
CS 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Stride, padding 
– Pooling layers
– Fully-connected layers as convolutions
– Backprop in conv layers



Invited Talks
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• Sumit Chopra on CNNs for Pixel Labeling 
– Head of AI Research @ Imagen Technologies

• Previously Facebook AI Research

– Tue 09/26, in class



Administrativia
• HW1 due soon

– 09/22

• HW2 + PS2 both coming out on 09/22

• Note on class schedule coming up
– Switching to paper reading starting next week. 
– https://docs.google.com/spreadsheets/d/1uN31YcWAG6nhjv

YPUVKMy3vHwW-h9MZCe8yKCqw0RsU/edit#gid=0

• First review due: Tue 09/26

• First student presentation due: Thr 09/28
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Paper Reading Intuition: 
Multi-Task Learning
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CS 7643: Deep Learning

Dhruv Batra 
School of Interactive Computing

Georgia Tech

www.cc.gatech.edu/classes/AY2018/cs7643_fall/
piazza.com/gatech/fall2017/cs7643

Canvas: gatech.instructure.com/courses/772
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Lectures Paper of the Day



Paper Reviews
• Length

– 200-400 words. 
• Due: Midnight before class on Piazza

• Organization
– Summary:

• What is this paper about? What is the main contribution? Describe the main approach & results. Just 
facts, no opinions yet.

– List of positive points / Strengths:
• Is there a new theoretical insight? Or a significant empirical advance? Did they solve a standing open 

problem? Or is a good formulation for a new problem? Or a faster/better solution for an existing 
problem? Any good practical outcome (code, algorithm, etc)? Are the experiments well executed? 
Useful for the community in general?

– List of negative points / Weaknesses:
• What would you do differently? Any missing baselines? missing datasets? any odd design choices in the 

algorithm not explained well? quality of writing? Is there sufficient novelty in what they propose? Has it 
already been done? Minor variation of previous work? Why should anyone care? Is the problem 
interesting and significant?

– Reflections
• How does this relate to other papers we have read? What are the next research directions in this line of 

work?
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Presentations
• Frequency

– Once in the semester: 5 min presentation.

• Expectations
– Present details of 1 paper

• Describe formulation, experiment, approaches, datasets
• Encouraged to present a broad picture
• Show results, videos, gifs, etc.

– Please clearly cite the source of each slide that is not your 
own. 

– Meet with TA 1 week before class to dry run presentation 
• Worth 40% of presentation grade
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Administrativia
• Project Teams Google Doc

– https://docs.google.com/spreadsheets/d/1AaXY0JE4lAbHvo
DaWlc9zsmfKMyuGS39JAn9dpeXhhQ/edit#gid=0

– Project Title
– 1-3 sentence project summary TL;DR
– Team member names + GT IDs
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Recap of last time
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Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor
Q: What is a max gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor
max gate: gradient router
Q: What is a mul gate? 

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor
max gate: gradient router
mul gate: gradient switcher

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Duality in Fprop and Bprop
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Key Computation in DL: Forward-Prop
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f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Q: what is the 
size of the 
Jacobian matrix?

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Jacobians of FC-Layer
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Jacobians of FC-Layer

(C) Dhruv Batra 19



Convolutional Neural Networks
(without the brain stuff)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example:  200x200 image
40K hidden units

~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough          
training samples anyway..

Fully Connected Layer

Slide Credit: Marc'Aurelio Ranzato
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Example: 200x200 image
40K hidden units
Filter size: 10x10

4M parameters

Note: This parameterization is good when 
input image is registered (e.g., face 
recognition).

Locally Connected Layer

Slide Credit: Marc'Aurelio Ranzato
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STATIONARITY? Statistics is similar at 
different locations

Note: This parameterization is good when 
input image is registered (e.g., face 
recognition).

Example: 200x200 image
40K hidden units
Filter size: 10x10

4M parameters

Locally Connected Layer

Slide Credit: Marc'Aurelio Ranzato
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Share the same parameters across different 
locations (assuming input is stationary):
Convolutions with learned kernels

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato



Convolutions for mathematicians

(C) Dhruv Batra 25



(C) Dhruv Batra 26

"Convolution of box signal with itself2" by Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk) 
- Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons -

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif#/media/File:Convolution_of_box_signal_wi
th_itself2.gif



Convolutions for computer scientists
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Convolutions for programmers
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Convolution Explained
• http://setosa.io/ev/image-kernels/

• https://github.com/bruckner/deepViz
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Plan for Today
• Convolutional Neural Networks

– Stride, padding 
– Pooling layers
– Fully-connected layers as convolutions
– Backprop in conv layers
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Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 31



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 32



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 33



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 34



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 35



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 36



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 37



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 38



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 39



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 40



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 41



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 42



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 43



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 44



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 45



Mathieu et al. “Fast training of CNNs through FFTs” ICLR 2014

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 46



*        
-1 0  1
-1 0  1
-1 0  1

=        

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 47



Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10

10K parameters

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 48



3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1
10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Convolutional Neural Networks
a
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INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy
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FC vs Conv Layer



32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3
28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Preview: ConvNet is a sequence of Convolutional Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10
24

24

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Preview [Zeiler and Fergus 2013] Visualization	of	VGG-16	by	Lane	McIntosh.	VGG-16	
architecture	from	[Simonyan	and	Zisserman	2014].

