CS 7643: Deep Learning

Topics:

- Computational Graphs
 - Notation + example
- Computing Gradients
 - Forward mode vs Reverse mode AD

Dhruv Batra Georgia Tech

Administrativia

- No class on Tuesday next week (Sep 12)
- HW0 solutions posted

Invited Talk #1

Note: Change in time: 12:30-1:30pm (Lunch at Noon)

ML@GT Seminar Series Wednesday Sep 6 2017, 12:30 pm - 1:30 pm Location: Marcus Nanotechnology Building, Room 1118

Speaker: Soumith Chintala

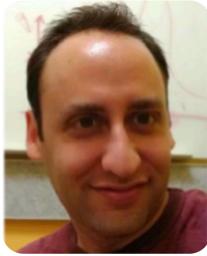
An Overview of Deep Learning Frameworks and an Introduction to PyTorch

Abstract: In this talk, you will get an exposure to the various types of deep learning frameworks – declarative and imperative frameworks such as TensorFlow and PyTorch. After a broad overview of frameworks, you will be introduced to the PyTorch framework in more detail. We will discuss your perspective as a researcher and a user, formalizing the needs of research workflows (covering data pre-processing and loading, model building, etc.). Then, we shall see how the different features of PyTorch map to helping you with these workflows.

Bio: Soumith Chintala is a Researcher at Facebook AI Research, where he works on deep learning, reinforcement learning, generative image models, agents for video games and large-scale high-performance deep learning. With over 500 commits, Soumith is also one of the primary developers of the popular open-source PyTorch framework for deep learning. Prior to joining Facebook in August 2014, he worked at MuseAmi, where he built deep learning models for music and vision targeted at mobile devices. He holds a Masters in CS from NYU, and spent time in Yann LeCun's NYU lab building deep learning models for pedestrian detection, natural image OCR, and depth-images among others.

Invited Talk #2

Special Guest Speaker - CS 7643 Deep Learning Thursday Sep 7 2017, 4:30 pm - 5:45 pm Location: Clough 144



Speaker: Nathan Silberman

TF-Slim: A Lightweight Library for Defining, Training and Evaluating Complex Models in TensorFlow

Abstract: TF-Slim is a TensorFlow-based library with various components. These include modules for easily defining neural network models with few lines of code, routines for training and evaluating such models in a highly distributed fashion and utilities for creating efficient data loading pipelines. Additionally, the TF-Slim Image Models library provides many commonly used networks (ResNet, Inception, VGG, etc) that make replicating results and creating new networks using existing components simple and straightforward. I will discuss some of the design choices and constraints that guided our development process as well as several high-impact projects in the medical domain that utilize most or all components of the TF-Slim library.

Bio: Nathan Silberman is the Lead Deep Learning Scientist at 4Catalyzer where he works on a variety of healthcare related projects. His machine learning interests include semantic segmentation, detection and reinforcement learning and how to best apply these areas to high-impact areas in the medical world. Prior to joining 4Catalyzer, Nathan was a researcher at Google where among various projects, he co-wrote TensorFlow-Slim, which is now a major component of the TensorFlow library. Nathan received his PhD in 2015 from New York University under Rob Fergus and David Sontag

Project

Goal

- Chance to try Deep Learning
- Combine with other classes / research / credits / anything
 - You have our blanket permission
 - Extra credit for shooting for a publication
- Encouraged to apply to your research (computer vision, NLP, robotics,...)
- Must be done this semester.
- Main categories
 - Application/Survey
 - Compare a bunch of existing algorithms on a new application domain of your interest
 - Formulation/Development
 - Formulate a new model or algorithm for a new or old problem
 - Theory
 - Theoretically analyze an existing algorithm

Project

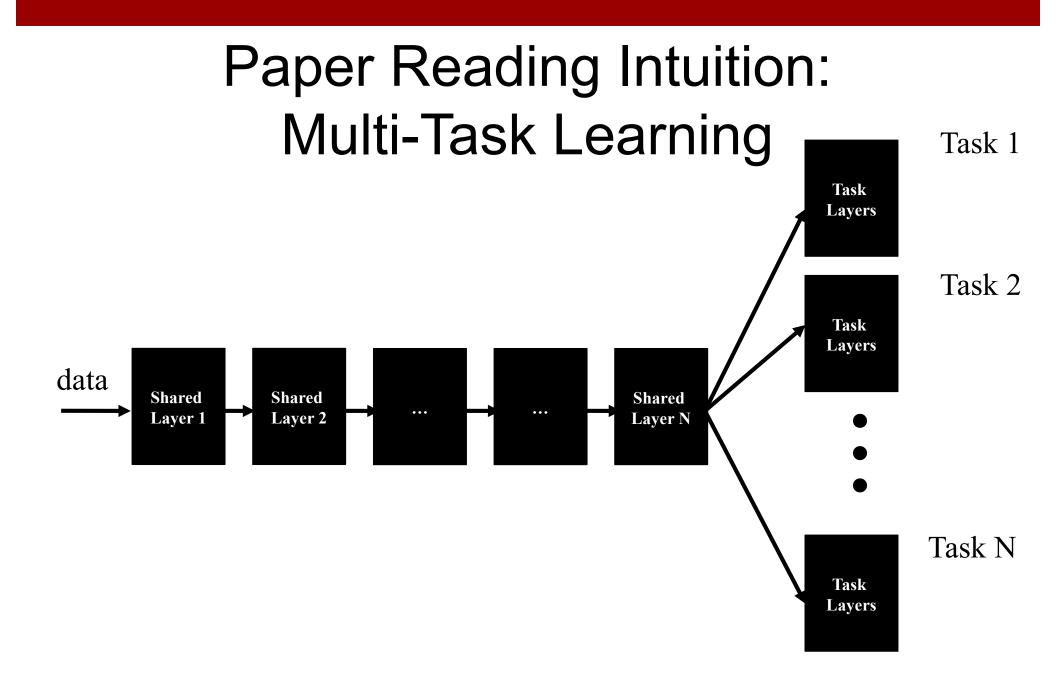
- Deliverables:
 - No formal proposal document due
 - Consider talking to your TAs
 - Final Poster Session
 - (tentative): Week of Nov 27.
- Questions/support/ideas
 - Stop by and talk to TAs
- Teaming
 - Encouraged to form teams of 2-3.

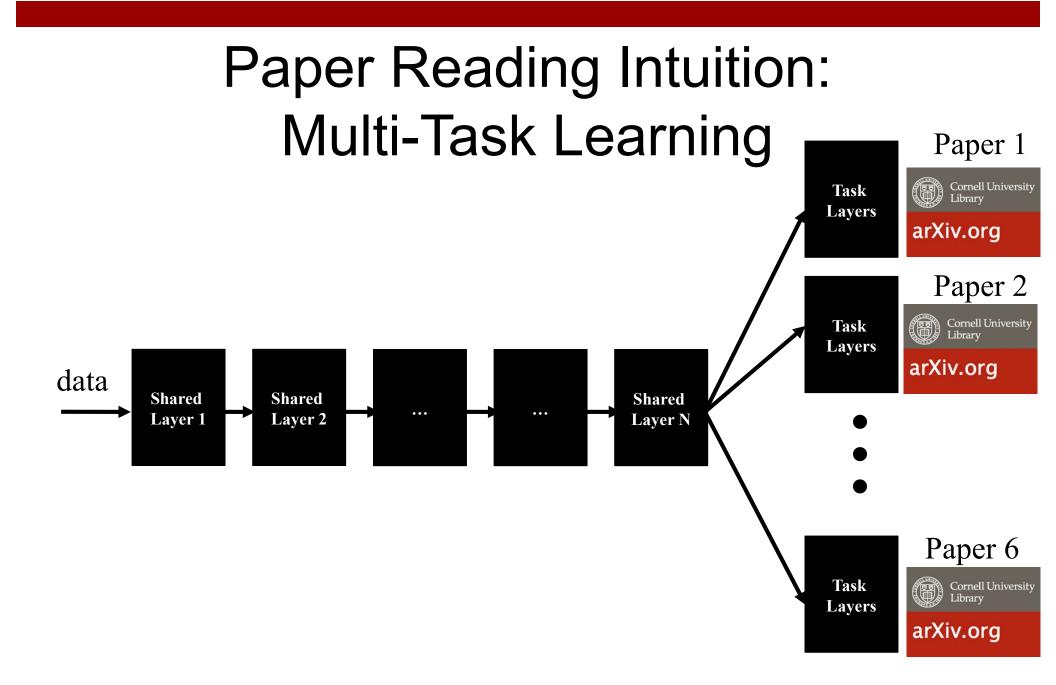
TAs

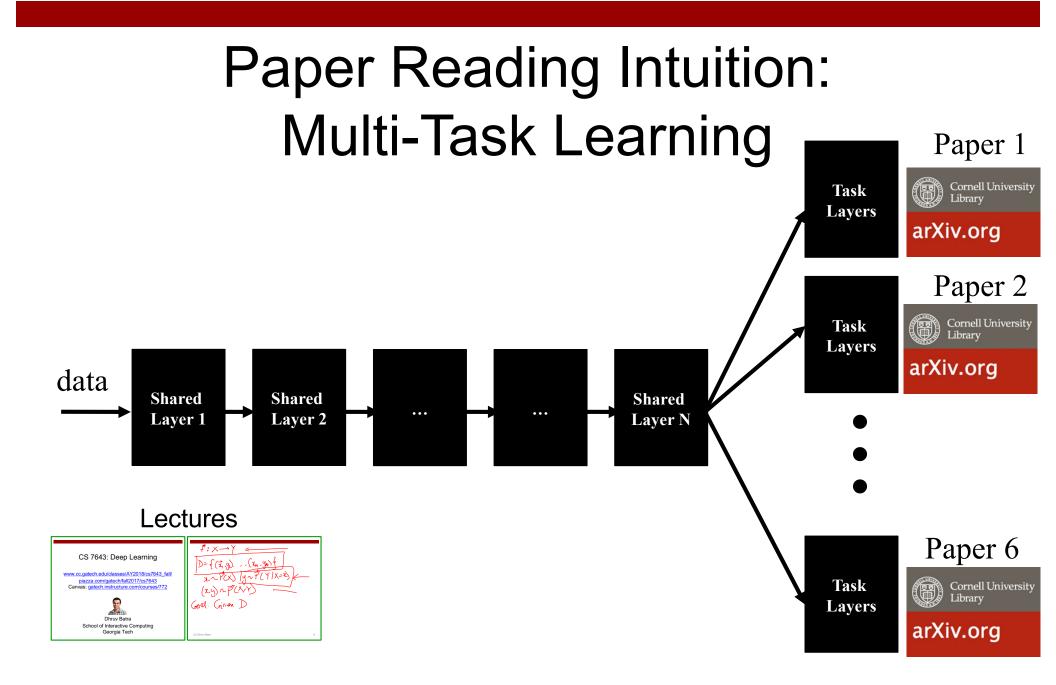
Michael Cogswell 3rd year CS PhD student

