CS 7643: Deep Learning

Topics:
— Stride, padding
— Pooling layers
— Fully-connected layers as convolutions
— Backprop in conv layers

Dhruv Batra
Georgia Tech




Invited Talks

« Sumit Chopra on CNNs for Pixel Labeling

— Head of Al Research @ Imagen Technologies
* Previously Facebook Al Research

— Tue 09/26, in class

Sumit Chopra

sumit [at] imagentechnologies [dot] com

Background

I am the head of A.I. Research at Imagen Technologies: a well funded stealth startup working towards transforming healthcare
using artificial intelligence. I am interested in advancing Al research with a particular focus towards deep learning and healthcare.

Before Imagen, I was a research scientist at Facebook AI Research (FAIR), where I worked on understanding natural language. I
graduated with a Ph.D., in computer science from New York University under the supervision of Prof. Yann LeCun. My thesis
proposed a first of its kind neural network model for relational regression, and was a conceptual foundation for a startup for
modeling residential real estate prices. Following my Ph.D., I joined AT&T Labs — Research as a scientist in the machine
learning department. There I focused on building novel deep learning models for speech recognition, natural language processing,

(C) D h ruv Batra computer vision, and other areas of machine learning, such as, recommender systems, computational advertisement, and ranking.
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Administrativia

« HW1 due soon
— 09/22

« HW2 + PS2 both coming out on 09/22

* Note on class schedule coming up

— Switching to paper reading starting next week.

— https://docs.qoogle.com/spreadsheets/d/1TuN31YcWAG6Nnhjv
YPUVKMy3vHWW-h9MZCe8yKCqwORsU/edit#gid=0

 First review due: Tue 09/26

* First student presentation due: Thr 09/28

(C) Dhruv Batra 3



- 0000000000000
Paper Reading Intuition:

Multi-Task Learning

Cornell University
Library

arXiv.org

Shared Shared
... Layer N

Paper of the Day

" Frempry Agrou_p of people
Deep NN Generating| |Shopping at an
RNN outdoor market.

There are many
tables at the
fruit stand.

W
B

Dhruv Batra
School of Interactive Computing
Georgia Tech

arXiv.org
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Paper Reviews

* Length
— 200-400 words.
« Due: Midnight before class on Piazza

« Organization
— Summary:

* What is this paper about? What is the main contribution? Describe the main approach & results. Just
facts, no opinions yet.

— List of positive points / Strengths:

» Is there a new theoretical insight? Or a significant empirical advance? Did they solve a standing open
problem? Or is a good formulation for a new problem? Or a faster/better solution for an existing
problem? Any good practical outcome (code, algorithm, etc)? Are the experiments well executed?
Useful for the community in general?

— List of negative points / Weaknesses:

* What would you do differently? Any missing baselines? missing datasets? any odd design choices in the
algorithm not explained well? quality of writing? Is there sufficient novelty in what they propose? Has it
already been done? Minor variation of previous work? Why should anyone care? Is the problem
interesting and significant?

— Reflections
* How does this relate to other papers we have read? What are the next research directions in this line of
work?
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Presentations

* Frequency
— Once in the semester: 5 min presentation.

« EXxpectations

— Present details of 1 paper
» Describe formulation, experiment, approaches, datasets
* Encouraged to present a broad picture
« Show results, videos, gifs, etc.

— Please clearly cite the source of each slide that is not your
own.

— Meet with TA 1 week before class to dry run presentation
» Worth 40% of presentation grade
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* Project Teams Google Doc

— https://docs.qgoogle.com/spreadsheets/d/1AaXY0QOJE4IAbHvo
DaWIc9zsmfKMyuGS39JAn9dpeXhhQ/edit#qid=0

— Project Title
— 1-3 sentence project summary TL;DR
— Team member names + GT IDs
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Recap of last time
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Patterns in backward flow
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Patterns in backward flow
Wy =Nyt W

PN
_add gate: gradient distributor x 3.00 L _’(

-20.00
(*2 —r
1.00

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Patterns in backward flow

add gate: gradient distributor

Q: What is a max gate?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Patterns in backward flow

add gate: gradient distributor

max gate: gradient router

Q: What is a mul gate?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Patterns in backward flow

add gate: gradient distributor x 3.00
max gate: gradient router

mul gate: gradient switcher

1000 55 _-20.00
2.00 1.00

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



FDuaIity in Fprop and Bprop
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Key Computation in DL: Forward-Prop
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5acobian;of(ReLU 0
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4096-d :t f(x) = max(o,x) :t 4096-d
input vector :Kl (elementwise) :Ki output vector
Q: what is the
size of the
Jacobian matix?
J

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Convolutional Neural Networks

(without the brain stuff)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Fully Connected Layer 40

Example: 200x200 1mage
40K hidden units
‘ ~2B parameters!!!

