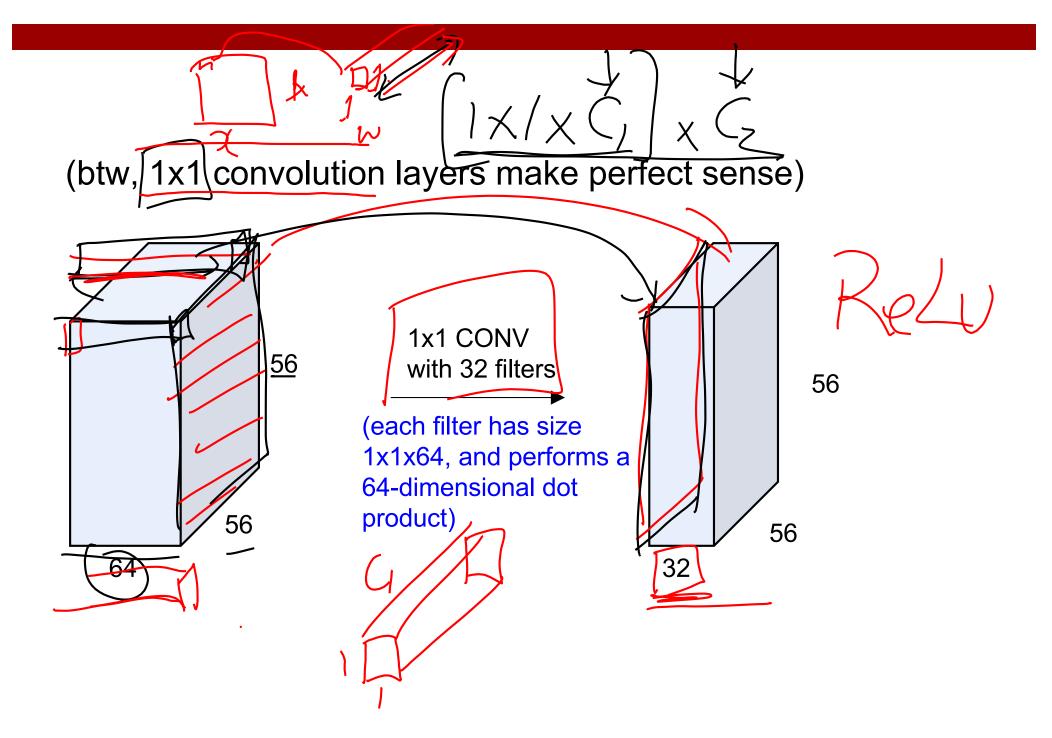
In practice: Common to zero pad the border



e.g. input 7x7 **3x3** filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

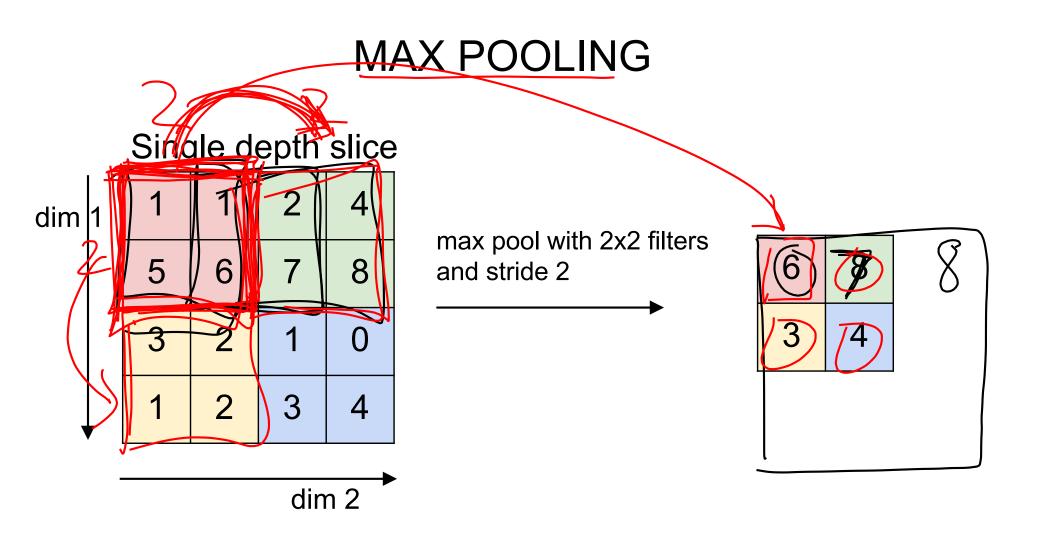
in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2 (will preserve size spatially) e.g. F = 3 => zero pad with 1 F = 5 => zero pad with 2 F = 7 => zero pad with 3



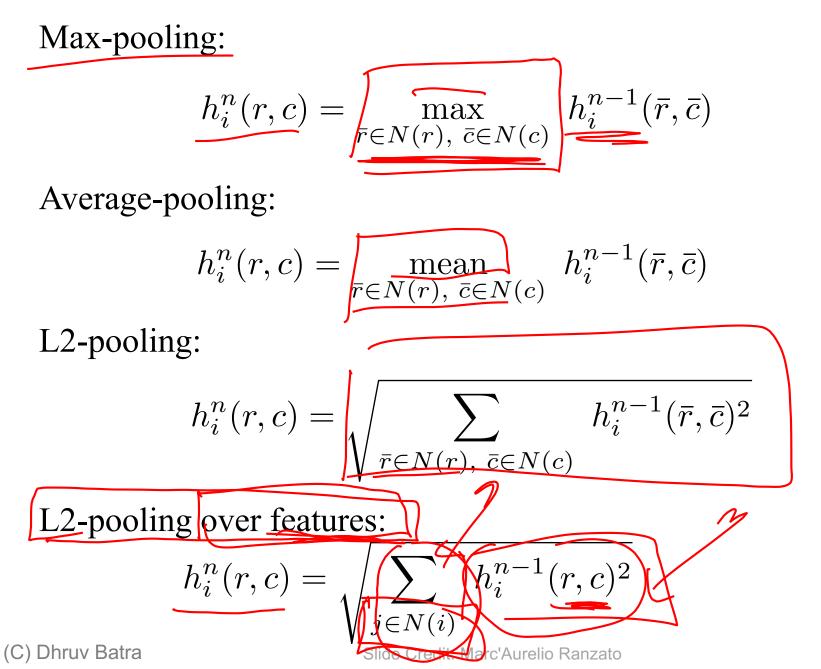
Pooling Layer

By "pooling" (e.g., taking max) filter

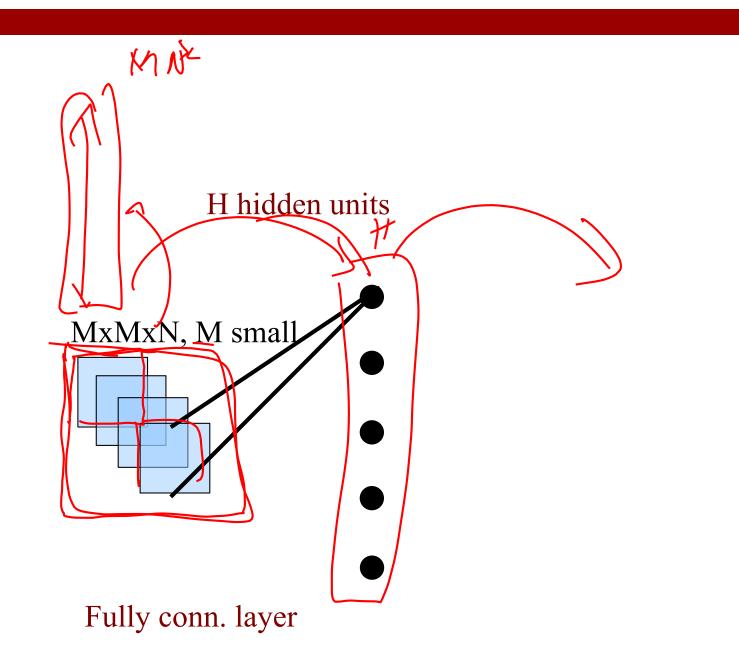
responses at different locations we gain robustness to the exact spatial location of features.