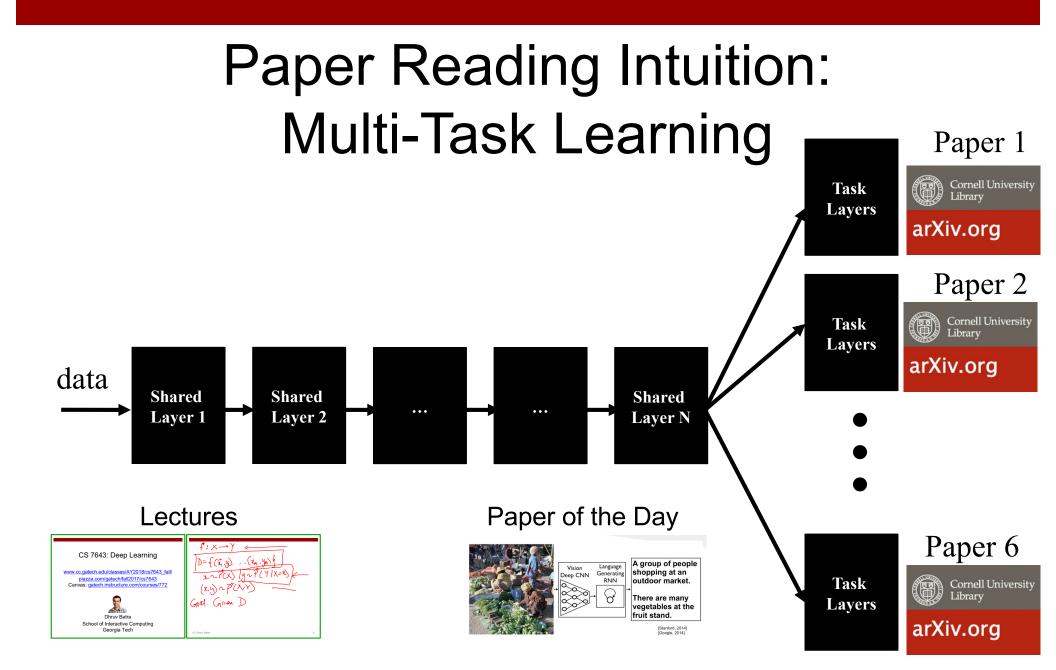
http://mcogswell.io/

Abhishek Das 2nd year CS PhD student <u>http://abhishekdas.com/</u> Zhaoyang Lv 3rd year CS PhD student <u>https://www.cc.gatech.edu/~zlv30</u>









Paper Reviews

- Length
 - 200-400 words.
- Due: Midnight before class on Piazza

Organization

- Summary:
 - What is this paper about? What is the main contribution? Describe the main approach & results. Just facts, no opinions yet.

List of positive points / Strengths:

 Is there a new theoretical insight? Or a significant empirical advance? Did they solve a standing open problem? Or is a good formulation for a new problem? Or a faster/better solution for an existing problem? Any good practical outcome (code, algorithm, etc)? Are the experiments well executed? Useful for the community in general?

- List of negative points / Weaknesses:

 What would you do differently? Any missing baselines? missing datasets? any odd design choices in the algorithm not explained well? quality of writing? Is there sufficient novelty in what they propose? Has it already been done? Minor variation of previous work? Why should anyone care? Is the problem interesting and significant?

- Reflections

How does this relate to other papers we have read? What are the next research directions in this line of work?

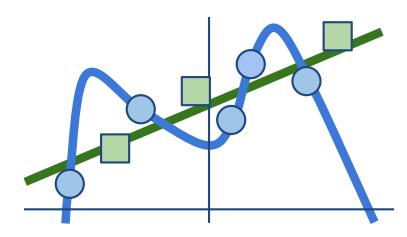
Presentations

- Frequency
 - Once in the semester: 5 min presentation.
- Expectations
 - Present details of 1 paper
 - Describe formulation, experiment, approaches, datasets
 - Encouraged to present a broad picture
 - Show results; demo code if possible
 - Please clearly cite the source of each slide that is not your own.
 - Meet with TA 1 week before class to dry run presentation
 - Worth 40% of presentation grade

Recap of last time

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data



Regularization: Model should be "simple", so it works on test data

Occam's Razor:

"Among competing hypotheses, the simplest is the best" William of Ockham, 1285 - 1347

Regularization

 $\lambda_{.}$ = regularization strength (hyperparameter)

 $L = \frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_i} \max(0, f(x_i; W)_j - f(x_i; W)_{y_i} + 1) + \lambda R(W)$ In common use: **L2 regularization** $R(W) = \sum_k \sum_l W_{k,l}^2$ L1 regularization $R(W) = \sum_k \sum_l |W_{k,l}|$ Elastic net (L1 + L2) $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$ Dropout (will see later) Fancier: Batch normalization, stochastic depth

(**Before**) Linear score function: f = Wx

(**Before**) Linear score function: (**Now**) 2-layer Neural Network

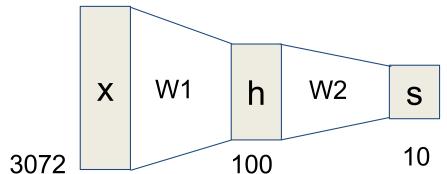
$$f = Wx$$

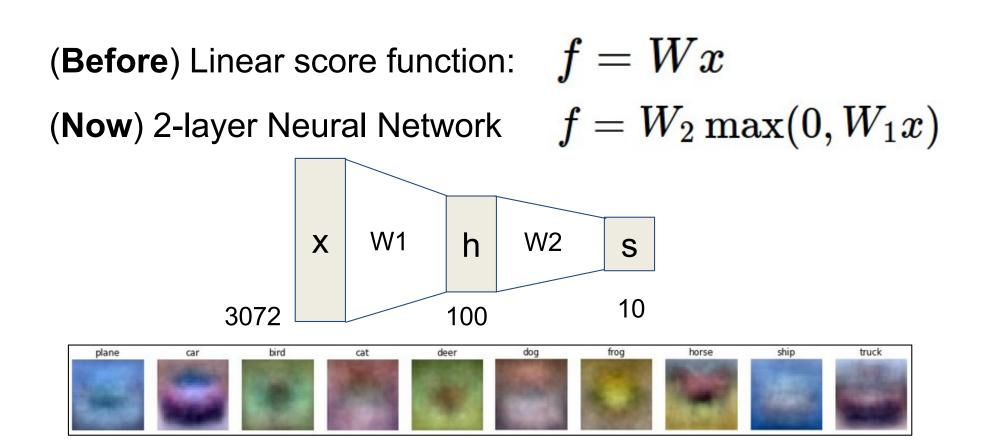
 $f = W_2 \max(0, W_1 x)$

(**Before**) Linear score function:

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$

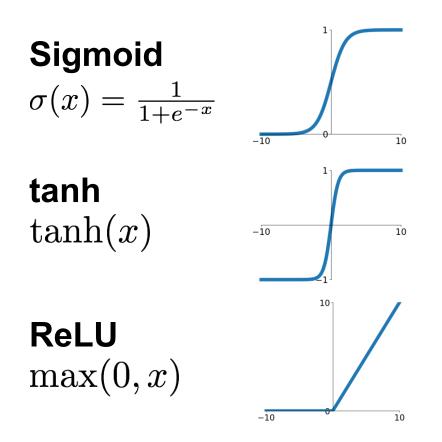
$$f = Wx$$

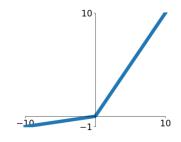




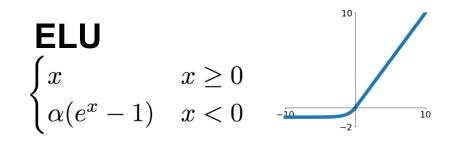
(Before) Linear score function: f = Wx(Now) 2-layer Neural Network $f = W_2 \max(0, W_1x)$ or 3-layer Neural Network $f = W_3 \max(0, W_2 \max(0, W_1x))$