- Spatial correlation 1s local
- Waste of resources + we have not enough

training samples anyway..
21



43 Locally Connected Layer

ﬁ@

40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization 1s good when
input image 1s registered (e.g., face

‘ recognition).

Slide Credit; Marc'Aurelio Ranzato 22




LocaIIy Connected Layer

STAT Y ? Statistics is similar at
nt locatlons [ ~
H /4&
/\ /
#7
L/ g’ Example: 200x200 image
Y 40K hidden units

‘ Filter size: 10x10

4M parameters
\. _

Note: This parameterization 1s good when
input image 1s registered (e.g., face

_— )
( ’ recognition).

Slide Credit; Marc'Aurelio Ranzato 23




Convolutional Layer

Share the same parameters across different
locations (assuming input is stationary):
Convolutions with learned kernels

\\

24




Convolutions for mathematicians
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"Convolution of box signal with itself2" by Convolution_of _box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk)
- Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons -
https://commons.wikimedia.org/wiki/File:Convolution_of box_signal_with_itself2.gif#/media/File:Convolution_of _box_signal_wi
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Convolutions for computer scientists
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Convolutlons for programmers

WA
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Convolution Explained

» http://setosa.io/ev/iimage-kernels/

 https://github.com/bruckner/deepViz
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Plan for Today

« Convolutional Neural Networks
— Stride, padding
~ Pooling layers
— Fully-connected layers as convolutions
— Backprop in conv layers

(C) Dhruv Batra 30



Convolutional Layer




Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer

Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters
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Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
Wz
1 10 x 3072 1 [0
3072 * 10
weights

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
Wax
1 10 x 3072 1 ﬁ)
3072 X 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Convolutional Neural Networks

Vohr 7

Inpuct layer (S1) 4 feature maps >
’ L }, (CI) 4 feature maps (S2) 6 feature s (C2)l 6 feature maps 3
N =
| B g |
— .
— T
l )L/r \ convolution layer\ l convolution layer l sub-sampling layer | fully connected MLPI
J X —3

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28x28
32x32 X S2: f. maps

6@14x14

C5: layer F6: laver OUTPUT

—
‘ Full conAection Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

(C) Dhruv Batra Image Credit: Yann LeCun, Kevin Murphy 51
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FC VS Conv Layer
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Convolution Layer

32x32x3 image -> preserve spatial structure

2 height

43 depth

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Convolution Layer

32x32x3 image

bk 4<G
Ox5xg filter

32 £/
I Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



CO nVOI Ution Layer Filters always extend the full

- depth of the input volume
32x32x3 image /

5x5x; filter

32 £/
I Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

32

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Convolutioh kayer
. — 32x32x3 mag? LP— |

s" ‘ 5x5x3 filter w
the result of taking a dot product between the

4
filter and a small 5x5x3 chunk of the image

Iz
/ 32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

)
!
e w'z+b

\

1\ — |

N

—

v

¥~ 1 number:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Convolution Layer

activation map

«  .32X32x3 image

Fx5x3 fi@ /
=
= w
>
convolve (slide) over all
spatial locations
32 28/35

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Convolution Layer

B

—  32x32x3 image
5x5x3 filter

y

——0

32

>

convolve (slide) over all

spatial locations

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

consider a second, green filter

activation maps

28

28



For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

28

>
Convolution Layer

| UL 28
3 /Q/ 6 Q
/ ) @"

We stack these up to get a “new image” of siz x28x6!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32 28

//—7>

e.g. 6
5x5x3
filters

32 28

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Preview: ConvNet is a sequence of Convolutional Layers, interspersed with

activation fu

32

L

—

nctions

CONYV,
RelL
e.g/6
oX5x3
filters

28

/%
f —

CONV,
RelLU
e.9{J10
5x5>g_Ib
filters

A ot

24

CONV,
RelLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Visualization of VGG-16 by Lane Mclintosh. VGG-16

[Zel/er and Fergus 2013] architecture from [Simonyan and Zisserman 2014].