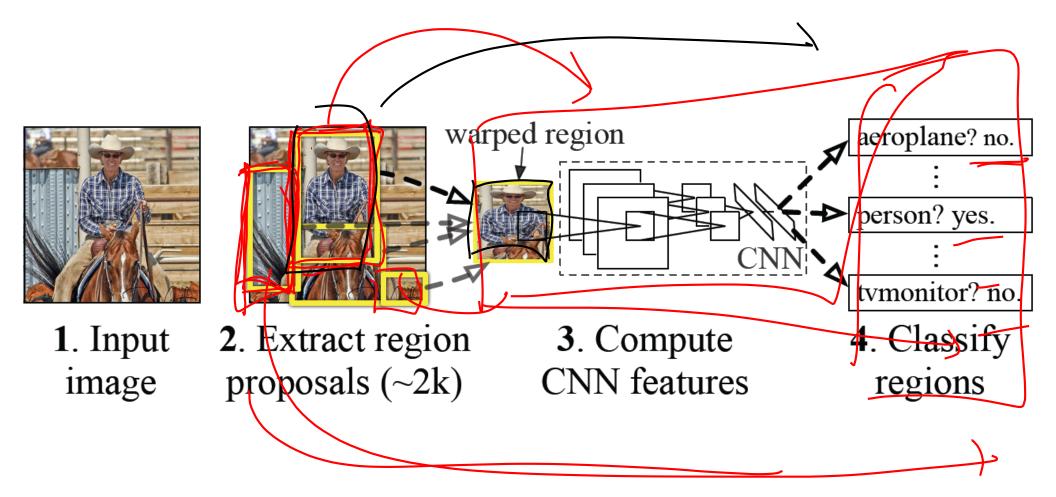
Pooling Layer: Examples



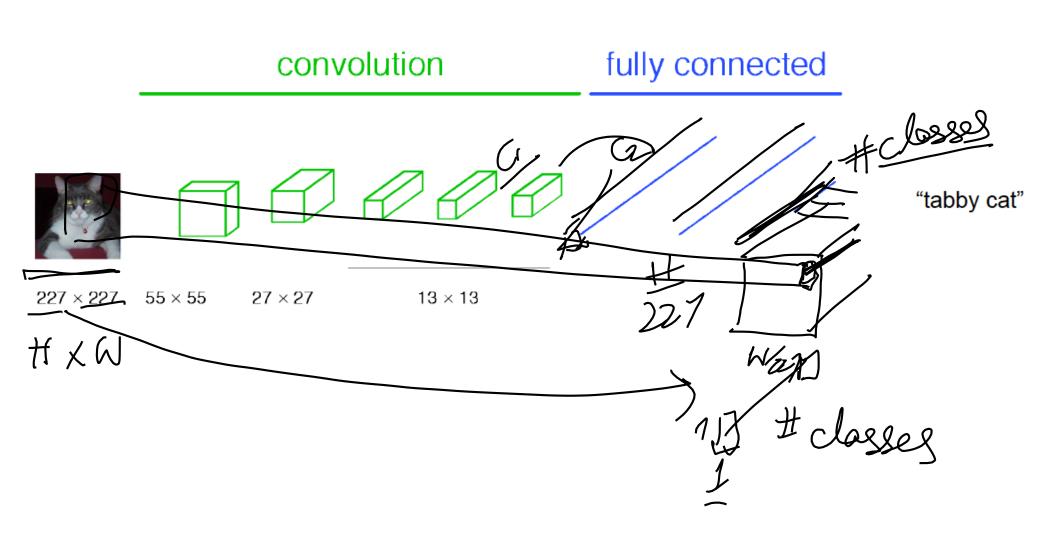
Classical View fully connected convolution "tabby cat" 27×27 227 × 227 55 × 55 13×13 اx x



Classical View = Inefficient

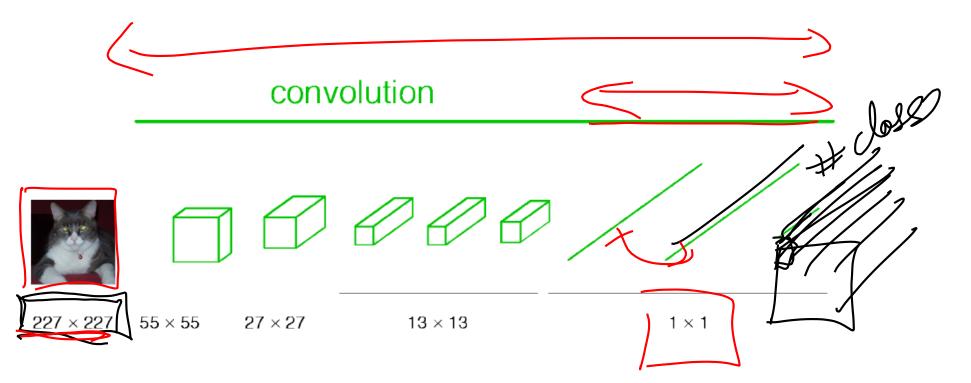


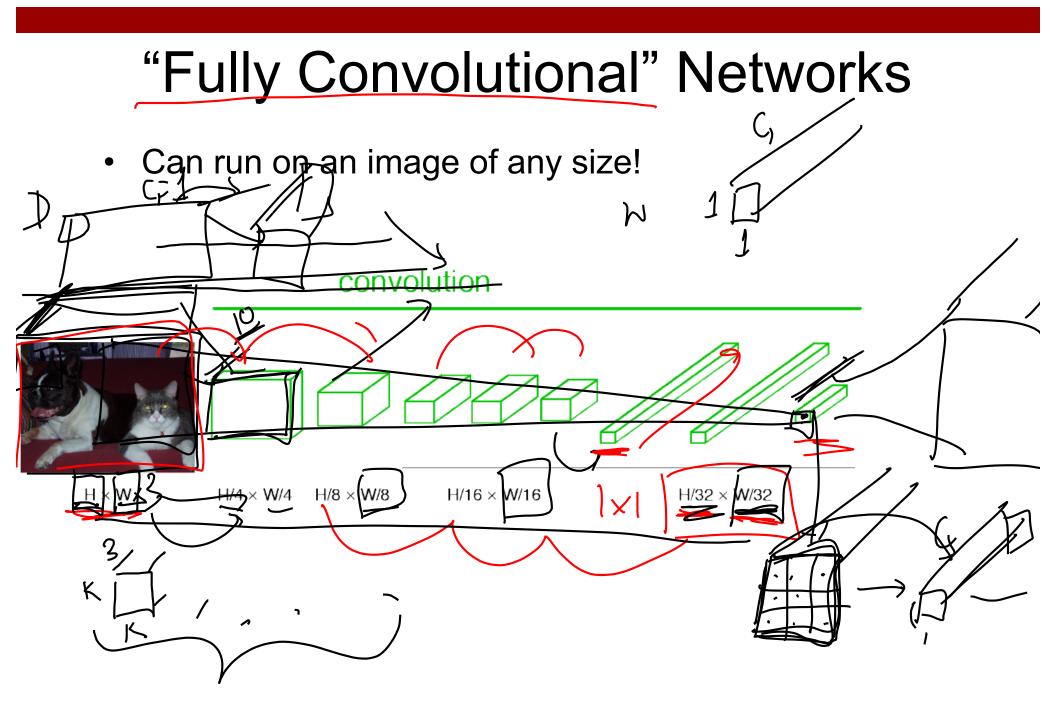
Classical View

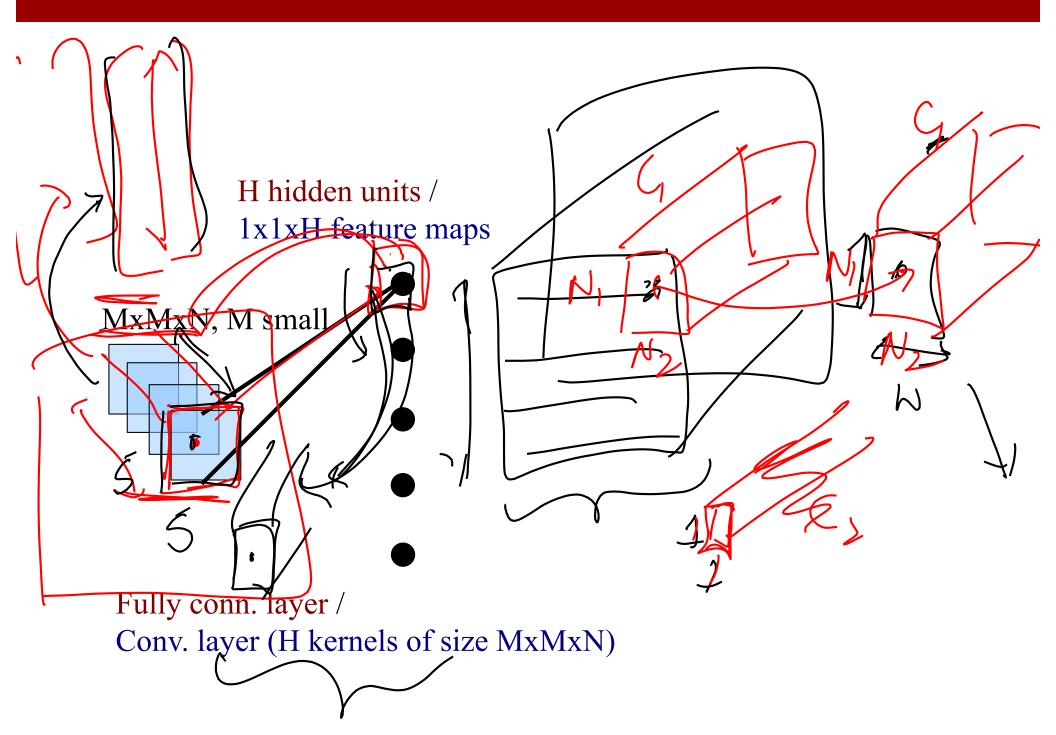


Re-interpretation

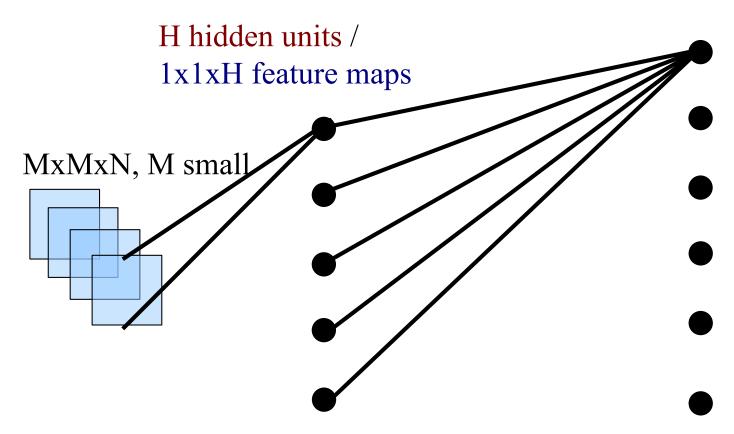
Just squint a little!