Activation functions



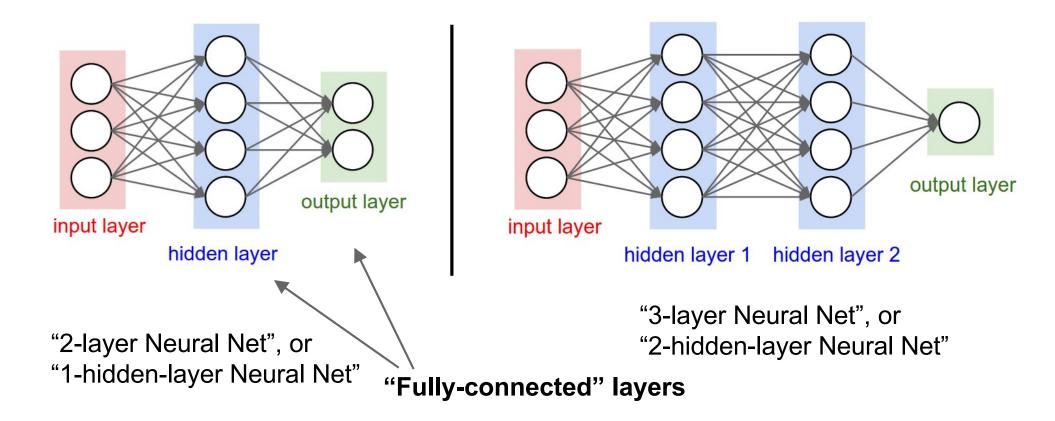


 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

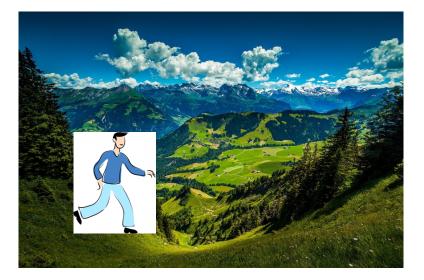


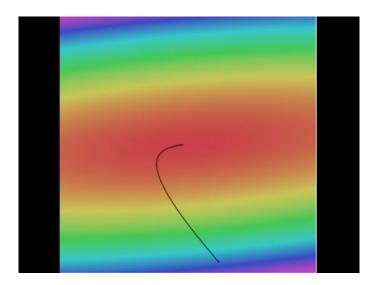
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural networks: Architectures



Optimization





Vanilla Gradient Descent

while True:

weights_grad = evaluate_gradient(loss_fun, data, weights)
weights += - step_size * weights_grad # perform parameter update

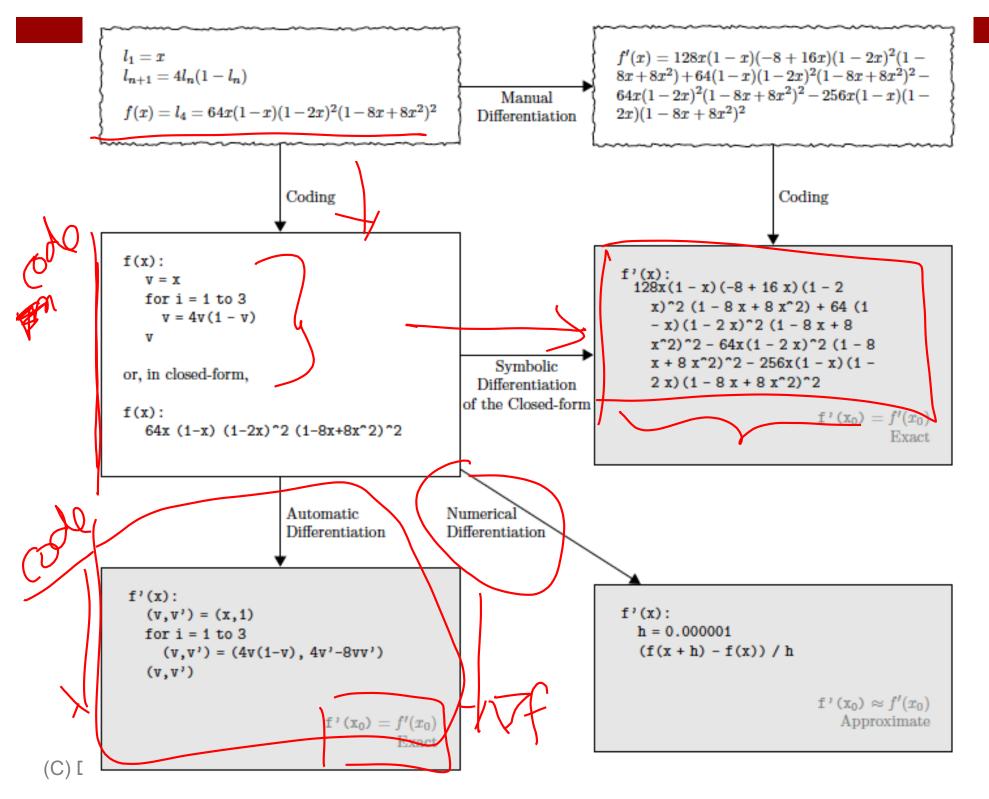
Landscape image is CC0 1.0 public domain Walking man image is CC0 1.0 public domain

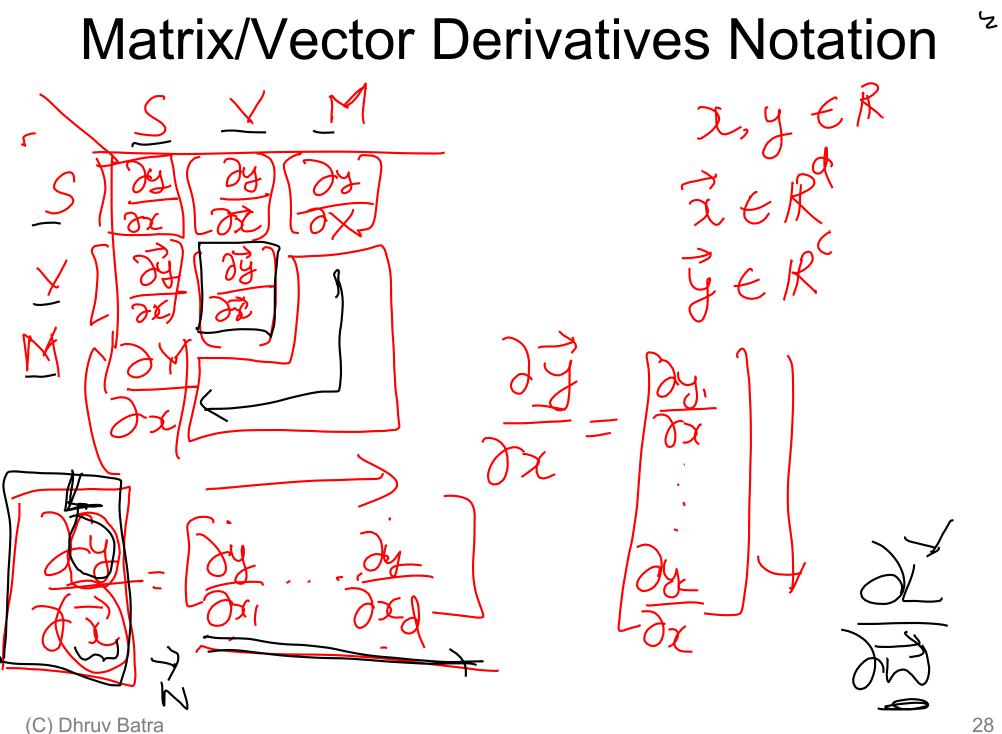
Stochastic Gradient Descent (SGD)

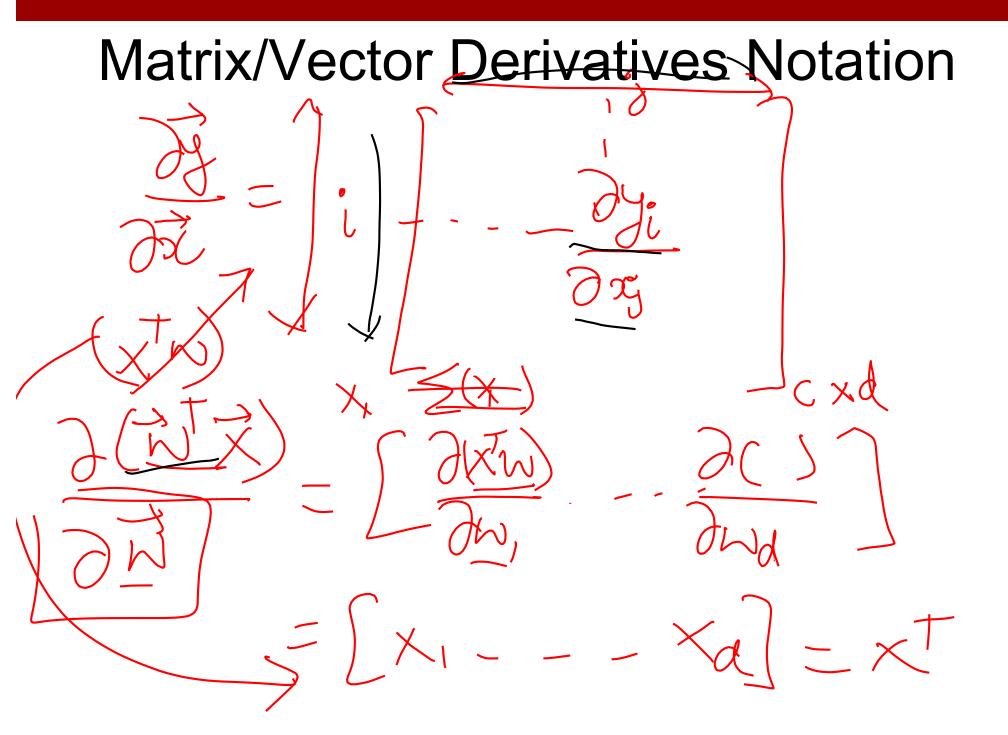
$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(x_i, y_i, W) + \lambda R(W)$$
Full sum expensive
when N is large!
$$\nabla_W L(W) = \frac{1}{N} \sum_{i=1}^{N} \nabla_W L_i(x_i, y_i, W) + \lambda \nabla_W R(W)$$
Approximate sum
using a minibatch of
examples
32 / 64 / 128 common
$$# Vanilla Minibatch Gradient Descent$$
while True:
Mata batch = somple_training_dota(data, 256) # sample 256 examples
weights grad = evaluate_gradient(loss_fun, data_batch, weights)
weights += - step_size * weights_grad # perform parameter update

