
CS 7643: Deep Learning

Dhruv Batra
Georgia Tech

Topics:
– Computational Graphs

– Notation + example
– Computing Gradients

– Forward mode vs Reverse mode AD

Administrativia
• HW1 Released

– Due: 09/22

• PS1 Solutions
– Coming soon

(C) Dhruv Batra 2

Project
• Goal

– Chance to try Deep Learning
– Combine with other classes / research / credits / anything

• You have our blanket permission
• Extra credit for shooting for a publication

– Encouraged to apply to your research (computer vision, NLP,
robotics,…)

– Must be done this semester.

• Main categories
– Application/Survey

• Compare a bunch of existing algorithms on a new application domain of
your interest

– Formulation/Development
• Formulate a new model or algorithm for a new or old problem

– Theory
• Theoretically analyze an existing algorithm

(C) Dhruv Batra 3

Administrativia
• Project Teams Google Doc

– https://docs.google.com/spreadsheets/d/1AaXY0JE4lAbHvo
DaWlc9zsmfKMyuGS39JAn9dpeXhhQ/edit#gid=0

– Project Title
– 1-3 sentence project summary TL;DR
– Team member names + GT IDs

(C) Dhruv Batra 4

Recap of last time

(C) Dhruv Batra 5

How do we compute gradients?
• Manual Differentiation

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”

(C) Dhruv Batra 6

Any DAG of differentiable modules is
allowed!

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 7

Computational Graph

Directed Acyclic Graphs (DAGs)
• Exactly what the name suggests

– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay

(C) Dhruv Batra 8

Directed Acyclic Graphs (DAGs)
• Concept

– Topological Ordering

(C) Dhruv Batra 9

Directed Acyclic Graphs (DAGs)

(C) Dhruv Batra 10

Computational Graphs
• Notation #1

(C) Dhruv Batra 11

f(x1, x2) = x1x2 + sin(x1)

Computational Graphs
• Notation #2

(C) Dhruv Batra 12

f(x1, x2) = x1x2 + sin(x1)

Example

(C) Dhruv Batra 13

f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

Logistic Regression as a Cascade

(C) Dhruv Batra 14

Given a library of simple functions

Compose into a

complicate function
� log

✓
1

1 + e�w

|
x

◆

w

|
x

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Forward mode vs Reverse Mode
• Key Computations

(C) Dhruv Batra 15

16

g

Forward mode AD

17

g

Reverse mode AD

Example: Forward mode AD

(C) Dhruv Batra 18

f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

(C) Dhruv Batra 19

+

sin()

x1 x2

*

ẋ1 ẋ1

ẇ1 = cos(x1)ẋ1

ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

Example: Forward mode AD
f(x1, x2) = x1x2 + sin(x1)

(C) Dhruv Batra 20

+

sin()

x1 x2

*

ẋ1 ẋ1

ẇ1 = cos(x1)ẋ1

ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

Example: Forward mode AD
f(x1, x2) = x1x2 + sin(x1)

Example: Reverse mode AD

(C) Dhruv Batra 21

f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

(C) Dhruv Batra 22

Example: Reverse mode AD
f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄1 cos(x1) x̄1 = w̄2x2 x̄2 = w̄2x1

Forward Pass vs
Forward mode AD vs Reverse Mode AD

(C) Dhruv Batra 23

+

sin()

x1 x2

*

w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄2x2 x̄2 = w̄2x1x̄1 = w̄1 cos(x1)

+

sin()

x2

*

ẋ1 ẋ1 ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

ẇ1 = cos(x1)ẋ1

x1

+

sin()

x1 x2

*

f(x1, x2) = x1x2 + sin(x1)

Forward mode vs Reverse Mode
• What are the differences?

• Which one is more memory efficient (less storage)?
– Forward or backward?

(C) Dhruv Batra 24

Forward mode vs Reverse Mode
• What are the differences?

• Which one is more memory efficient (less storage)?
– Forward or backward?

• Which one is faster to compute?
– Forward or backward?

(C) Dhruv Batra 25

Plan for Today
• (Finish) Computing Gradients

– Forward mode vs Reverse mode AD
– Patterns in backprop
– Backprop in FC+ReLU NNs

• Convolutional Neural Networks

(C) Dhruv Batra 26

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor
Q: What is a max gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor
max gate: gradient router

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor
max gate: gradient router
Q: What is a mul gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

add gate: gradient distributor
max gate: gradient router
mul gate: gradient switcher

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Duality in Fprop and Bprop

(C) Dhruv Batra 35

+

+

FPROP BPROP
SU
M

C
O
PY

36

Graph (or Net) object (rough psuedo code)

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

37

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

38

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

39

Example: Caffe layers

Caffe is licensed under BSD 2-Clause

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

40

* top_diff (chain rule)

Caffe is licensed under BSD 2-Clause

Caffe Sigmoid Layer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(C) Dhruv Batra 41

(C) Dhruv Batra 42

Key Computation in DL: Forward-Prop

(C) Dhruv Batra 43Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Key Computation in DL: Back-Prop

(C) Dhruv Batra 44Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

f(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

46

f(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Q: what is the
size of the
Jacobian matrix?

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

47

f(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Q: what is the
size of the
Jacobian matrix?
[4096 x 4096!]

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

i.e. Jacobian would technically be a
[409,600 x 409,600] matrix :\

f(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Q: what is the
size of the
Jacobian matrix?
[4096 x 4096!]

in practice we process an
entire minibatch (e.g. 100)
of examples at one time:

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Q: what is the
size of the
Jacobian matrix?
[4096 x 4096!]

Q2: what does it
look like?

f(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Jacobians of FC-Layer

(C) Dhruv Batra 50

Jacobians of FC-Layer

(C) Dhruv Batra 51

Jacobians of FC-Layer

(C) Dhruv Batra 52

Convolutional Neural Networks
(without the brain stuff)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

54

Example: 200x200 image
40K hidden units

~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough
training samples anyway..

Fully Connected Layer

Slide Credit: Marc'Aurelio Ranzato

55

Example: 200x200 image
40K hidden units
Filter size: 10x10

4M parameters

Note: This parameterization is good when
input image is registered (e.g., face
recognition).

Locally Connected Layer

Slide Credit: Marc'Aurelio Ranzato

56

STATIONARITY? Statistics is similar at
different locations

Note: This parameterization is good when
input image is registered (e.g., face
recognition).

Example: 200x200 image
40K hidden units
Filter size: 10x10

4M parameters

Locally Connected Layer

Slide Credit: Marc'Aurelio Ranzato

57

Share the same parameters across different
locations (assuming input is stationary):
Convolutions with learned kernels

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato

Convolutions for mathematicians

(C) Dhruv Batra 58

(C) Dhruv Batra 59

"Convolution of box signal with itself2" by Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk)
- Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons -

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif#/media/File:Convolution_of_box_signal_wi
th_itself2.gif

Convolutions for computer scientists

(C) Dhruv Batra 60

Convolutions for programmers

(C) Dhruv Batra 61

Convolution Explained
• http://setosa.io/ev/image-kernels/

• https://github.com/bruckner/deepViz

(C) Dhruv Batra 62

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 63

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 64

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 65

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 66

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 67

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 68

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 69

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 70

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 71

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 72

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 73

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 74

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 75

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 76

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 77

Mathieu et al. “Fast training of CNNs through FFTs” ICLR 2014

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 78

*
-1 0 1
-1 0 1
-1 0 1

=

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 79

Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10

10K parameters

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 80

3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1
10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1 number:
the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

1
10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

83

Convolutional Layer

84

Convolutional Layer

32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