K hidden units / 1x1xK feature maps

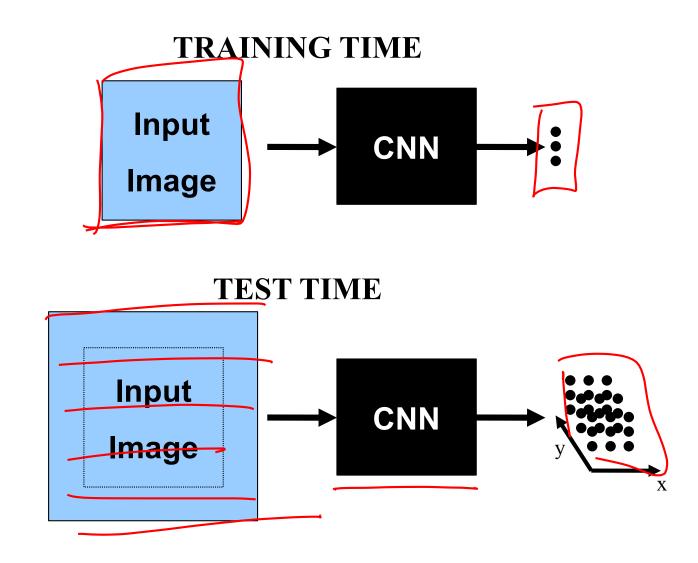


Fully conn. layer / Conv. layer (H kernels of size MxMxN)

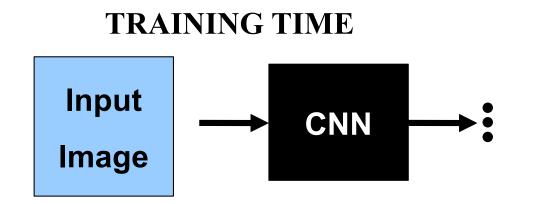
Fully conn. layer /

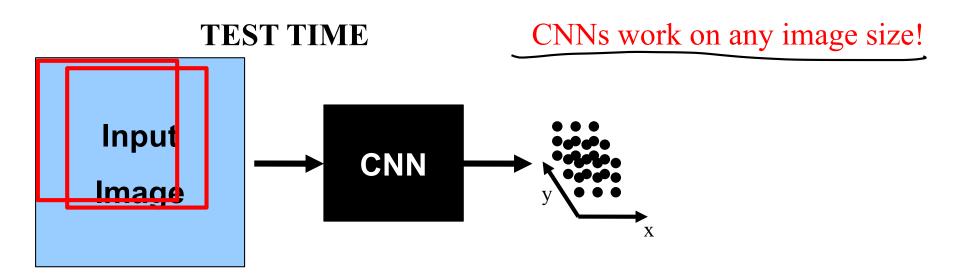
(C) Dhruv Batra

Conv. layer (K kernels of size 1x1xH) Slide Credit: Marc'Aurelio Ranzato Viewing fully connected layers as convolutional layers enables efficient use of convnets on bigger images (no need to slide windows but unroll network over space as needed to re-use computation).



Viewing fully connected layers as convolutional layers enables efficient use of convnets on bigger images (no need to slide windows but unroll network over space as needed to re-use computation).





Unrolling is order of magnitudes more eficient than sliding windows! (C) Dhruv Batra

Benefit of this thinking

- Mathematically elegant
- Efficiency
 - Can run network on arbitrary image
 - Without multiple crops

Summary

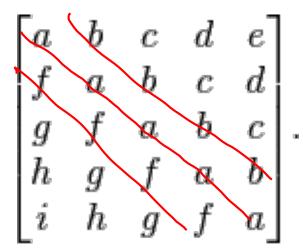
- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like (CONV-RELU)*N-POOL? M (FC-RELU)*K SOFTMAX
 - where N is usually up to ~5, M is large, $0 \le K \le 2$.
 - but recent advances such as ResNet/GoogLeNet
 challenge this paradigm

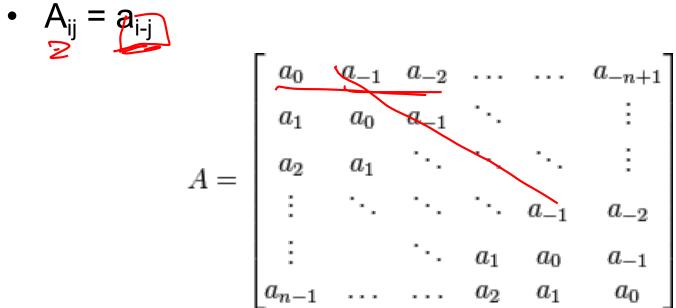
Plan for Today

- Convolutional Neural Networks
 - Toeplitz matrices and convolutions = matrix-mult
 - Dilated/a-trous convolutions
 - Backprop in conv layers
 - Transposed convolutions

Toeplitz Matrix

Diagonals are constants

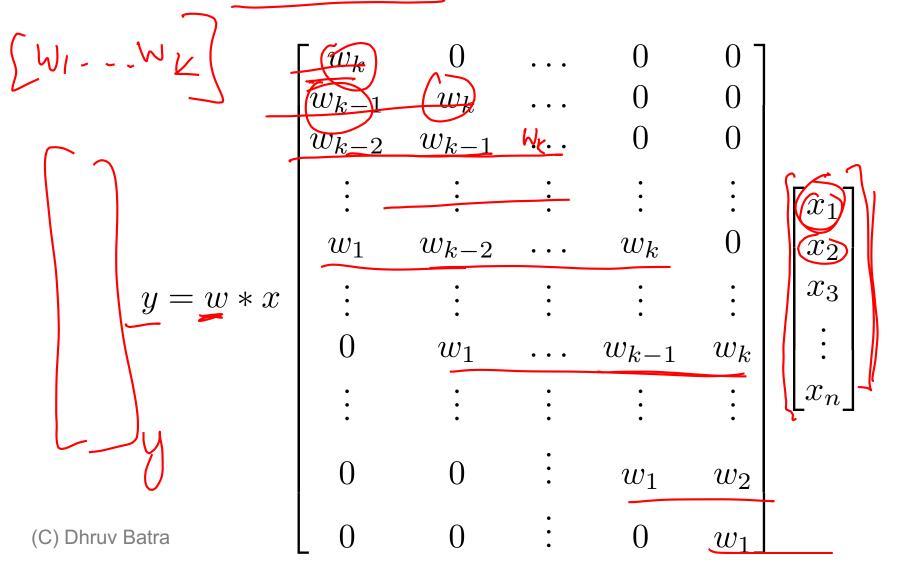


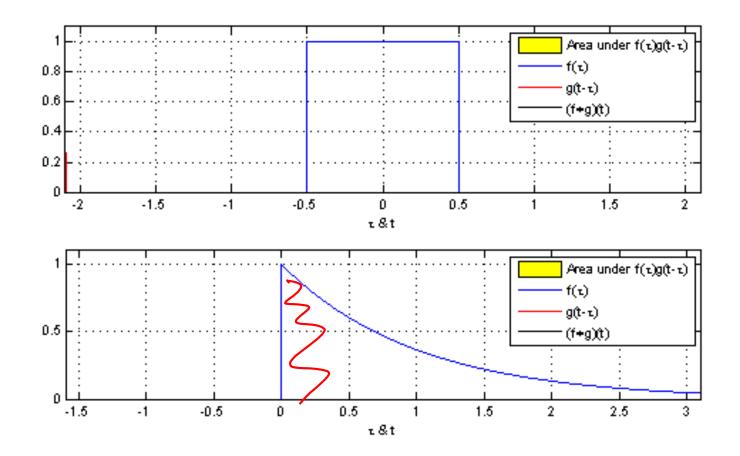


Why do we care?