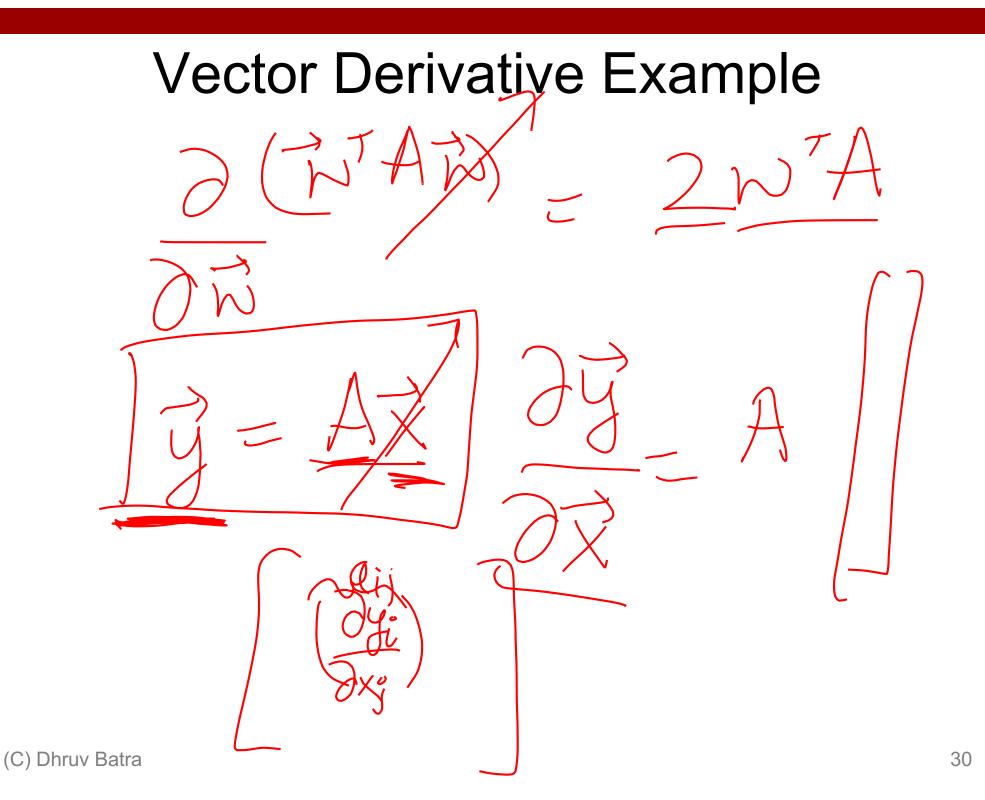
How do we compute gradients?

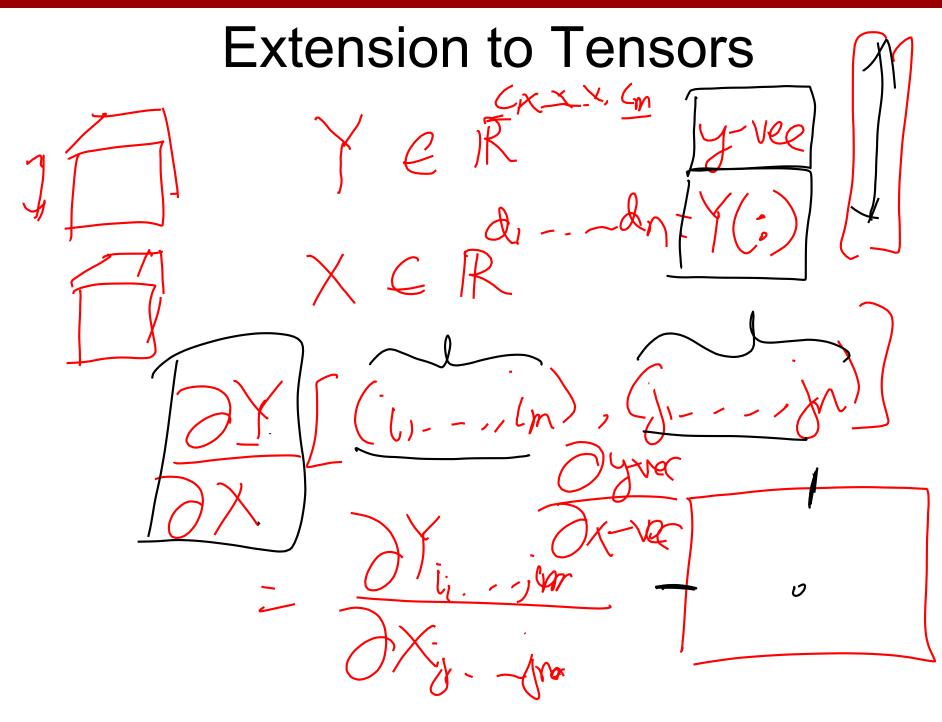
- Manual Differentiation
- Symbolic Differentiation
- Numerical Differentiation
- Automatic Differentiation
 - Forward mode AD
 - Reverse mode AD
 - aka "backprop"

