CS 7643: Deep Learning

Topics:
— Joeplitz matrices and convolutions = matrix-mult
—_Dilated/a-trous convolutions
— Backprop in conv layers
— Tl'rans@:! convolutions
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Administrativia

« HW1 extension
— 09/22 09/25

« HW2 + PS2 both coming out on 8922 09/25

* Note on class schedule coming up

— Switching to paper reading starting next week.
— https://docs.qoogle.com/spreadsheets/d/1TuN31YcWAG6Nnhjv @

YPUVKMy3vHWW-h9MZCe8yKCgwORsU/edit#gid=0

—
* First review due:ﬁ(uéOQ/

» First student presentation due: Thr 09/28
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Recap of last time
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Convolutional Neural Networks

(without the brain stuff)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Convolutional Neural Networks
Input layer /_(\504 feature maps

1 (CI) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

convolution layer | sub-sampling layer | convolution layer l sub-sampling layer | fully connected MLP ]

C3: f. maps 16@10x10

INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28
32x32 S2: f. maps

6@14x14

C5: layer

120 F6 layer OUTPUT

]
FuII conr#echon GaUSS|an connections
Convolutions SUWQ Convolutions Subsampllng Full connect|on

(C) Dhruv Batra Image Credit: Yann LeCun, Kevin Murphy 3)
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FC VS Conv Layer
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Convolutioh kayer —
Y 32x32x§image7f‘ LP—T ,\(

5x5x3 filter w

. ~ ¥~ 1 number:
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
/ 32 (i.e. 5*5*3 = 75-dimensional dot product + bias)
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Convolution Layer

JE

«  .32X32x3 image

Fx5x3 f @
=

—0 >

convolve (slide) over all

32

spatial locations

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

activation map

-
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For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

28

>

Convolution Layer

P

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Preview: ConvNet is a sequence of Convolutional Layers, interspersed with

activation functions

32

CONYV,
RelL

.__-efg'i
5x5x3
filters

—

- ONV,
ReLU

e.g/10
5x5x
= filters

’3\/7'9/@

A
; o~

24

CONV,
RelLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Bl

N eg.N=7,F=3:
—~ stride1=>(7-3)/1+1=5
stride2=>(7-3)/2+1=3
\ stride 3=>(7-3)/3+1=2.33:\

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In practice: Common to zero pad the border

0

0

0

0

0

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

| O | O |0 ]| o

in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with

|| (E=1)/20 (will preserve size spatially)

e.g. F = 3 => zero pad with 1
F =5 => zero pad with 2

F =7 =>zero pad with 3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



K

EN — f
(btw,]1x1\convolution layers make perfect sense)
—

e

1x1 CONV

(each filter has size
1x1x64, and performs a

N

64-dimensional dot
product) /‘56

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location of
features.
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POOLING

Si epth’slice
4

dim

max pool with 2x2 filters 2 /j :g

and stride 2
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Pooling Layer: Examples
Max-pooling:

hi(r,c) /Z/ max Sh” 1(_ C)
— EN(r), cEN(c) fl=—

B —— e ——

~

Average-pooling:

h? — RN F, é
(0 [N/Tm_,ﬁ@m 0

L2-pooling: — \

hi' (1, ¢) = D hi™ (7€)
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Classical View

convolution lfully connected ‘
o — Al

13 x 13

g [ x

5124815

- T
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kA e
A

A H hidden units

D

\

M

MxMxN, M smal

(

Fully conn. layer
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Classical View = Inefficient

P aqfoplane? no.
y z ’—F
) %‘% =£>|/person? yes.
LN || I .
S SN VS
monitor?no.
3.Compute —#-Clagsify|

CNN features regions
¥

1. Input 2. Extract region
image  proposals (~2k)

(C) Dhruv Batra 19



Classical View

convolution fully connected

\e— ‘

221 X 224, 55X 55 27 x 27 13 x 13
(C) Dhruv Batra 20




Re-interpretation

« Just squint a little!

(— >

convolution

\' AL, /i%/

)
l 55 x 55 07 x 27 13 x 13
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“Fully Convolutional” Networks

G
. E;_ n run op-an image of any size! ﬂ%
]

b X

_,\ [
convolulion-
\> N m /
ﬁ/ Gt “ ‘\L

- 7
)/ &

H < Wi4 H/8 <W/85 H/16 x m H/32 x /32
\ =
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> H hidden units /

Ix1 € maps
| N p
\ ' /

Fully conn.Tayer /

Conv. layer (H kernels of size MxMxN)
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K hidden units /
1x1xK feature maps

H hidden units /
1x1xH feature maps

MxMxN, M smal

.

v

/

v

Fully conn. layer /
Conv. layer (H kernels of size MxMxN)

Fully conn. layer /

©) Dhruw Bat Conv. layer (K kernels of size 1x1xH) o
ruv batra



516W1ng !ll"y connecteg Iayers as convolutlonal |ayers CIlaEIGS GHICICIlt usc

of convnets on bigger images (no need to slide windows but unroll network
over space as needed to re-use computation).