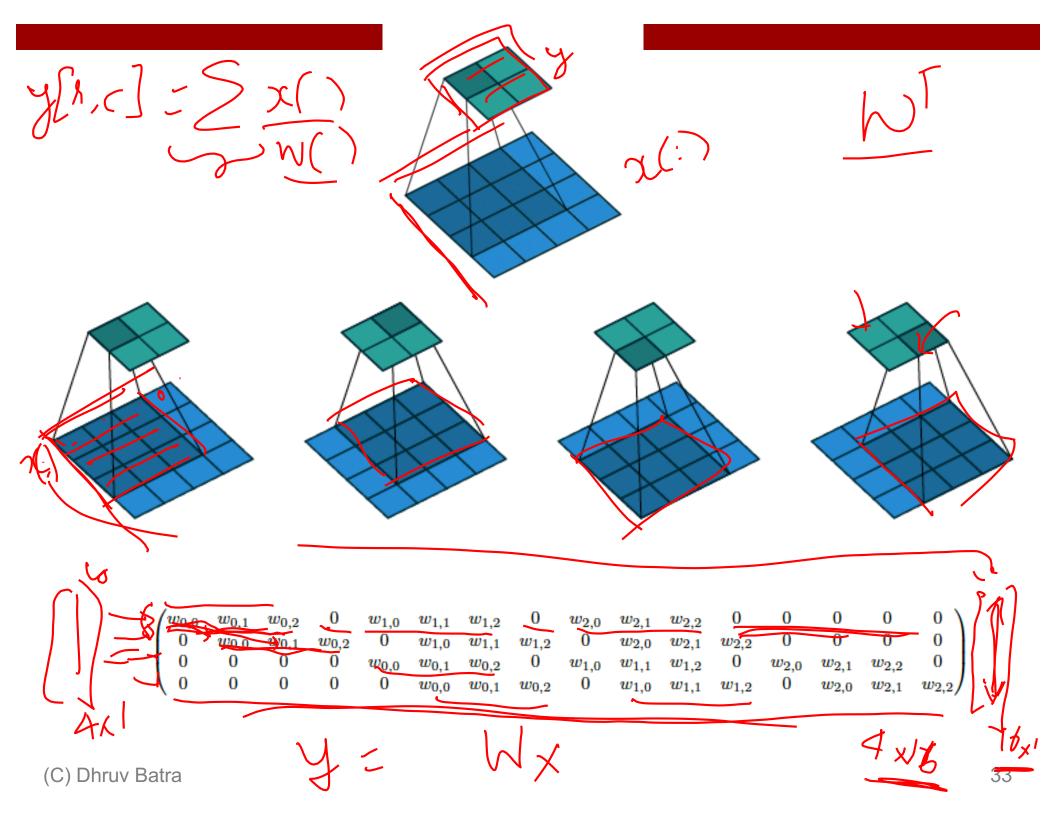
(Discrete) Convolution = Matrix Multiplication

- with Toeplitz Matrices



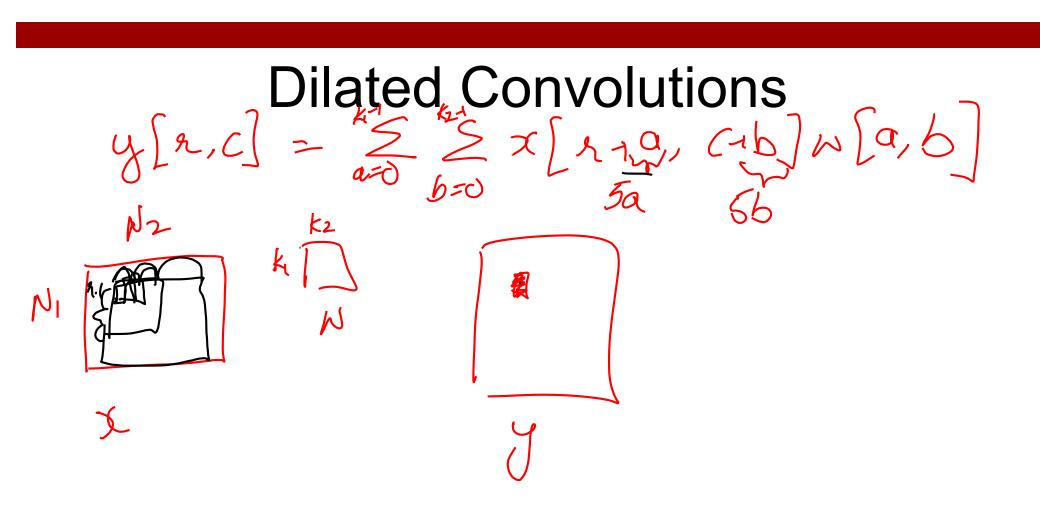


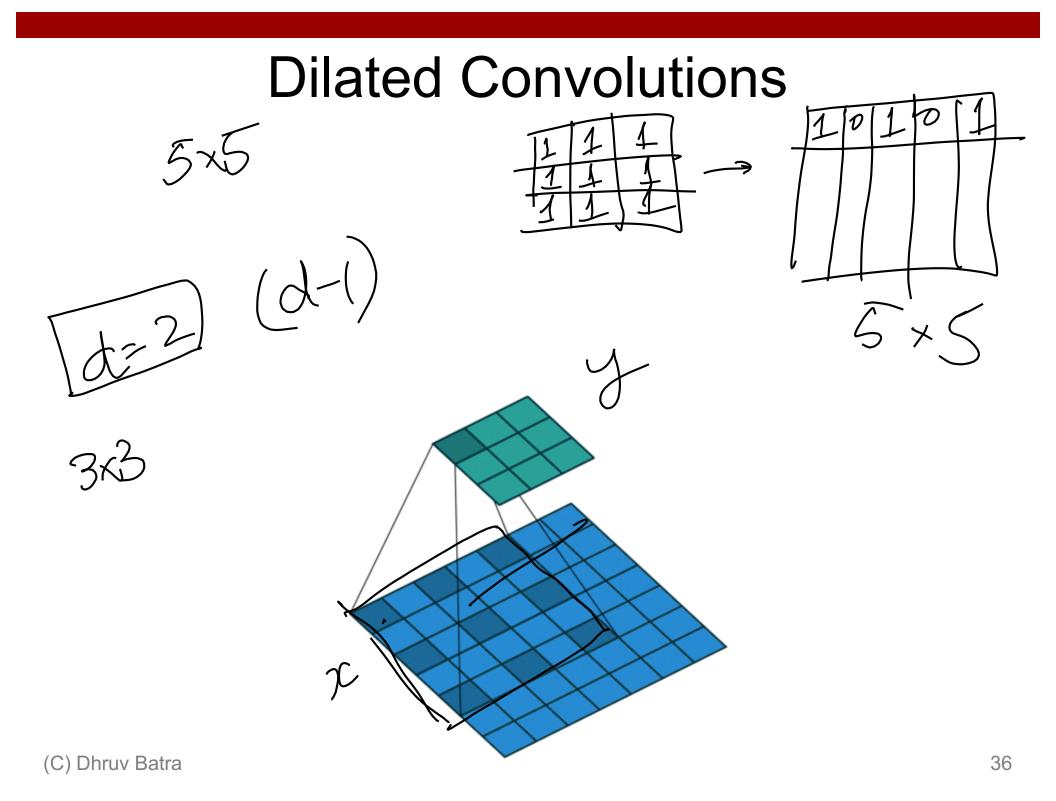
"Convolution of box signal with itself2" by Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk) - Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif#/media/File:Convolution_of_box_signal_with_itself2.gif