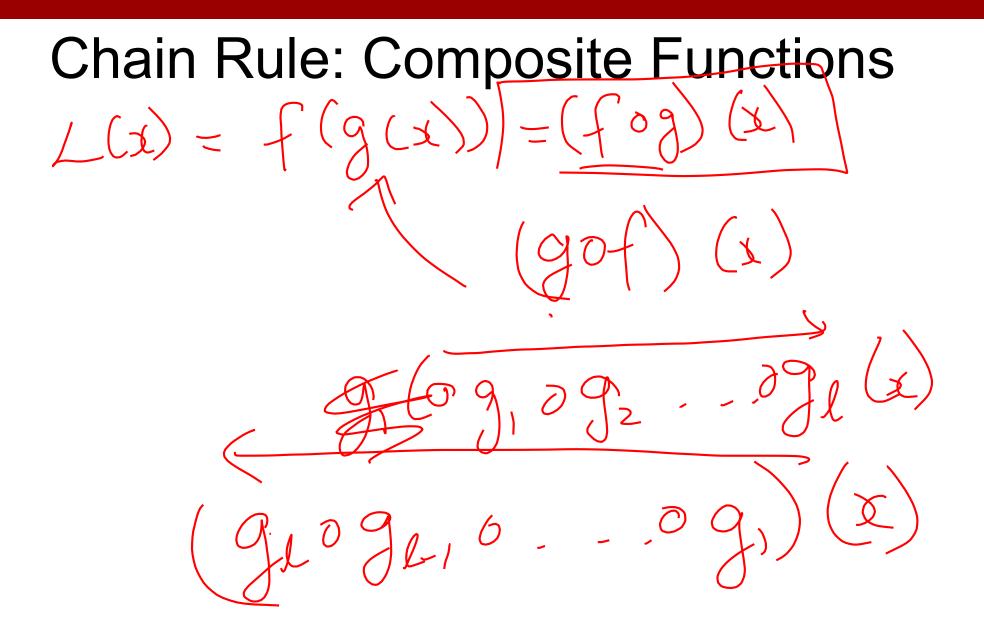


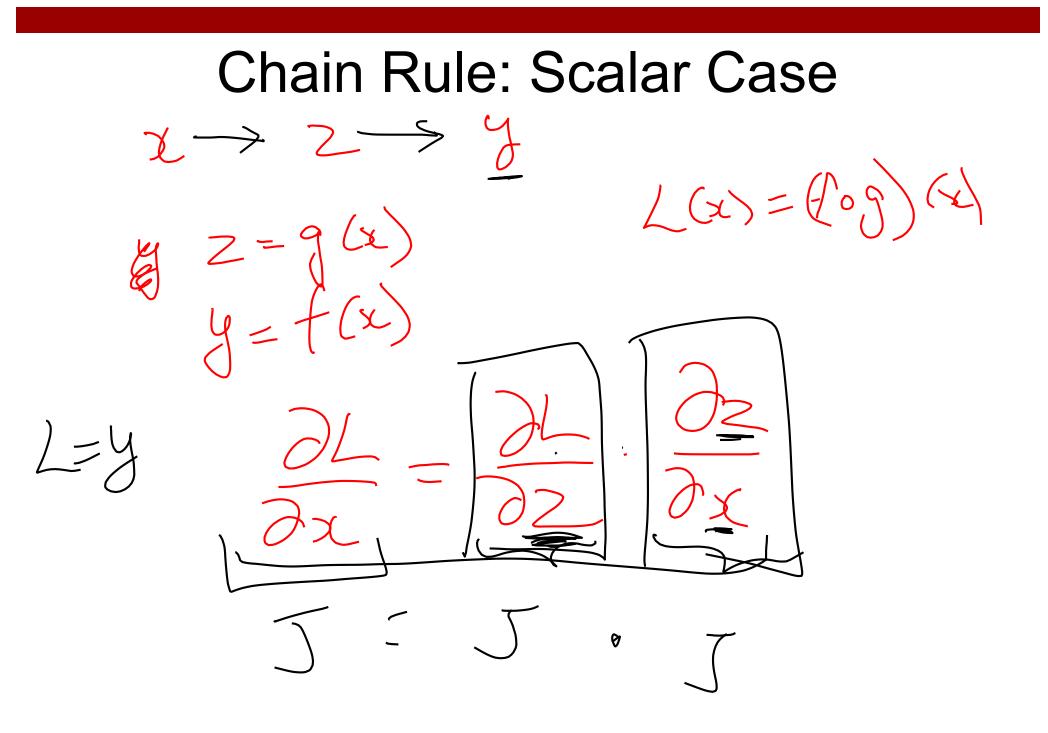


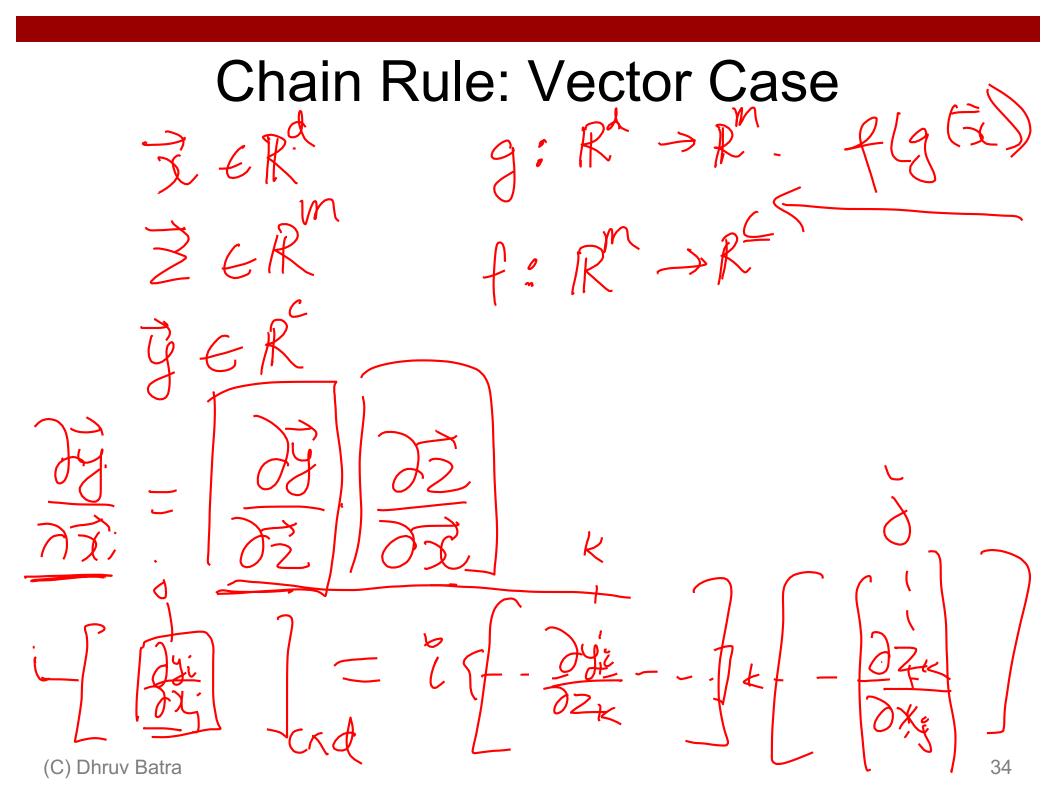


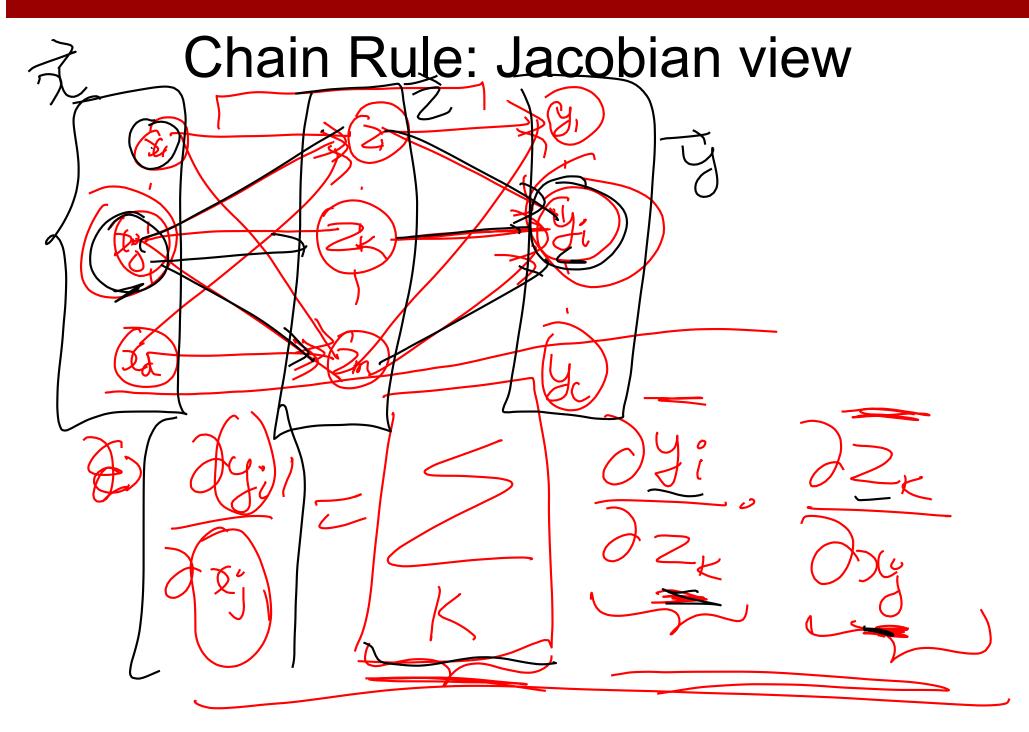










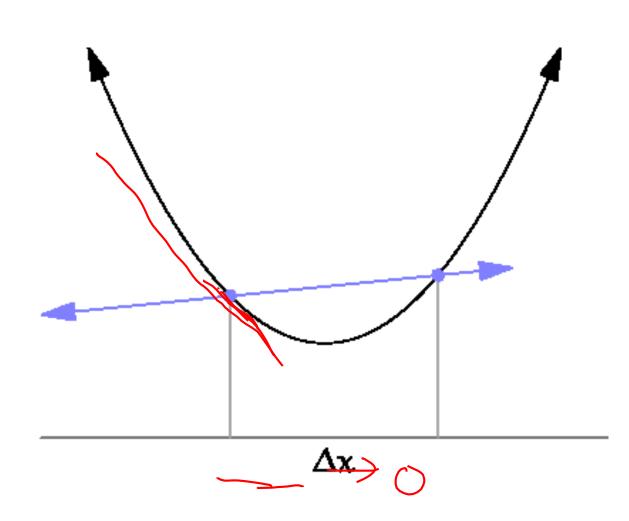


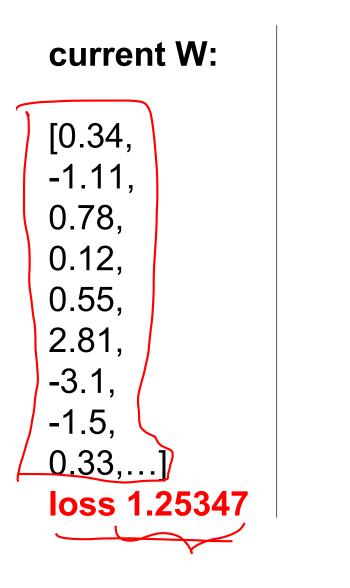
Plan for Today

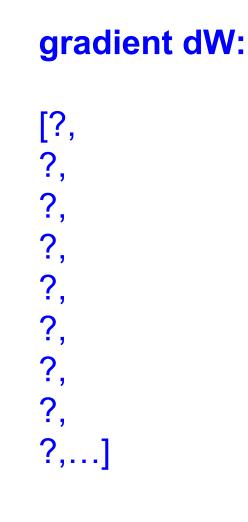
- Computational Graphs Notation + example
- Computing Gradients
 - Forward mode vs Reverse mode AD

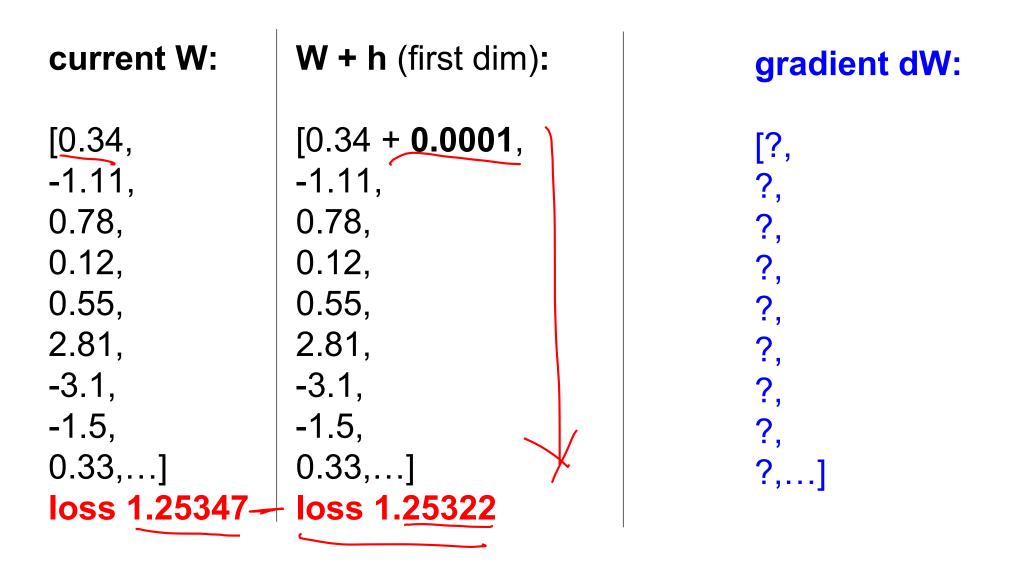
How do we compute gradients?