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



example 5x5 filters
(32 total)

one filter => 
one activation map

Figure	copyright	Andrej	Karpathy.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Convolutional Neural Networks
a
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INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy



preview:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit! 
cannot apply 3x3 filter on 
7x7 input with stride 3.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F = 5 => zero pad with 2
F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Remember back to… 
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….

10
24

24

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: 
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params      (+1 for bias)

=> 76*10 = 760

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(btw, 1x1 convolution layers make perfect sense)

64
56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: CONV 
layer in Torch

Torch is licensed under BSD 3-clause.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: CONV 
layer in Caffe

Caffe is licensed under BSD 2-Clause.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



The brain/neuron view of CONV Layer

32

32

3

An activation map is a 28x28 sheet of neuron 
outputs:
1. Each is connected to a small region in the input
2. All of them share parameters

“5x5 filter” -> “5x5 receptive field for each neuron”28

28

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



3072
1

Reminder: Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10

Each neuron 
looks at the full 
input volume 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



two more layers to go: POOL/FC

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to the 
exact location of the eye?

Pooling Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 94



By “pooling” (e.g., taking max) filter

responses at different locations we gain 
robustness to the exact spatial location of 
features.

Pooling Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 95



Pooling layer
- makes the representations smaller and more manageable 
- operates over each activation map independently:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

dim 1

dim 2

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Max-pooling:

Average-pooling:

L2-pooling:

L2-pooling over features:

Pooling Layer: Examples

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 98
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Common settings:

F = 2, S = 2
F = 3, S = 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Conv.

layer

hn− 1 hn

Pool.

layer

hn 1

If convolutional filters have size KxK and stride 1, and pooling layer has pools 
of size PxP, then each unit in the pooling layer depends upon a patch (at the input 
of the preceding conv. layer) of size: (P+K-1)x(P+K-1)

Pooling Layer: Receptive Field Size

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 101



Conv.

layer

hn− 1 hn

Pool.

layer

hn 1

If convolutional filters have size KxK and stride 1, and pooling layer has pools 
of size PxP, then each unit in the pooling layer depends upon a patch (at the input 
of the preceding conv. layer) of size: (P+K-1)x(P+K-1)

Pooling Layer: Receptive Field Size

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 102



Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural 

Networks

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Convolutional Nets
• Example:

– http://yann.lecun.com/exdb/lenet/index.html
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INPUT 
32x32

Convolutions SubsamplingConvolutions

C1: feature maps 
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

Image Credit: Yann LeCun, Kevin Murphy



Note: After several stages of convolution-pooling, the spatial resolution is 
greatly reduced (usually to about 5x5) and the number of feature maps is 
large (several hundreds depending on the application).

It would not make sense to convolve again (there is no translation invariance 
and support is too small). Everything is vectorized and fed into several fully 
connected layers.

If the input of the fully connected layers is of size 5x5xN, the first fully 
connected layer can be seen as a conv. layer with 5x5 kernels.
The next fully connected layer can be seen as a conv. layer with 1x1 kernels. 

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 105



Classical View

(C) Dhruv Batra 106Figure Credit: [Long, Shelhamer, Darrell CVPR15]



MxMxN, M small

H hidden units

Fully conn. layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 107



Classical View = Inefficient
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Classical View

(C) Dhruv Batra 109Figure Credit: [Long, Shelhamer, Darrell CVPR15]



Re-interpretation
• Just squint a little!

(C) Dhruv Batra 110Figure Credit: [Long, Shelhamer, Darrell CVPR15]



“Fully Convolutional” Networks
• Can run on an image of any size!

(C) Dhruv Batra 111Figure Credit: [Long, Shelhamer, Darrell CVPR15]



MxMxN, M small

H hidden units / 
1x1xH feature maps

Fully conn. layer /
Conv. layer (H kernels of size MxMxN)

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 112



MxMxN, M small

H hidden units / 
1x1xH feature maps

Fully conn. layer /
Conv. layer (H kernels of size MxMxN)

K hidden units / 
1x1xK feature maps

Fully conn. layer /
Conv. layer (K kernels of size 1x1xH)

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 113



Viewing fully connected layers as convolutional layers enables efficient use 
of convnets on bigger images (no need to slide windows but unroll network 
over space as needed to re-use computation).

CNN
Input

Image

CNN
Input

Image
Input

Image

TRAINING TIME

TEST TIME

x

y

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 114



CNN
Input

Image

CNN
Input

Image

TRAINING TIME

TEST TIME

x

y

Unrolling is order of magnitudes more eficient than sliding windows!

CNNs work on any image size!

Viewing fully connected layers as convolutional layers enables efficient use 
of convnets on bigger images (no need to slide windows but unroll network 
over space as needed to re-use computation).
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Re-interpretation
• Just squint a little!
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“Fully Convolutional” Networks
• Can run on an image of any size!
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“Fully Convolutional” Networks
• Up-sample to get segmentation maps
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Benefit of this thinking
• Mathematically elegant

• Efficiency
– Can run network on arbitrary image 
– Without multiple crops
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Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like 

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GoogLeNet 

challenge this paradigm

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