TRAINING TIME

\
Input

Image

TEST TIME

(C) Dhruv Batra 25



iewing fully connected layers as convolutional layers enables etficient use
of convnets on bigger images (no need to slide windows but unroll network
over space as needed to re-use computation).

TRAINING TIME
Image
TEST TIME ~ CNNs work on any image sizel
Inpu

Unrolling 1s order of magnitudes more eficient than sliding windows!
(C) Dhruv Batra 26



Benefit of this thinking

 Mathematically elegant

p—

« Efficiency
— Can run network on arbitrary image

— Without multiple crops
——

(C) Dhruv Batra 27



Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)

- Typical architectures 100k
. (FC-RELUYK SOFTMAX

where N is usually up to ~5, Mis large, 0 <=K<=2.
- but recent advances such as]ﬁesNet/GoogLeNet \
challenge this paradigm

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today

* Convolutional Neural Networks
— Toeplitz matrices and convolutions = matrix-mult
— Dilated/a-trous convolutions T
— Backprop in conv layers
— Transposed convolutions

(C) Dhruv Batra 29



Toeplitz Matrix

» Diagonals are constants

_n+1

(C) Dhruv Batra 30



Why do we care?

——

. (Discrete) Convolution =Matrix Multiplication
— with Toeplitz Matrices

DW'”W& T 0 ... 0 0]
B .0 0
k=2 Wg_1 N . 0 0

(C) Dhruv Batra 0 0 : 0 W1 31
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"Convolution of box signal with itself2" by Convolution_of _box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk)
- Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons -
https://commons.wikimedia.org/wiki/File:Convolution_of box_signal_with_itself2.gif#/media/File:Convolution_of _box_signal_wi
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Plan for Today

« Convolutional Neural Networks
— Toeplitz matrices and convolutions = matrix-mult
—] Dilated/a-trous convoluignj
=
— Backprop in conv layers
— Transposed convolutions

(C) Dhruv Batra 34
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Dilated Convolutions

536 B / ﬂ /rj

EIEAEY

5
L, e

2D
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(recall:)
(N - k) / stride + 1

(C) Dhruv Batra 38



(a) (b)

Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of
resolution or coverage. (a) F; is produced from Fj by a 1-dilated convolution; each element in F}
has a receptive field of 3 x 3. (b) F5 is produced from F; by a 2-dilated convolution; each element
in F5 has a receptive field of 7x 7. (¢) F3 1s produced from F3 by a 4-dilated convolution; each
element in F3 has a receptive field of 15 x 15. The number of parameters associated with each layer
is identical. The receptive field grows exponentially while the number of parameters grows linearly.

(C) Dhruv Batra Figure Credit: Yu and Koltun, ICLR16 39




Plan for Today

* Convolutional Neural Networks
— Toeplitz matrices and convolutions = matrix-mult
— Dilated/a-trous convolutions
— Backprop in conv layers
— Transposed convolutions

(C) Dhruv Batra 40



Backprop in Convolutional Layers
X > -~ c, =G =1
1 b

(C) Dhruv Batra 41



Backprop in Convolutional Layers




?ackprop Ig Convol tlonal Layers

B}iﬂ ﬂ Q’L k,a—l,c kz—f
l
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Plan for Today

* Convolutional Neural Networks
— Toeplitz matrices and convolutions = matrix-mult
— Dilated/a-trous convolutions
— Backprop in conv layers
- -
— Transposed convolutions

S——,
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Transposed Convolutions

. Deconvolution (bad) J
y&nvolution

@ctionally ‘strided convolution
Backward strided convolution

(C) Dhruv Batra 46



So far: Image Classification

Class Scores
Cat: 0.9

> Dog: 0.05
Fully-Connected: ~_- 0 01

4096 to 1000

Figure copyright Alex Krizhevsky, Ilya Sutskever, and Vector'
. ’ ) .
This image is CCO public domain Geoffrey Hinton, 2012. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Other Computer Vision Tasks

Semantic Classification Object Instance
Segmentation + Localization Detection Segmentation

—

‘,h J

B o §
. ‘ " Y ;»47.
- = S

GRASS, CAT, CAT DOG, DOG, CAT  DOG, DOG, CA
\ TREE, SKY U U Y,
Y Y Y
No objects, just pixels Single Object Multiple Object Thisimage s CCO publcdomai

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation

Label each pixel in the
image with a category
label

Don’t differentiate
instances, only care about
pixels

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Sliding Window

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Sliding Window

Classify center
Extract patch pixel with CNN

Problem: Very inefficient! Not
reusing shared features between

overlapping patCheS Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013
Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

a4 4%

Conv argmax
—> —>

Input: \& ~J, o
l | BE H x éﬁ/ } Y- Scores: Predictions:
CxHxW L\&J

Convolutions: —_—
DxHxW

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Fully Convolutional

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

L . N «« Conv
\ A o]

Input: N\

Conv

.