- Manual Differentiation
- Symbolic Differentiation
- Numerical Differentiation
- Automatic Differentiation
 - Forward mode AD
 - Reverse mode AD
 - aka "backprop"







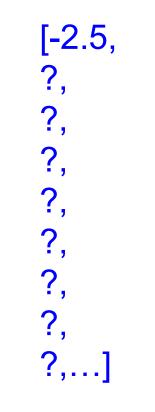


Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

current W:	W + h (first dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	[0.34 + 0.0001, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] loss 1.25322	$[-2.5, ?, ?, ?, ?, ?, ?, ?, ?,]$ $(1.25322 - 1.25347)/0.0001$ $= -2.5$ $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$?, ?,]

current W:	W + h (second dim):
[0.34,	[0.34,
-1.11,	-1.11 + 0.0001 ,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25353

gradient dW:



current W:	W + h (second dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[0.34, -1.11 + 0.0001 , 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[-2.5, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6

current W:	W + h (third dim):	gradient dW:
[0.34,	[0.34,	[-2.5,
-1.11,	-1.11,	0.6,
0.78,	0.78 + 0.0001 ,	?,
0.12,	0.12,	?,
0.55,	0.55,	?,
2.81,	2.81,	?
-3.1,	-3.1,	?
-1.5,	-1.5,	?
0.33,]	0.33,]	?,]
loss 1.25347	loss 1.25347	.,7

current W:	W + h (third dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	[0.34, -1.11, 0.78 + 0.0001 , 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	$[-2.5, 0.6, 0.6, 0.6]$ $?, (1.25347 - 1.25347)/0.0001 = 0$ $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $?, \dots$

Numerical vs Analytic Gradients

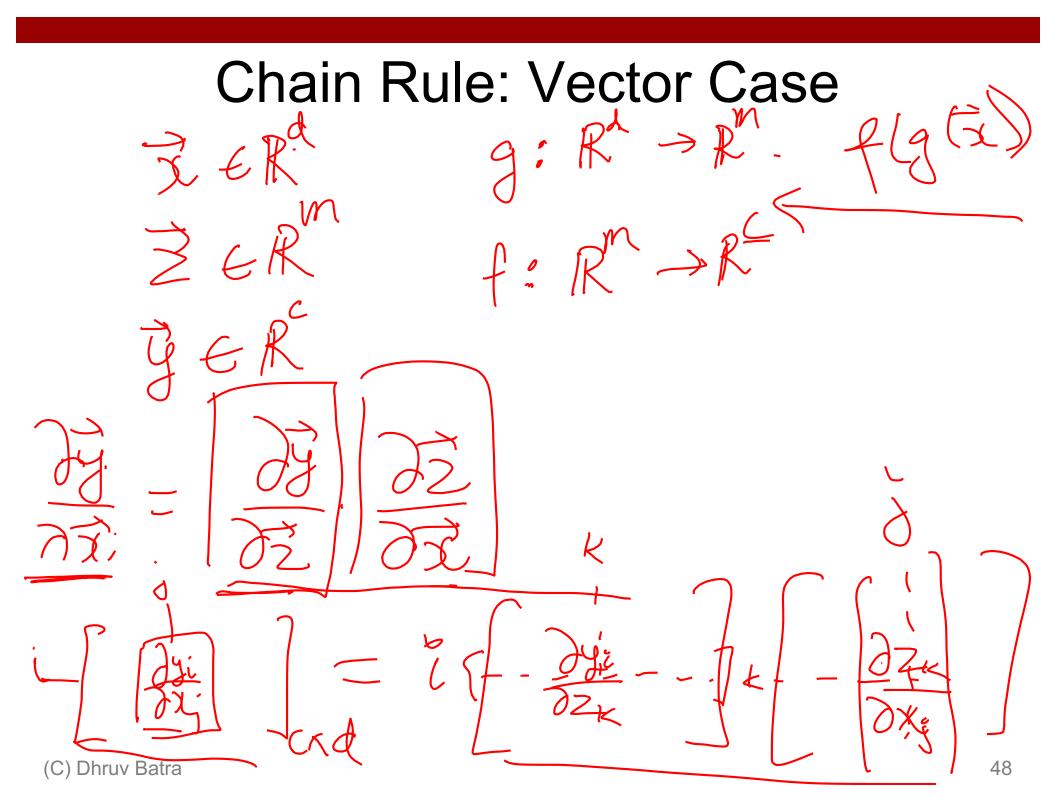
$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow :(, approximate :(, easy to write :) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient. This is called a **gradient check.**

How do we compute gradients?

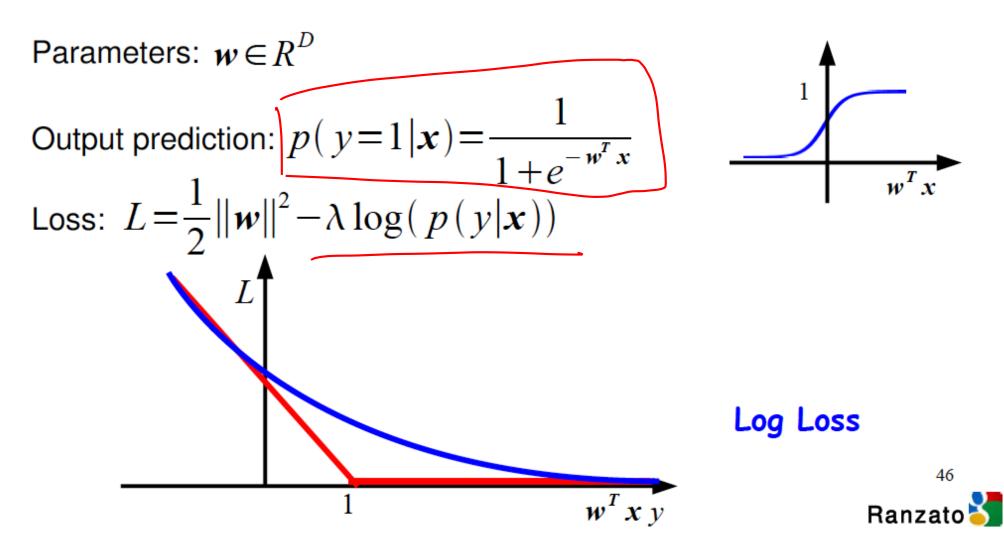
- Manual Differentiation
- Symbolic Differentiation
- Numerical Differentiation
- Automatic Differentiation
 - Forward mode AD
 - Reverse mode AD
 - aka "backprop"