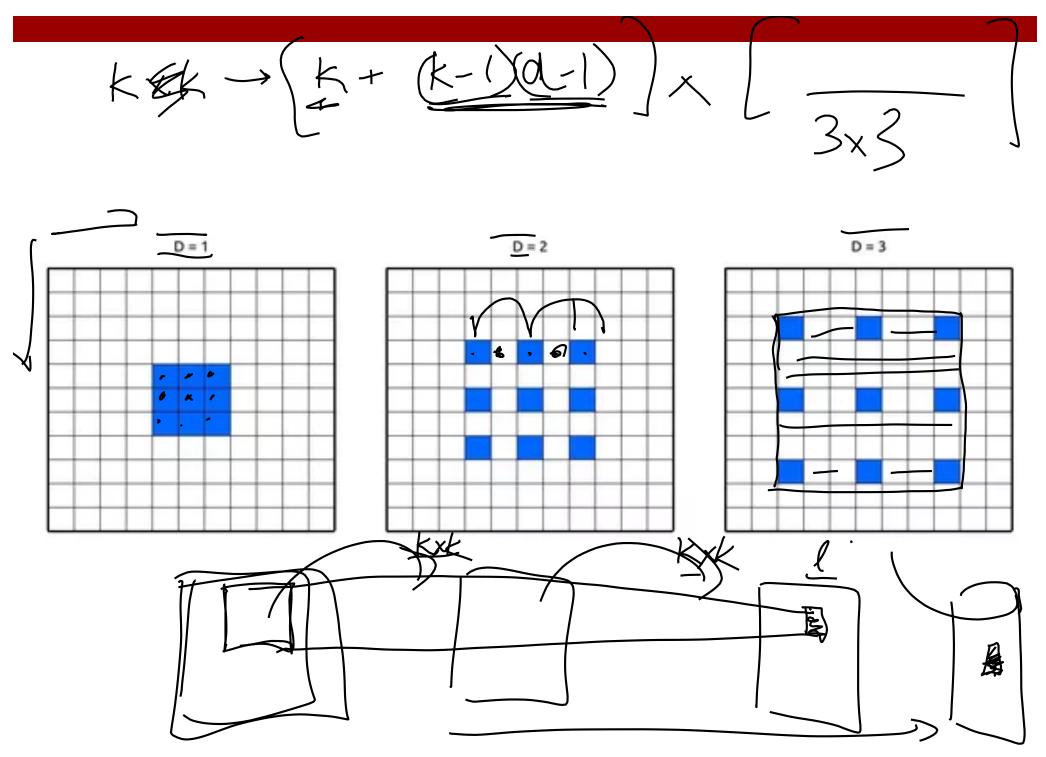


Plan for Today

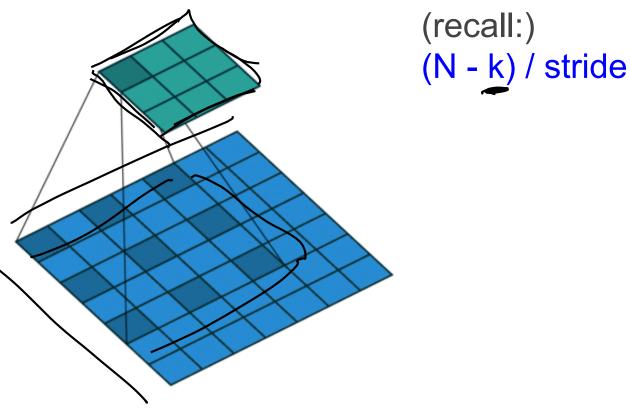
- Convolutional Neural Networks
 - Toeplitz matrices and convolutions = matrix-mult
 - Dilated/a-trous convolutions
 - Backprop in conv layers
 - Transposed convolutions







(C) Dhruv Batra



(recall:) (N - k) / stride + 1

(C) Dhruv Batra

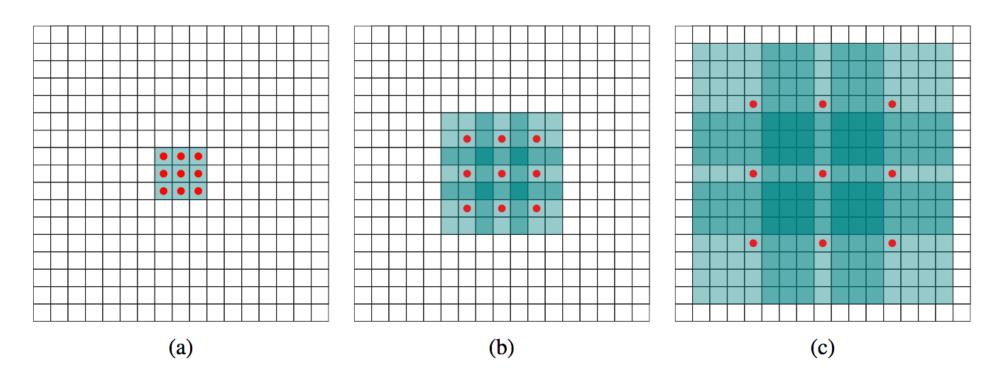
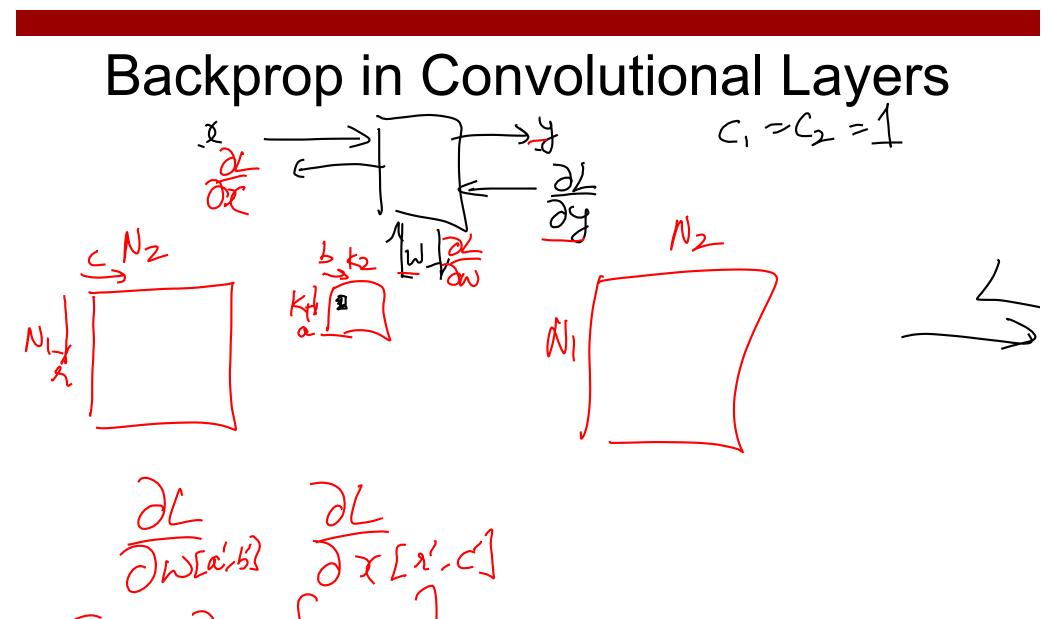


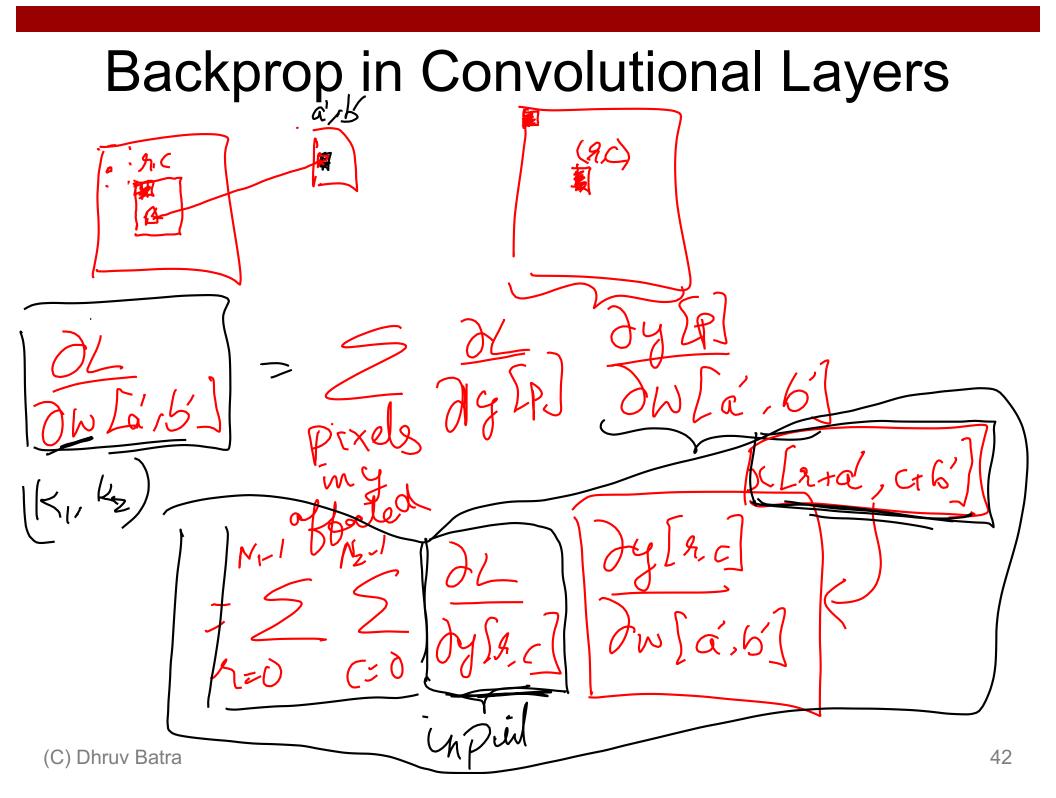
Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a) F_1 is produced from F_0 by a 1-dilated convolution; each element in F_1 has a receptive field of 3×3 . (b) F_2 is produced from F_1 by a 2-dilated convolution; each element in F_2 has a receptive field of 7×7 . (c) F_3 is produced from F_2 by a 4-dilated convolution; each element in F_3 has a receptive field of 15×15 . The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