Preview
Low-level Mid-level High-level Linearly
features | | features [ features —| separable |—

classifier

w_
i
-T"-‘f'"“

D 1
1
)

i |1

~
A
e %

n'-'a E !
e 4 1' d ¥

VGG-16 Convs_3

N
‘.
'. '1'.‘

VGG-16 Convi _

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ne filter => _
one activation map example 5x5 filters

R ’ - (32 total)
Activations:

SRSINERERONIITN NESESAENENEREERG
\ 0

Figure copyright Andrej Karpathy.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Convolutional Neural Networks

Inpuct layer (S1) 4 feature maps
L 1 (CI) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps
1
[iD :
jocesiiiy
(O O
e
I convolution layer | sub-sampling layer | convolution layer l sub-sampling layer | fully connected MLP ]
C3: f. maps 16@10x10
INPUT gg@ ggitzuge maps S4: f. maps 16@5x5
32x32 S2: f. maps C5: layer
6@14x14 I r 120 FG: fayer  QUTPUT
-l | | \\
[ |
Full conr#echon GaUSS|an connections

Convolutions Subsampling Convolutions Subsamplmg Full connectlon

(C) Dhruv Batra Image Credit: Yann LeCun, Kevin Murphy 64



preview:

RELU RELU RELU RELU RELU RELU
CONV lCONVl CONV lCONVl CONV lCONVl

v

bbb d b

car

rlick

@itplane

EEEEDY

03

Ll

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




A closer look at spatial dimensions:

activation map

 32x32x3 image

5x5x3 filter
=
28
@>@ > /

convolve (slide) over all
spatial locations

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



A closer look at spatial dimensions:

/
—

> x /X7 input (spatially)
assume 3x3 filter

L1—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



A closer look at spatial dimensions:

N7

/X7 input (spatially)
assume 3x3 filter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



A closer look at spatial dimensions:

14

/X7 input (spatially)
assume 3x3 filter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



A closer look at spatial dimensions:

/

4L

\ 7X7 input (spatially)

assume 3x3 filter

7 =@‘“‘°”t

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
¢ applied with stride 2
W stride <

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



A closer look at spatial dimensions:

yamX . .
VAN 7x7 input (spatially)
assume 3x3 filter
applied with stride 2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



A closer look at spatial dimensions:

[ N/, 7x7 input (spatially)

assume 3x3 filter
applied with stride 2
=> 3x3 output!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



A closer look at spatial dimensions:

m /X7 input (spatially)

4 <
/ L@ D\ assume 3x3 filter
0 0 applied with stride 3?
07 %

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



A closer look at spatial dimensions:

7
/X7 input (spatially)

assume 3x3 filter
applied with stride 3?

V4 doesn’t fit!
cannot apply 3x3 filter on
/X7 input with stride 3.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Bl

LS 4
M |(N - F) / stride]+ 1
N eg.N=7,F=3:
—~ stride1=>(7-3)/1+1=5
stride2=>(7-3)/2+1=3
\ stride 3=>(7-3)/3+1=233:\

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In practice: Common to zero pad the border

o

0

0

0

0

0

L e.g. input_7x7

3x3 filter, applied with stride 1

pad with/1 pixel border => what is the output?

OOO%

£

L

(recall:)

(N - F)/ stride +
D .’ T

\/_’

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In practice: Common to zero pad the border

0

0

0

0

0

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

| O | O |0 ]| o

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




In practice: Common to zero pad the border

0

0

0

0

0

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

| O | O |0 ]| o

in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with

(F-1)/2. (will preserve size spatially)

e.g. F = 3 => zero pad with 1
F =5 => zero pad with 2

F =7 =>zero pad with 3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Remember back to...
E.g..32x32 input convolved repeatedly with@gS filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is no d, doesn’t work well.