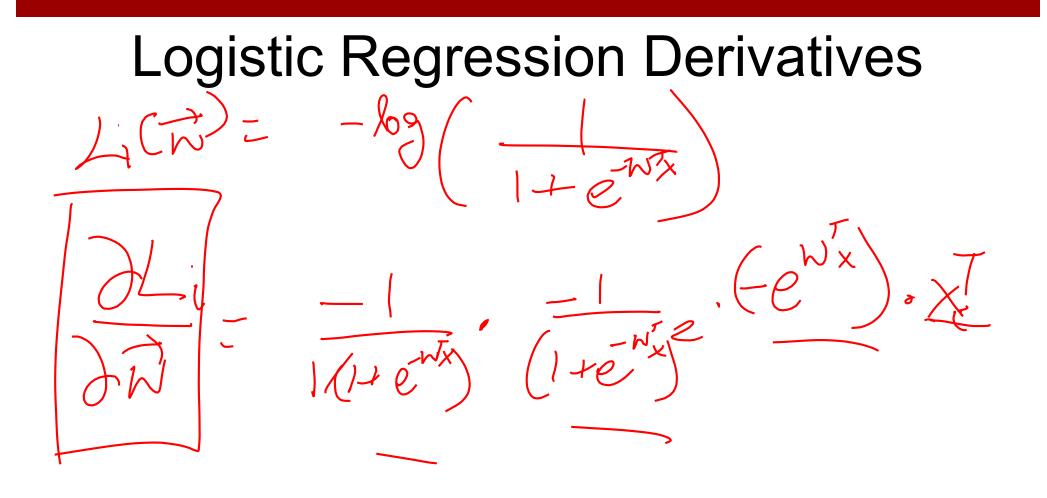


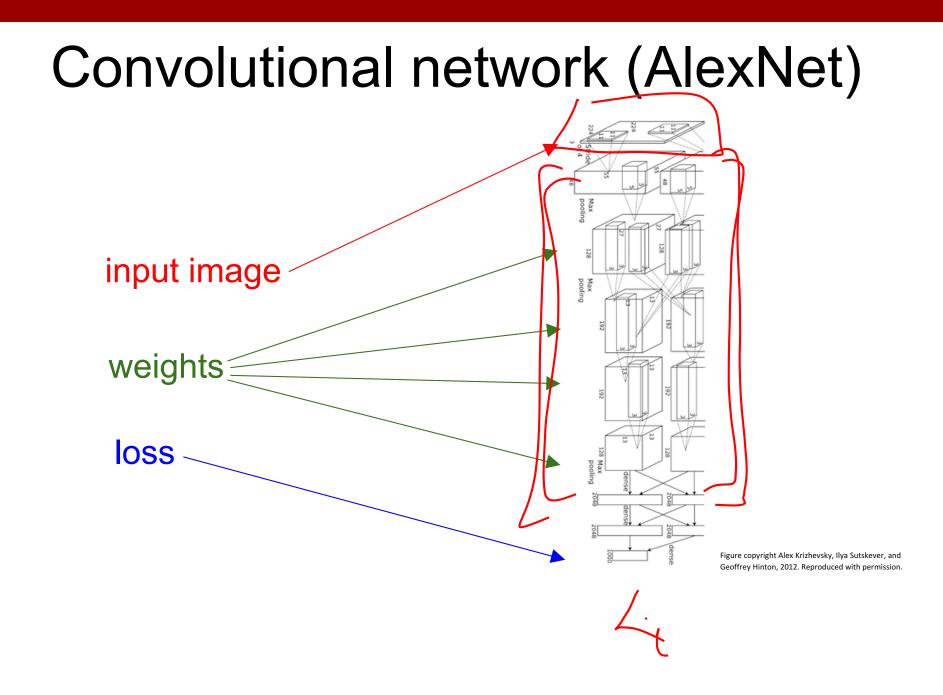
Linear Classifier: Logistic Regression

Input: $x \in R^{D}$

Binary label: $y \in \{-1, +1\}$







Neural Turing Machine

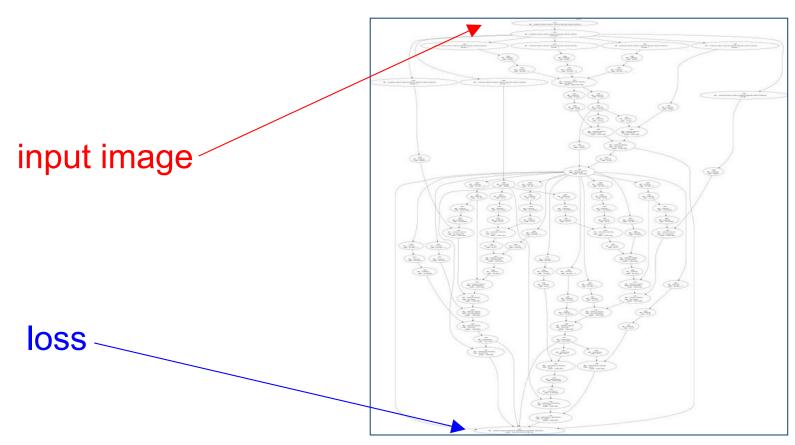
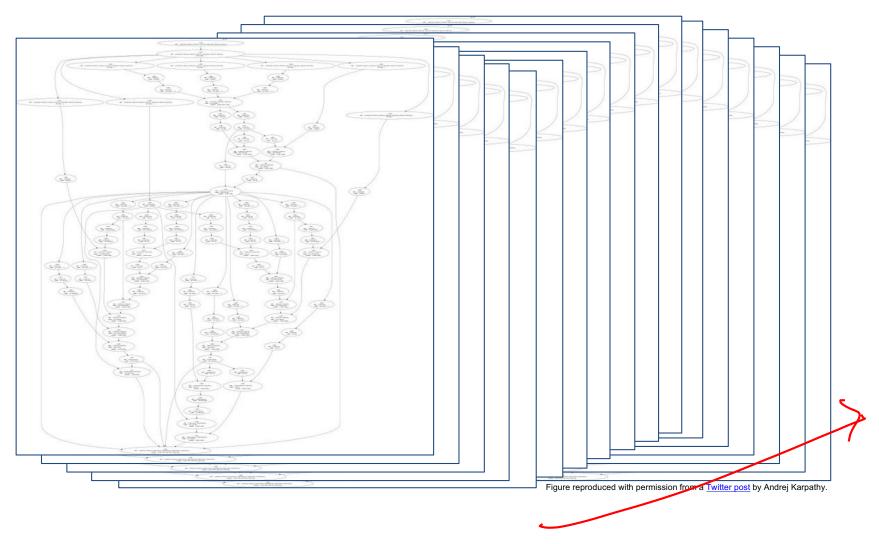
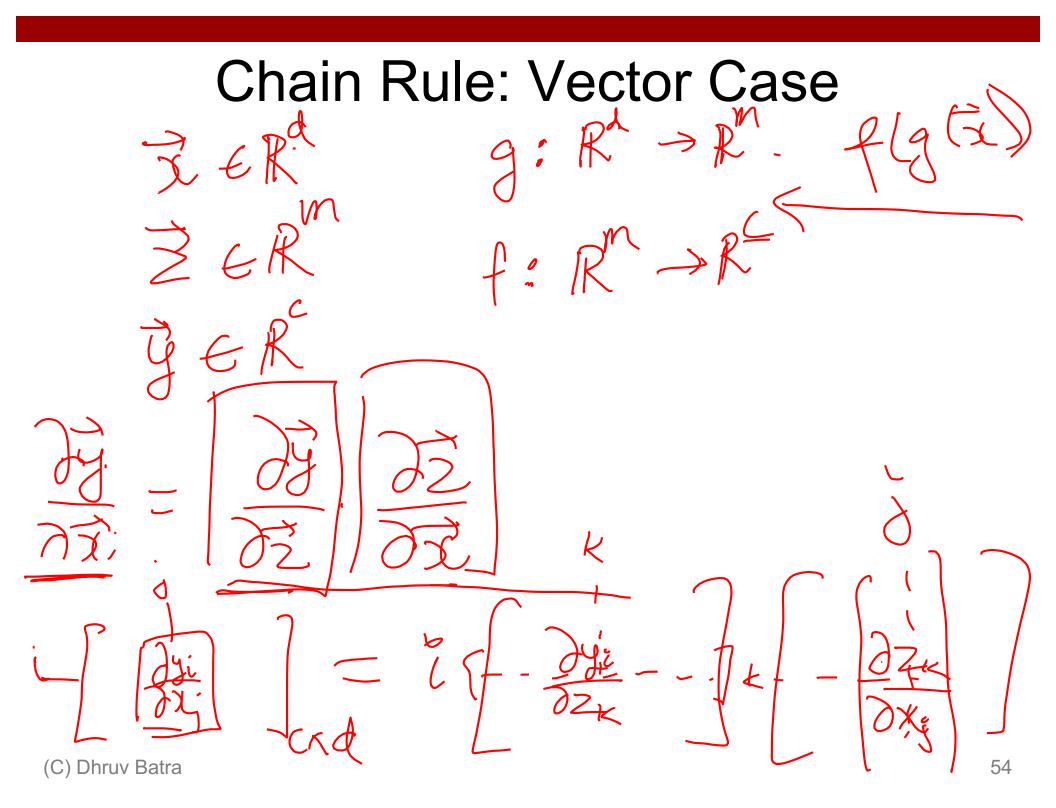
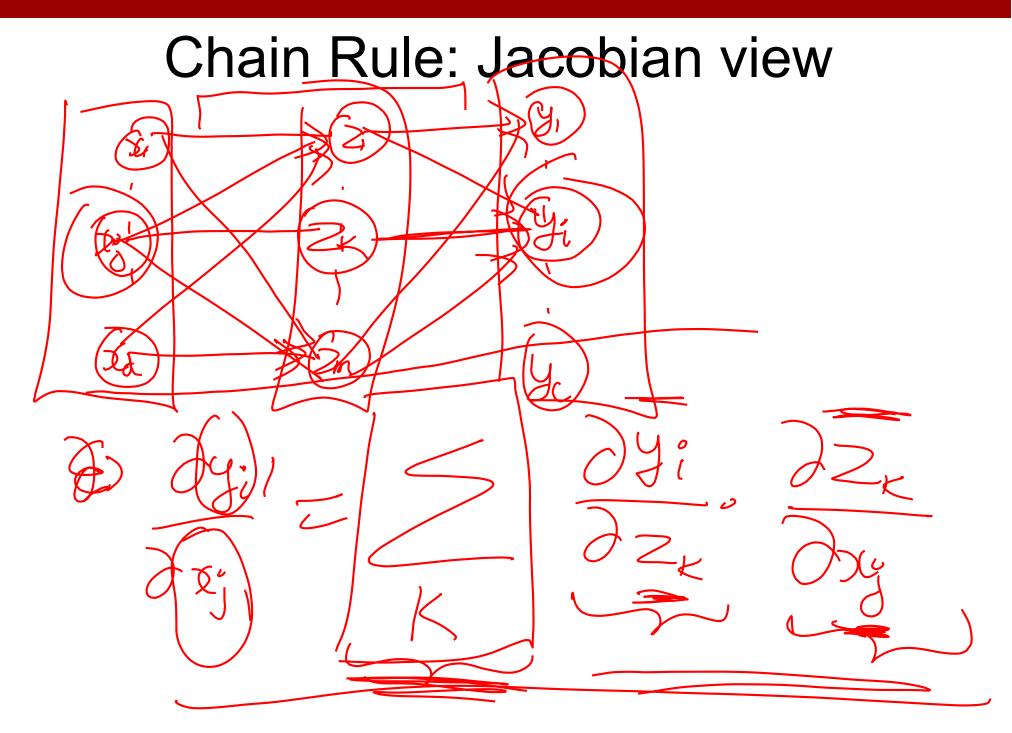