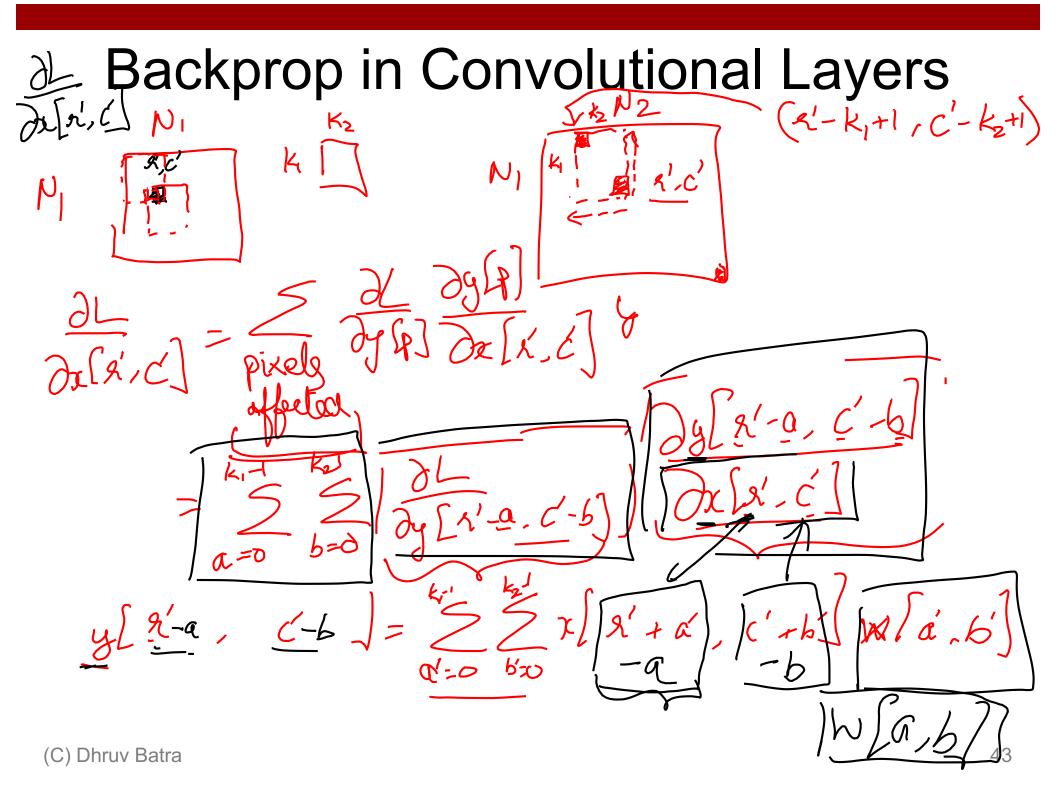
(C) Dhruv Batra

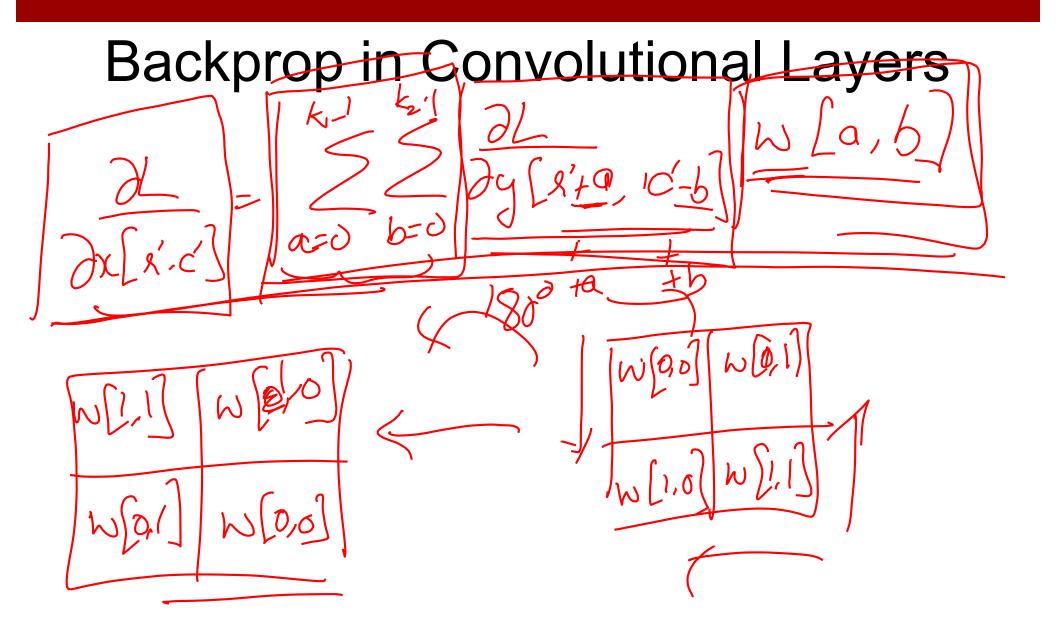
Plan for Today

- Convolutional Neural Networks
 - Toeplitz matrices and convolutions = matrix-mult
 - Dilated/a-trous convolutions
 - Backprop in conv layers
 - Transposed convolutions









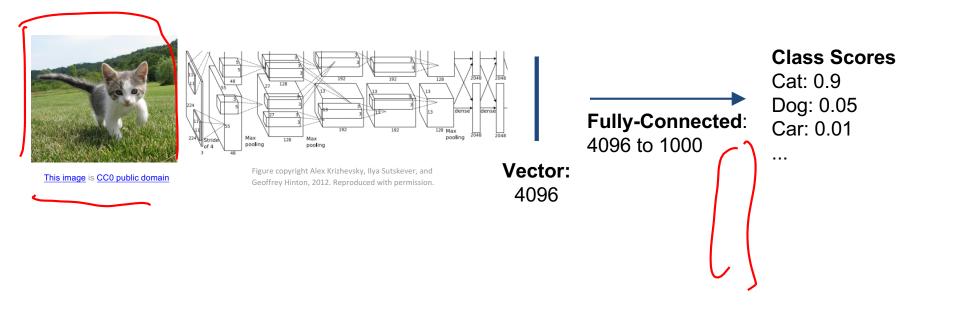
Plan for Today

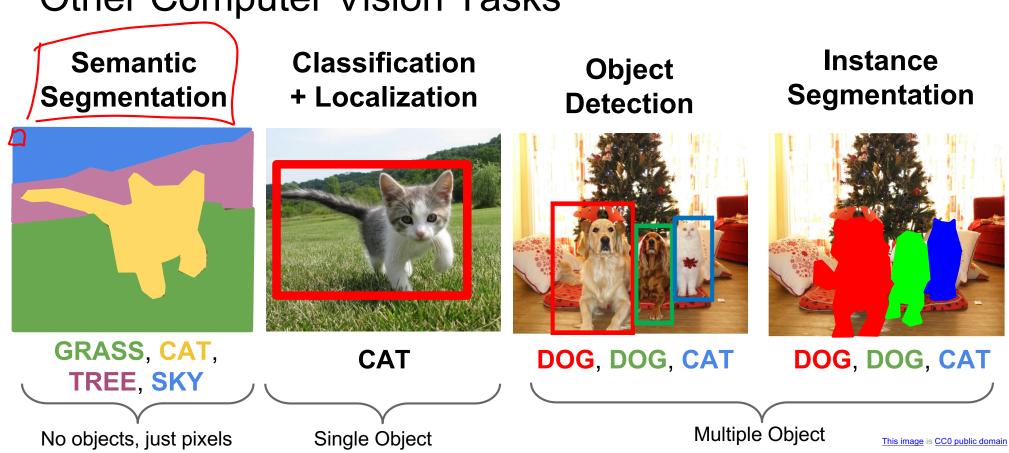
- Convolutional Neural Networks
 - Toeplitz matrices and convolutions = matrix-mult
 - Dilated/a-trous convolutions
 - Backprop in conv layers
 - Transposed convolutions

Transposed Convolutions

- Deconvolution (bad)
- Upconvolution
- Fractionally strided convolution
- Backward strided convolution

So far: Image Classification





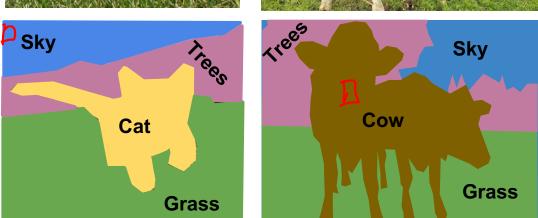
Other Computer Vision Tasks

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Semantic Segmentation

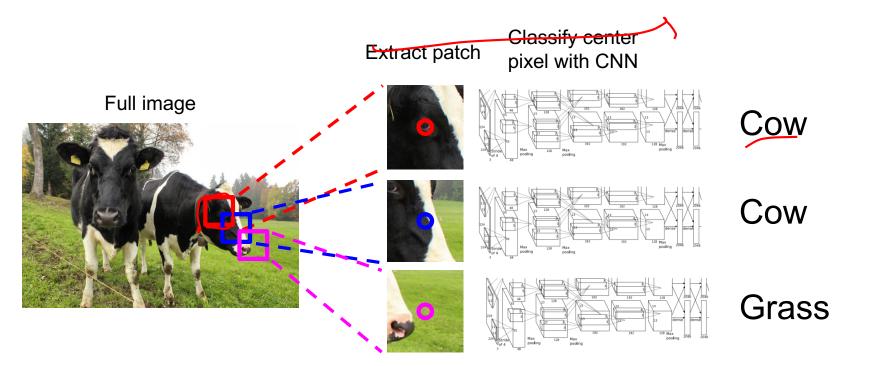
Label each pixel in the image with a category label