Id

Conv

.

Id
J

3xHxW

Problem: convolutions at
original image resolution will
be very expensive ...

~

Convolutions:
DxHxW

Conv

argmax
0

Scores: Predictions:
CxHxW HxW

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Semantic Segmentation Idea: Fully Convolutional

Design network as a bunch of convolutional layers, with
downsampling and upsampling inside the network!

Med-res: Med-res:
NP, x M4 x W/4 ’ D /4%

Ow-res:
i D x HI4 x W/4 i _/
Input: High-res: High-res:
3xHxW Dy x H/2 x W/2 D,y x H/2 x W/2
— —

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Predictions:
HxW




Semantic Segmentation Idea: Fully Convolutional

Downsampling: Design network as a bunch of convolutional layers, with Upsampling:
Pooling, strided downsampling and upsampling inside the network! 277
~———
convolution Med-res: Med-res:
D, x H/4 x W/4 D, x H/4 x W/4%

Low-res:
Ll D, x H/4 x W/4 i -/
Input: High-res: High-res: Predictions:
3xHxW D, x H/2 x W/2 D1 x H/2 x W/2 Hx W

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In-Network upsampling: “Unpooling”

1 H t1) N
Nearest ed of Nails 10 2} )
? I 1AN
2 12 oo oo
—> | —> |
4 3|4 3|0 )ﬂ 0
N 3|1 34| 4 olololo
Input: 2 x 2 Output: 4 x i~ Input: 2 x 2 Output: 4 x 4

\ —_—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In-Network upsampling:]i‘l\/I;Unpo@

(
\\/ l Max Pooling

Max Unpooling

me element was max!
= 4
1 6| 3
3 2 | 1 51 6
> — e —
112]12|1 7 | 8 | Restof the network
/71314 |8 (
Input: 4 x 4 Output: 2 x 2 \ Ingut: 2 x 2
N

Corresponding pairs of
downsampling and
upsampling layers

n
\

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

2|0
00
00
0 (4
Output: 4 x 4
-—




Learnable Upsampling:ﬁranspose Convolutig'J

Recall:Typical 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 1 pad 1

O
N >
P——
. Dot product
N between filter
and input
Input: 4 x 4 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convalution, stride 1 pad 1

Dot product
between filter
and input

Input: 4 x 4 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4 Output: 2 x 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

—

Dot product
between filter
and input

Input: 4 x 4 Output: 2 x 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

N
/4 B

Input: 4 x 4

Slide Credit:

Dot product
between filter
and input

Fei-Fei Li, Justin Johnson,

Output: 2 x 2

Serena Yeung, CS 231n

Filter moves 2 pixels in
the input for every one
pixel in the output

Stride gives ratio between
movement in input and
output



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4
/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

Mtion, stride 2 pad 1

oo )

>

Input gives
weight for
filter

Input: 2 x 2 Output: 4 x 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution,

(o] 1
S

Input gives

>

stride 2 pad 1

weight for
filter

Input: 2 x 2

Slide Credit: Fei-Fei Li, Justin Johnson,

Output: 4 x 4

Serena Yeung, CS 231n

Sum where
output overlaps

Filter moves 2 pixels in
the output for every one
pixel in the input

Stride gives ratio between
movement in output and
input



Learnable Upsampling: Transpose Convolution

Other names: 3 x 3 transpose convolution, stride 2 pad 1 iﬁtr;u‘f'gsﬁlaps
-Deconvolution (bad)

-Upconvolution

-Fractionally strided

convolution >

-Backward strided |

Filter moves 2 pixels in

convolution Input gives / the output for every one
weight for / pixel in the input

filter /
Stride gives ratio between

) movement in output and
input

Input: 2 x 2 utput: 4 x 4

-

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Transpose Convolution: 1D Example
Output

Input Filte"< ax
X a
. / y
az|b
5 y az [+|bx
Z

|

/
\ b

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Output contains
copies of the filter
weighted by the
input, summing at
where at overlaps in
the output

Need to crop one
pixel from output to
make output exactly
2x input



- _________________0___0000__]
Transposed Convolution

 https://distill.pub/2016/deconv-checkerboard/
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