N-F — N\ -

32 28 iE :}i
.lﬂ N

CONV, CONV, CONYV,
RelLU RelLU RelLU

w
o
—
o

e.g.6 e.g. 10
OX9X3 SX5X6
32 fiters |4 *® fiiters | [/ %4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



N-F

Examples time: o / /

Input volume: 32x32x3!
{103 Sx5 filters with stride 1, pad é i

<
<

Output volume sze\

22 22X/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples time: /

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2 i

N

Output volume size:
(32+2%2-5)/1+1 = 32 spatially, so
32x32x10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Examples time: / /

Input volume: 32x32x3
10 5x5 filters|with stride 1, pad2 L

<
<

Number of parameters in this layer?
/60 ‘
S5 x 10«

EKNK xC%»rinC = /60

Slide Credit: Fei-Fei Li, Justin Johns a Yeung, CS 231n




Examples time: / /

Input volume: 32x32Xx
10 5x5 filters with stride 1, pad 2 i

<
<

Number of parameters in this layer?
each filter has 5*5*5 + 1 = 76 params  (+1 for bias)
=> /610 =760

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Summary. To summarize, the Conv Layer:

 Accepts a volume of size W; x H; x Dy
» Requires four hyperpa@ters:

o Number of filter
o their spatial extent F <’_‘

o the stride S,

o the amount of zero padding P. &

« Prod e of size H, x D, where:
o[Wo = (W) — F+2P)/S +1

o g — — F'+2P)/S + 1 (i.e. width and height are computed equally by symmetry)
D2 — K
« With parameter sharing, it introduces F - F' - Dy weights per filter, for a total of (F - F- D) - K weights
and K biases.

« In the output volume, the d-th depth slice (of size W5 x Hj) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of .S, and then offset by d-th bias.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Common settings:

Summary. To summarize, the Conv Layer:

K = (powers of 2, e.g. 32, 64, 128, 512)
Accepts a volume of size W; x Hy; x Dy - F=3.S=1P=1
Requires four hyperparameters: ’ ’

o Number of filters K, - F=5,35=1,pP=2

o their spatial extent F, - F=5,5=2,P =7 (whatever fits)
o the stride S, - F=1,S=1,P=0

o the amount of zero padding P.

Produces a volume of size W5 x Hy X D5 where:

o Wo=(W, —F+2P)/S+1

o Hy = (H; — F+2P)/S + 1 (i.e. width and height are computed equally by symmetry)

° D2 = J¢
With parameter sharing, it introduces F' - F' - Dy weights per filter, for a total of (F' - F'- D) - K weights
and K biases.
In the output volume, the d-th depth slice (of size W5 x H>) is the result of performing a valid convolution
of the d-th filter over the input volume with a stride of .S, and then offset by d-th bias.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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]

EN — f
(btw,]1x1\convolution layers make perfect sense)
—

~

1x1 CONV

(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

N\

56

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Rely

56




Example CONV SpatialConvolution
Iayer in TorCh module = nn.SpatialConvolution(nInputPlane, nOutputPlane,

Applies a 2D convolution over an input image composed of several input planes. The input tensorin forward(input) is

kW, kH, [dW], [dH], [padWw], [padH])

expected to be a 3D tensor ( nInputPlane x height x width ).
The parameters are the following:

e nInputPlane : The number of expected input planes in the image given into forward() .

e noutputPlane : The number of output planes the convolution layer will produce.

» kw : The kernel width of the convolution

« kH : The kernel height of the convolution

« dw : The step of the convolution in the width dimension. Defaultis 1 .

« dH : The step of the convolution in the height dimension. Defaultis 1 .

« padw : The additional zeros added per width to the input planes. Defaultis o , a good numberis (kw-1)/2 .

» padH : The additional zeros added per height to the input planes. Default is padw , a good numberis (kH-1)/2 .

Note that depending of the size of your kernel, several (of the last) columns or rows of the input image might be lost. It is up

Summary. To summarize, the Conv Layer. to the user to add proper padding in images.

¢ Accepts a volume of size Wl X H1 X D1 If the input image is a 3D tensor nInputPlane x height x width , the output image size will be noutputPlane x oheight x
* Requires four hyperparameters: owidth where

o Number of filters K,

o their spatial extent F' owidth = floor((width + 2*padwW - kW) / dW + 1)

oheight = floor((height + 2*padH - kH) / dH + 1)

o the stride S,
o the amount of zero padding P.

Torch is licensed under BSD 3-clause.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: CONV
layer in Caffe

layer {
name: “"convl"
type: "Convolution”
bottom: "data"
top: "convl"
# learning rate and decay multipliers for the filters
param { lr_mult: 1 decay mult: 1 }
# learning rate and decay multipliers for the biases
param { lr_mult: 2 decay mult: 0 }
convolution_param {
num_output: 96 # learn 96 filters
kernel_size: 11 # each filter is 11x11
stride: 4 # step 4 pixels between each filter application
weight_filler {
type: "gaussian" # initialize the filters from a Gaussian

std: 0.01 # distribution with stdev 0.01 (default mean: 0)
Summary. To summarize, the Conv Layer: bias_filler {
type: "constant" # initialize the biases to zero (0)
 Accepts a volume of size W x Hy; x D, } value: ©
* Requires four hyperparameters: }
o Number of filters K, }

o their spatial extent F',
o the stride S,
o the amount of zero padding P.