Don't differentiate instances, only care about pixels



This image is CC0 public domain

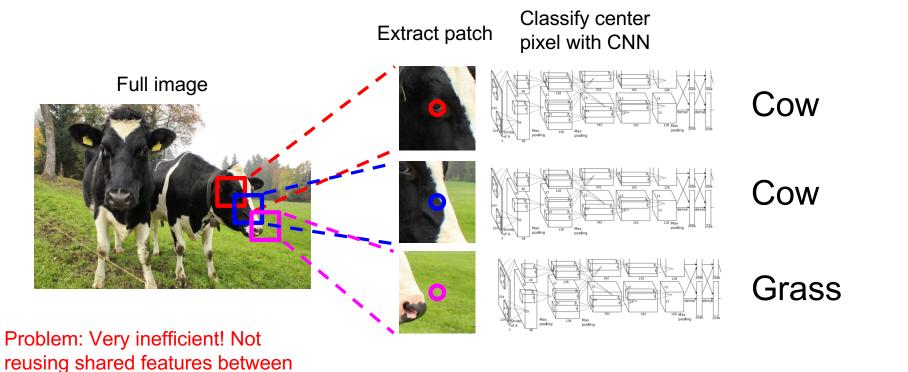
Semantic Segmentation Idea: Sliding Window



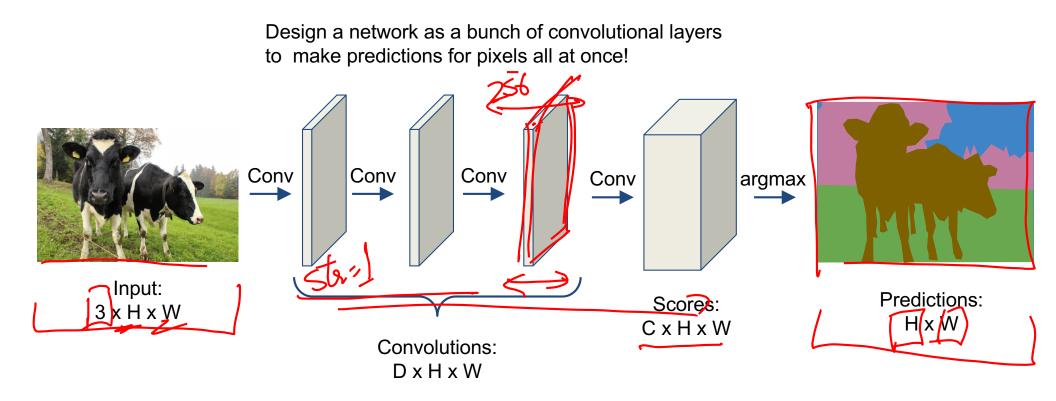
Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013 Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014

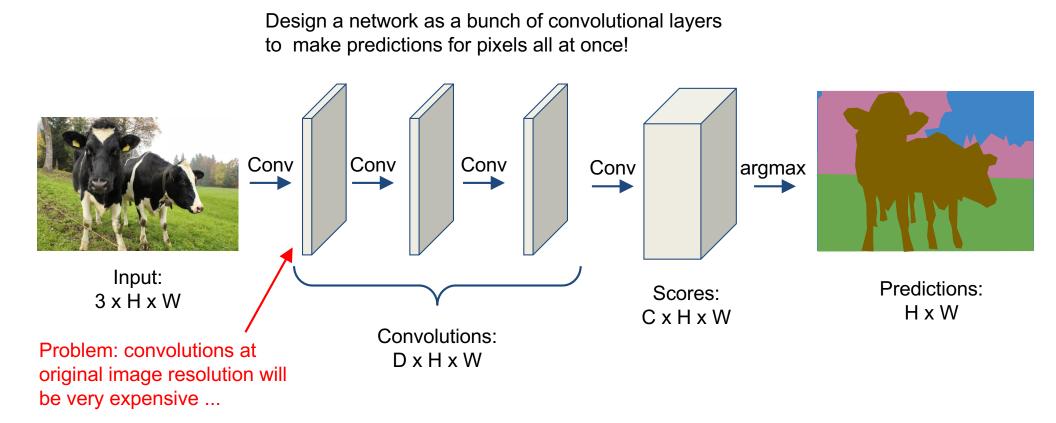
Semantic Segmentation Idea: Sliding Window

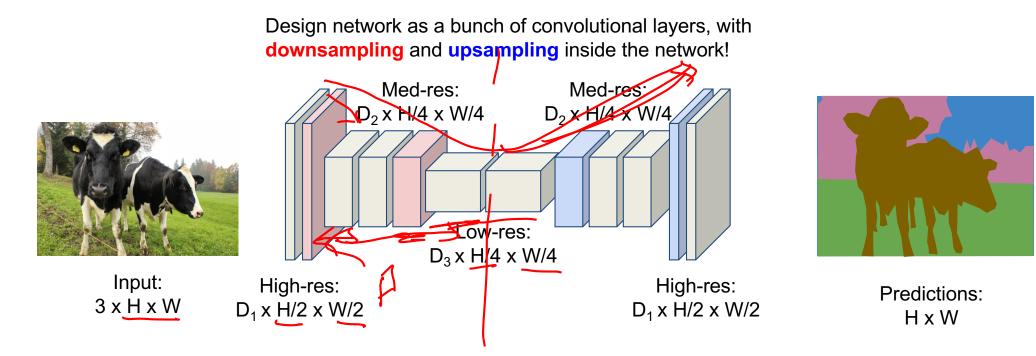
overlapping patches



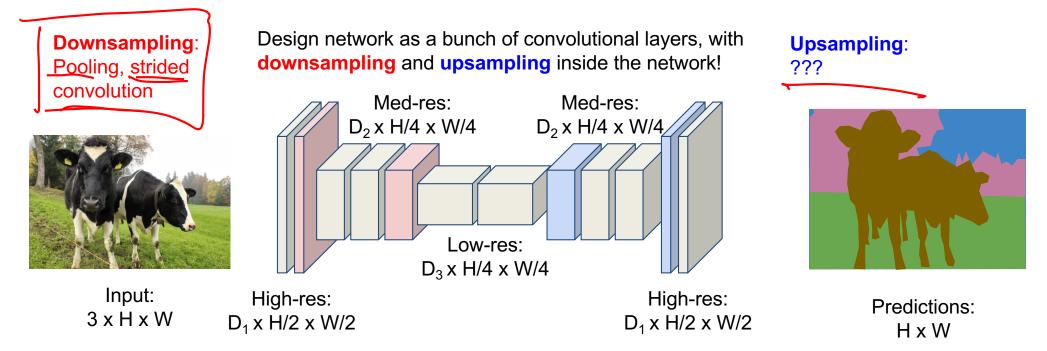
Farabet et al, "Learning Hierarchical Features for Scene Labeling," TPAMI 2013 Pinheiro and Collobert, "Recurrent Convolutional Neural Networks for Scene Labeling", ICML 2014



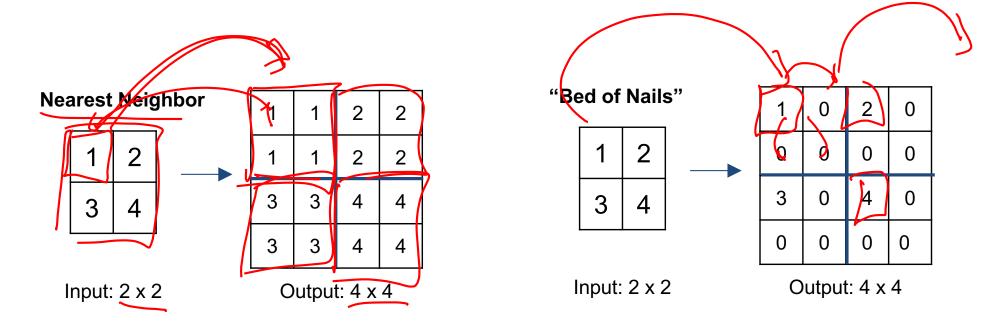




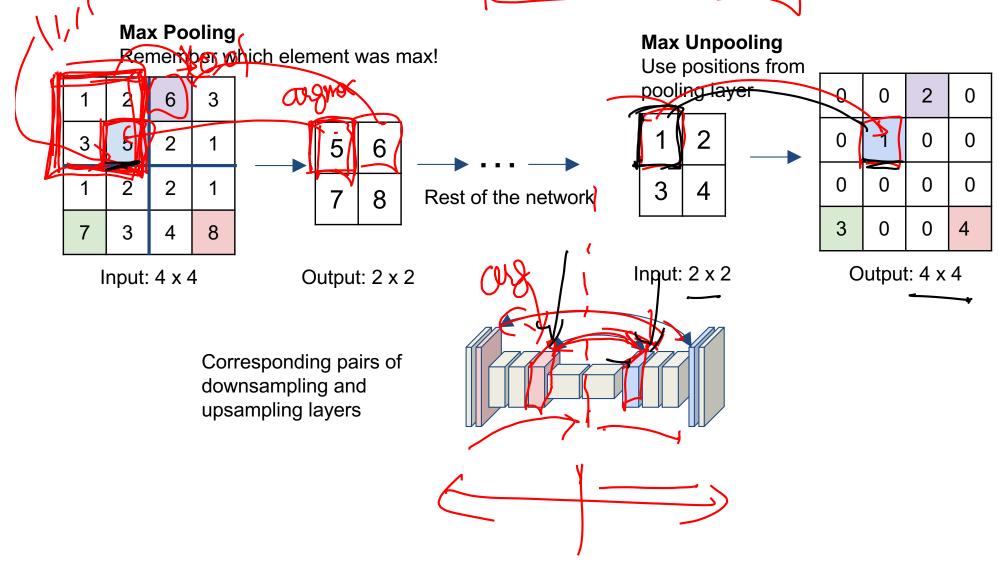
Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015



Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015 In-Network upsampling: "Unpooling"

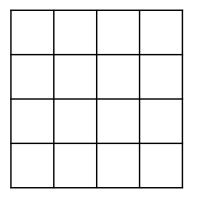


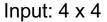
In-Network upsampling: "Max Unpooling"

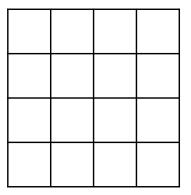


Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recall:Typical 3 x 3 convolution, stride 1 pad 1

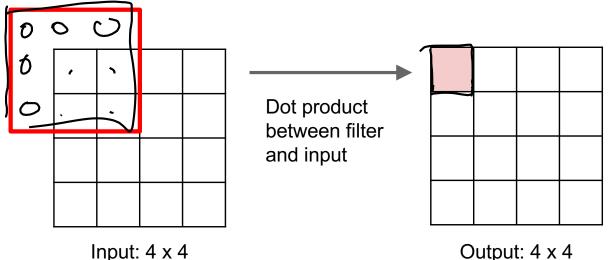


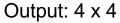




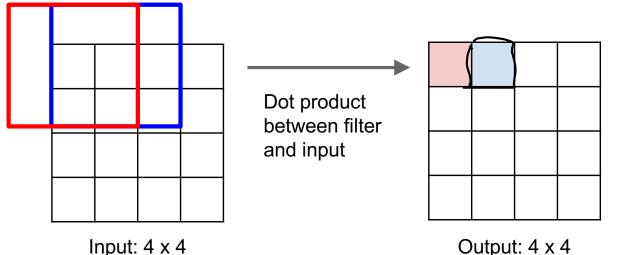
Output: 4 x 4

Recall: Normal 3 x 3 convolution, stride 1 pad 1



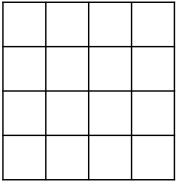


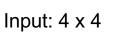
Recall: Normal <u>3 x 3 convo</u>lution, stride 1 pad 1



Output: 4 x 4

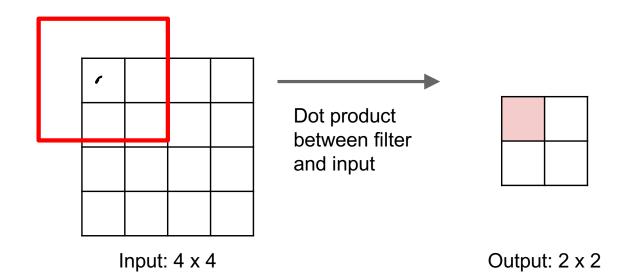
Recall: Normal 3 x 3 convolution, stride 2 pad 1



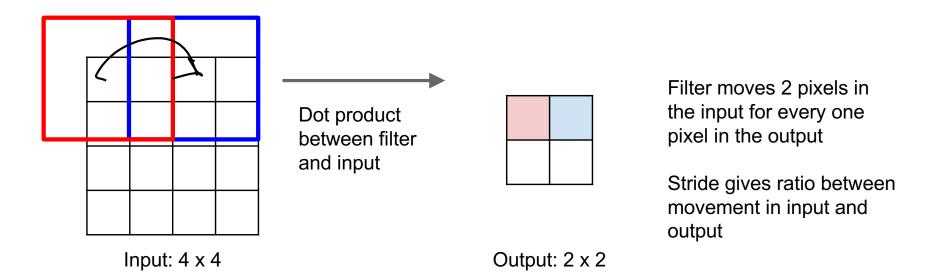


Output: 2 x 2

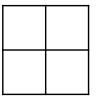
Recall: Normal 3 x 3 convolution, stride 2 pad 1

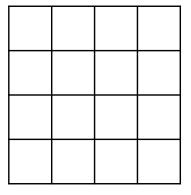


Recall: Normal 3 x 3 convolution, stride 2 pad 1



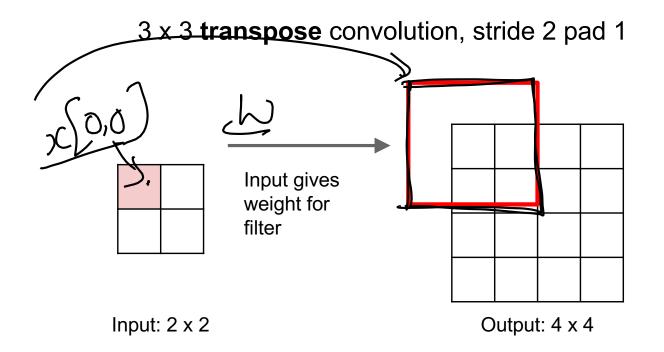
3 x 3 transpose convolution, stride 2 pad 1

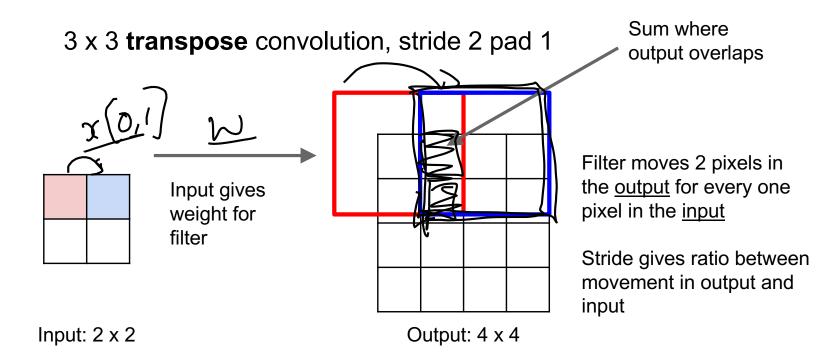


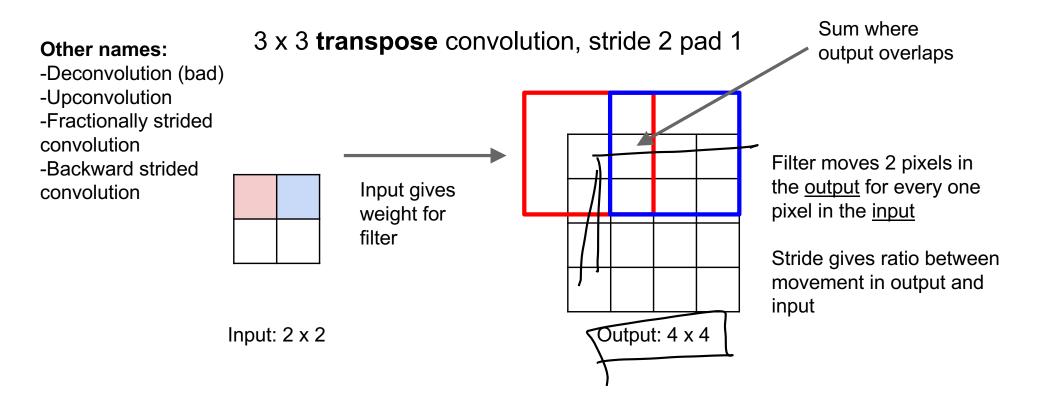


Input: 2 x 2

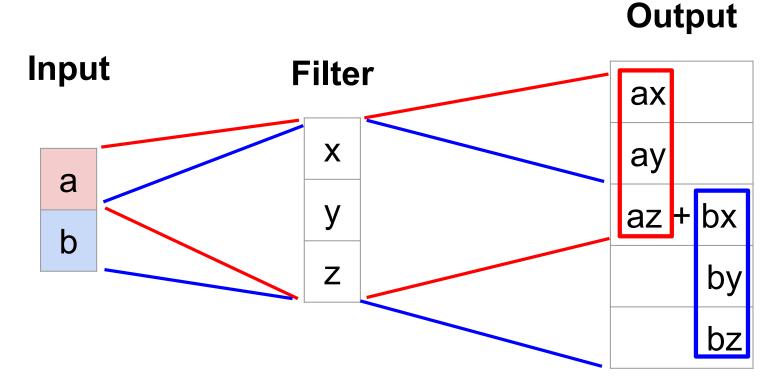
Output: 4 x 4







Transpose Convolution: 1D Example



Output contains copies of the filter weighted by the input, summing at where at overlaps in the output

Need to crop one pixel from output to make output exactly 2x input

Transposed Convolution

https://distill.pub/2016/deconv-checkerboard/