
CS 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Computational Graphs

– Notation + example
– Computing Gradients

– Forward mode vs Reverse mode AD



Administrativia
• HW1 Released

– Due: 09/22

• PS1 Solutions
– Coming soon
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Project
• Goal

– Chance to try Deep Learning
– Combine with other classes / research / credits / anything

• You have our blanket permission
• Extra credit for shooting for a publication

– Encouraged to apply to your research (computer vision, NLP, 
robotics,…)

– Must be done this semester. 

• Main categories
– Application/Survey

• Compare a bunch of existing algorithms on a new application domain of 
your interest

– Formulation/Development
• Formulate a new model or algorithm for a new or old problem

– Theory
• Theoretically analyze an existing algorithm
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Administrativia
• Project Teams Google Doc

– https://docs.google.com/spreadsheets/d/1AaXY0JE4lAbHvo
DaWlc9zsmfKMyuGS39JAn9dpeXhhQ/edit#gid=0

– Project Title
– 1-3 sentence project summary TL;DR
– Team member names + GT IDs
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Recap of last time
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How do we compute gradients?
• Manual Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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Any DAG of differentiable modules is 
allowed!

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 7

Computational Graph



Directed Acyclic Graphs (DAGs)
• Exactly what the name suggests

– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay
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Directed Acyclic Graphs (DAGs)
• Concept

– Topological Ordering
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Directed Acyclic Graphs (DAGs)

(C) Dhruv Batra 10



Computational Graphs
• Notation #1
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f(x1, x2) = x1x2 + sin(x1)



Computational Graphs
• Notation #2
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f(x1, x2) = x1x2 + sin(x1)



Example
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*



Logistic Regression as a Cascade
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Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Forward mode vs Reverse Mode
• Key Computations
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Forward mode AD
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Reverse mode AD



Example: Forward mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*
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+

sin( )

x1 x2

*

ẋ1 ẋ1

ẇ1 = cos(x1)ẋ1

ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

Example: Forward mode AD
f(x1, x2) = x1x2 + sin(x1)
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+

sin( )

x1 x2

*

ẋ1 ẋ1

ẇ1 = cos(x1)ẋ1

ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

Example: Forward mode AD
f(x1, x2) = x1x2 + sin(x1)



Example: Reverse mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*
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Example: Reverse mode AD
f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*

w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄1 cos(x1) x̄1 = w̄2x2 x̄2 = w̄2x1



Forward Pass vs 
Forward mode AD vs Reverse Mode AD
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+

sin( )

x1 x2

*

w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄2x2 x̄2 = w̄2x1x̄1 = w̄1 cos(x1)

+

sin( )

x2

*

ẋ1 ẋ1 ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

ẇ1 = cos(x1)ẋ1

x1

+

sin( )

x1 x2

*

f(x1, x2) = x1x2 + sin(x1)



Forward mode vs Reverse Mode
• What are the differences? 

• Which one is more memory efficient (less storage)? 
– Forward or backward?
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Forward mode vs Reverse Mode
• What are the differences? 

• Which one is more memory efficient (less storage)? 
– Forward or backward?

• Which one is faster to compute? 
– Forward or backward?

(C) Dhruv Batra 25



Plan for Today
• (Finish) Computing Gradients

– Forward mode vs Reverse mode AD
– Patterns in backprop
– Backprop in FC+ReLU NNs

• Convolutional Neural Networks
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Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor
Q: What is a max gate?

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor
max gate: gradient router

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor
max gate: gradient router
Q: What is a mul gate? 

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



add gate: gradient distributor
max gate: gradient router
mul gate: gradient switcher

Patterns in backward flow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Duality in Fprop and Bprop
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Graph (or Net) object  (rough psuedo code)

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



38

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example: Caffe layers

Caffe is licensed under BSD 2-Clause

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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* top_diff  (chain rule)

Caffe is licensed under BSD 2-Clause

Caffe Sigmoid Layer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Key Computation in DL: Forward-Prop
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Key Computation in DL: Back-Prop

(C) Dhruv Batra 44Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Q: what is the 
size of the 
Jacobian matrix?

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Q: what is the 
size of the 
Jacobian matrix?
[4096 x 4096!]

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



i.e. Jacobian would technically be a
[409,600 x 409,600] matrix :\

f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Q: what is the 
size of the 
Jacobian matrix?
[4096 x 4096!]

in practice we process an 
entire minibatch (e.g. 100) 
of examples at one time:

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Q: what is the 
size of the 
Jacobian matrix?
[4096 x 4096!]

Q2: what does it 
look like?

f(x) = max(0,x)
(elementwise)

4096-d 
input vector

4096-d 
output vector

Jacobian of ReLU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Jacobians of FC-Layer
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Jacobians of FC-Layer
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Jacobians of FC-Layer
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Convolutional Neural Networks
(without the brain stuff)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example:  200x200 image
40K hidden units

~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough          
training samples anyway..

Fully Connected Layer

Slide Credit: Marc'Aurelio Ranzato
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Example: 200x200 image
40K hidden units
Filter size: 10x10

4M parameters

Note: This parameterization is good when 
input image is registered (e.g., face 
recognition).

Locally Connected Layer

Slide Credit: Marc'Aurelio Ranzato
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STATIONARITY? Statistics is similar at 
different locations

Note: This parameterization is good when 
input image is registered (e.g., face 
recognition).

Example: 200x200 image
40K hidden units
Filter size: 10x10

4M parameters

Locally Connected Layer

Slide Credit: Marc'Aurelio Ranzato
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Share the same parameters across different 
locations (assuming input is stationary):
Convolutions with learned kernels

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato



Convolutions for mathematicians
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"Convolution of box signal with itself2" by Convolution_of_box_signal_with_itself.gif: Brian Ambergderivative work: Tinos (talk) 
- Convolution_of_box_signal_with_itself.gif. Licensed under CC BY-SA 3.0 via Commons -

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif#/media/File:Convolution_of_box_signal_wi
th_itself2.gif



Convolutions for computer scientists
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Convolutions for programmers
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Convolution Explained
• http://setosa.io/ev/image-kernels/

• https://github.com/bruckner/deepViz
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Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 63



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 64



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 65



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 66



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 67



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 68



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 69



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 70



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 71



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 72



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 73



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 74



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 75



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 76



Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 77



Mathieu et al. “Fast training of CNNs through FFTs” ICLR 2014

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 78



*        
-1 0  1
-1 0  1
-1 0  1

=        

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 79



Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10

10K parameters

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 80



3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1
10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Convolutional Layer
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Convolutional Layer



32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n