Caffe is licensed under BSD 2-Clause.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



The brain/neuron view of CONV Layer

——

activation map is a 48x28 sheet of neuron
outputs:
1. Each is conmected|to a small region in the input
2. All of them gh arameters

\
52 _AS “5x5 filter” -> “5x5 feceptive field for each neuron”
3 - —

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Reminder: Fully Connected Layer
Each neuron

32x32x3 image -> stretch to 3072 x 1 looks at the full

iInput volume
input activation
Wz
1 10 x 3072 1 [0
3072 * 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



two more layers to go

RELU RELU RELU RELU RELU RELU
CONV lCONVl CONV lCONVl CONV lCONVl

v

bbb d b

car

rlick

@itplane

EEEEDY

03

Ll

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Pooling Layer

Let us assume filter is an “eye” detector.

QQ.: how can we make the detection robust to the

, 'y
A = ~ -
N\ o ,.,,,.:, ,.fwm& ” .
,,,4 %//rir ,/, N /!
N f , é?///Ar' .pl ,// I

NONDCA XY X .
;/“///,7&,,

o

O ioeds ~ :
LR TN ® N \ENE AR R

94
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Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location of
features.

) Dhruv Batra 95



Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

-

112x112x64
pool

B e

224 downsampli

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



POOLING

Sifgle depth'slice
4

dim

max pool with 2x2 filters 2 /j :g

and stride 2

>

/\l\
“\J_\
LN Q‘) (@) -
(@)
- I N
BN (@) oo
=
\
5

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Pooling Layer: Examples
Max-pooling:

hi(r,c) /Z/ max Sh?l(r, C)
c

N(r), ceN(c) f=—

~

Average-pooling:
h(r,c) = me (7, e
(0 [@W 0
L2-pooling: — \

!
hi' (1, ¢) = D hi ™ (7, 2)?

J rEN(r), ceN(c)

[;L(Z-pooling over features: | |

(C) Dhruv Batra 98



Accepts a volume of size W; x H; x Dy
Requires three hyperparameters:
o their spatial extent F',
o the stride S,
Produces a volume of size W5 x Hy x D5 where:
o Wo=(W) -F)/S+1
o Ha= (Hl —F)/S+1
o Dy = D
Introduces zero parameters since it computes a fixed function of the input
Note that it is not common to use zero-padding for Pooling layers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Common settings:

» Accepts a volume of size W; x H; x Dy F
¢ Requires three hyperparameters: F
o their spatial extent F',
o the stride S,
 Produces a volume of size W5 x Hy x D5 where:
o Wo=(W) -F)/S+1
o Ha= (Hl —F)/S+1
o Dy = D
* Introduces zero parameters since it computes a fixed function of the input
» Note that it is not common to use zero-padding for Pooling layers

I
w N
PN

2
2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Pooling Layer: Receptive Field Size

If convolutional filters have size KxK and stride 1, and pooling layer has pools
of size PxP, then each unit in the pooling layer depends upon a patch (at the input
of the preceding conv. layer) of size: (P+K-1)x(P+K-1)

(C) Dhruv Batra
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Pooling Layer: Receptive Field Size

If convolutional filters have size KxK and stride 1, and pooling layer has pools
of size PxP, then each unit in the pooling layer depends upon a patch (at the input
of the preceding conv. layer) of size: (P+K-1)x(P+K-1)

(C) Dhruv Batra 102



Fully Connected Layer (FC layer)

Contains neurons that connect to the entire input volume, as in ordinary Neural

Networks

EEUSRELU RELU RELU RELU RELU
CONV | CONV CONV CONVl CONVlCONVl

truck
7air'plane
ship

I?orse

R R AV K

AL N 7 A

;_f
=
=
9
@
—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Convolutional Nets

« Example:
— http://lyann.lecun.com/exdb/lenet/index.html

é —— —————
_ C3: f. maps 16@10x10
INPUT Ct: M S4:

32x32 6@28x2 2: f. maps
6@14x14

C5: layer Fg: |dyer OUTPUT

aussian connections

Convolutions  Subsampli
——

Convolutions Subsampling

o=\

(C) Dhruv Batra Image Credit: Yann LeCun, Kevin Murphy 104



ote: After several stages of convolution-pooling, the spatial resolution 1s
greatly reduced (usually to about 5x5) and the number of feature maps is
large (several hundreds depending on the application).

It would not make sense to convolve again (there 1s no translation invariance
and support 1s too small). Everything is vectorized and fed into several fully
connected layers.

If the input of the fully connected layers 1s of size 5x5xN, the first fully
connected layer can be seen as a conv. layer with 5x5 kernels.
The next fully connected layer can be seen as a conv. layer with 1x1 kernels.

C3: 1, maps 16@10x10

INPUT gé ggax‘l?%re maps S4:1. maps16@5x5
32x32 S2:f. maps CS layer FG layer OUTPUT

Full connection Gaussnan connections
Convolutions Subsampling Convolutions Subsampllng Full connection 105
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Classical View

convolution lfully connected ‘
o — Al

& & g}// “tabby cat”
X /—_\\\\

13 x13

g [ x
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kA e
A

\

M

MxMxN, M smal

\

Fully conn. layer

(C) Dhruv Batra
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Classical View = Inefficient

rped region p efoplane? no.! |
i_ —al 4 - u _/: E
flye %:%% E-D person? yes.
et s S C N%( T
monitor? fo.
3. Compute —#-Classify|

CNN features regions
¥

W

1. Input 2. Extract region
image  proposals (~2k)
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Classical View

convolution fully connected
& & @ /// “tabby cat”
221 x 227 55 x 55 27 x 27 13 x 13
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Re-interpretation

« Just squint a little!

(— >

convolution >
K e yr /\//
P27 x 227 55 x 55 27 x 27 13 x 13
_—

(C) Dhruv Batra 110



“Fully Convolutional” Networks

« Can run on an image of any size!

convolution
N\
/ﬁ/ﬁéﬁ
| f
Hx W H/4 x WI4  H/8 x W/8 H/16 x W16 H/32 W/32
e “_
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> H hidden units /
\J 1x1 € maps
4 mal

/’\
| J
® © 0 o

Fully conmn. Tayer /
Conv. layer (H kernels of size MxMxN)

(C) Dhruv Batra 112



K hidden units /
1x1xK feature maps

H hidden units /
1x1xH feature maps

MxMxN, M smal

.

v

/

v

Fully conn. layer /
Conv. layer (H kernels of size MxMxN)

Fully conn. layer /

©) Dhruw Bat Conv. layer (K kernels of size 1x1xH) o
ruv batra



516W1ng !ll"y connecteg Iayers as convolutlonal |ayers CIlaEIGS GHICICIlt usc

of convnets on bigger images (no need to slide windows but unroll network
over space as needed to re-use computation).

TRAINING TIME

\
Input

Image

TEST TIME

(C) Dhruv Batra 114



iewing fully connected layers as convolutional layers enables etficient use
of convnets on bigger images (no need to slide windows but unroll network
over space as needed to re-use computation).

TRAINING TIME
Image
TEST TIME CNNs work on any image size!
Inpu

Unrolling 1s order of magnitudes more eficient than sliding windows!
(C) Dhruv Batra 115



Re-interpretation

« Just squint a little!

convolution
227 x 227 55 x 55 27 x 27 13 x13 1 x1
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“Fully Convolutional” Networks

« Can run on an image of any size!

convolution
et
11 Va
Hx W H/4 x WI4  H/8 x W/8 H/16 x W/16 H/32 x W/32

(C) Dhruv Batra 117



“Fully Convolutional” Networks

* Up-sample to get segmentation maps

convolution
Hx W H/4 x W/4  H/8 x W/8 H/16 x W/16 H/32 x W/32

(C) Dhruv Batra 118



Benefit of this thinking

 Mathematically elegant

« Efficiency
— Can run network on arbitrary image
— Without multiple crops

(C) Dhruv Batra 119



Summary

- ConvNets stack CONV,POOL,FC layers

- Trend towards smaller filters and deeper architectures

- Trend towards getting rid of POOL/FC layers (just CONV)

- Typical architectures look like
[([CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
where N is usually up to ~5, M is large, 0 <= K <= 2.
- but recent advances such as ResNet/GooglLeNet

challenge this paradigm

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