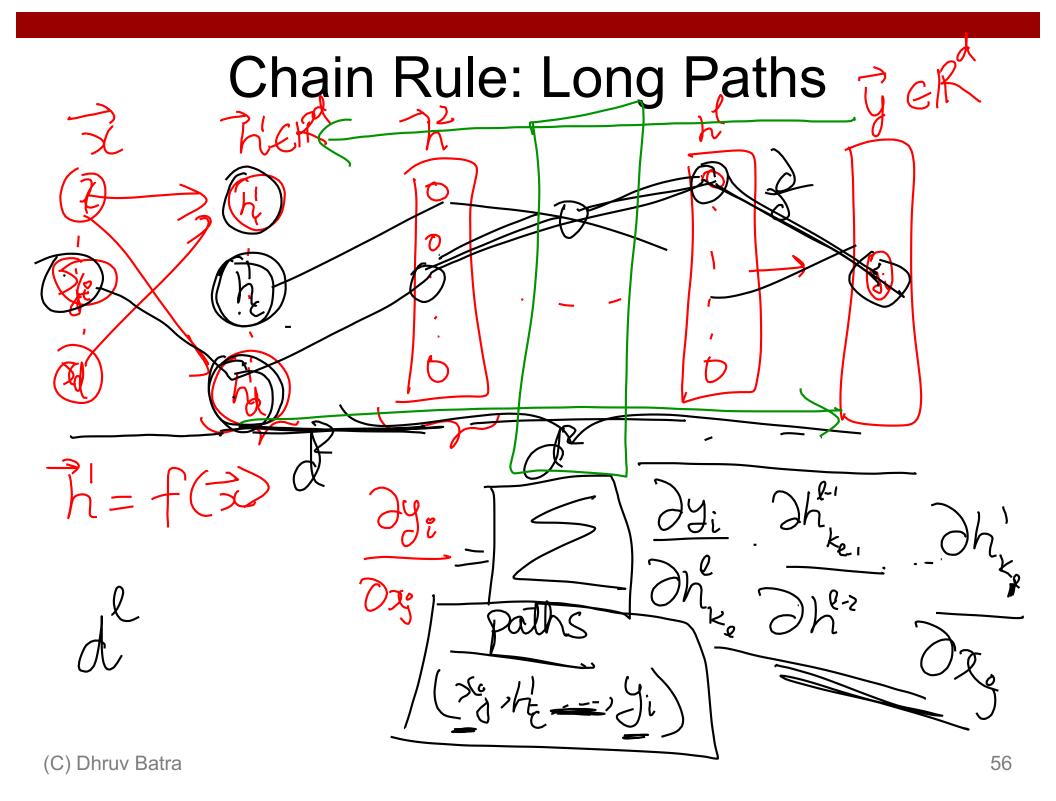
Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Neural Turing Machine



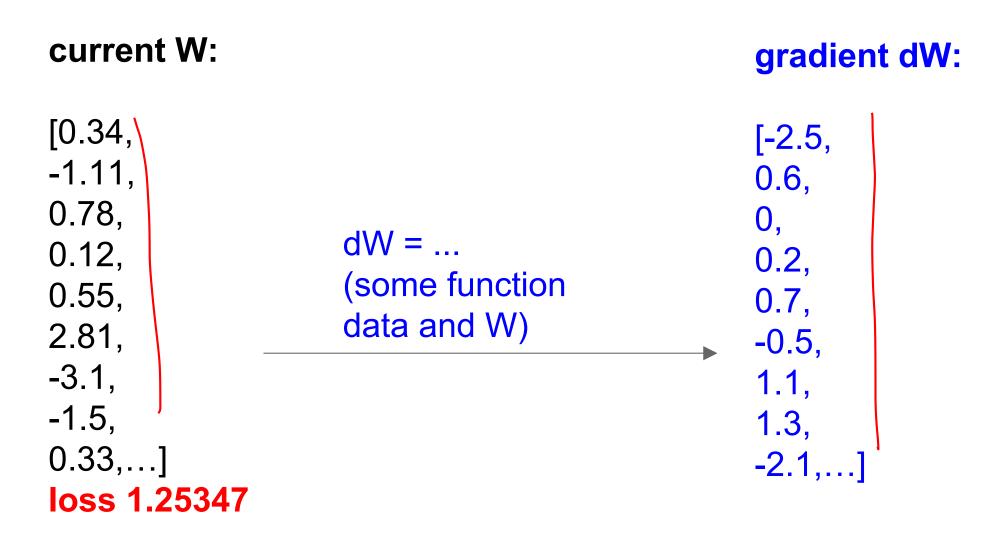




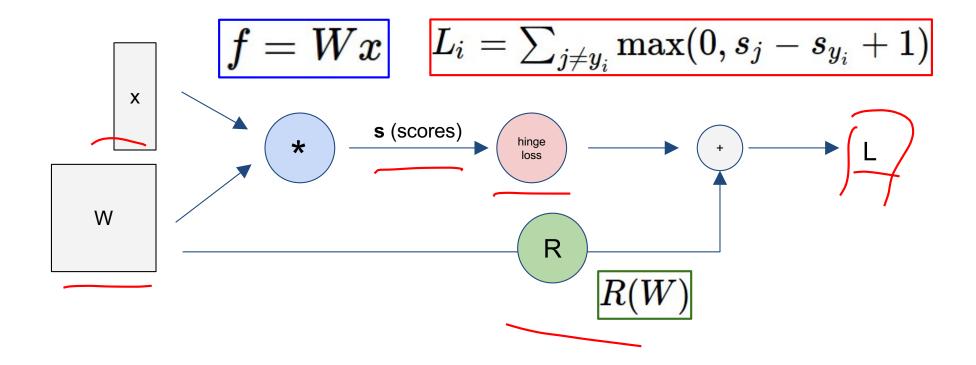


Chain Rule: Long Paths

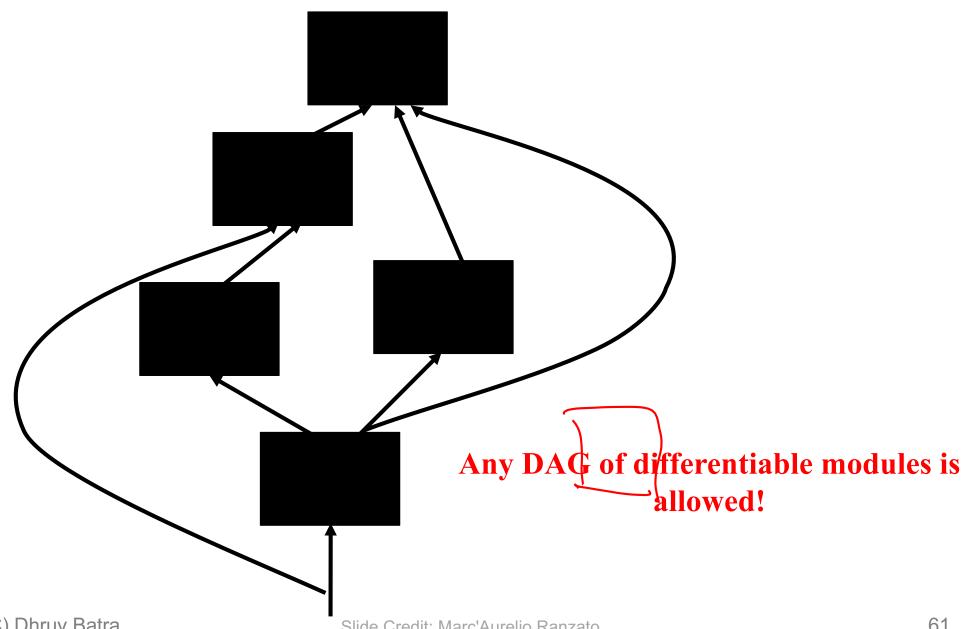
Chain Rule: Long Paths

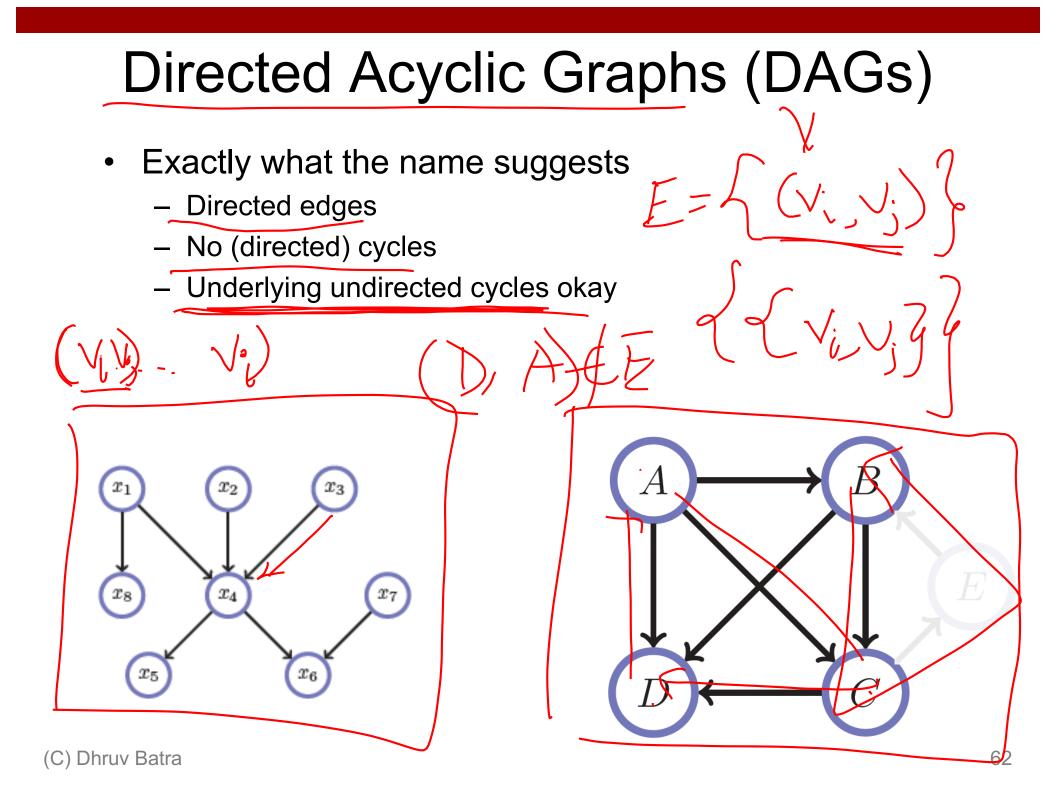


Computational Graph



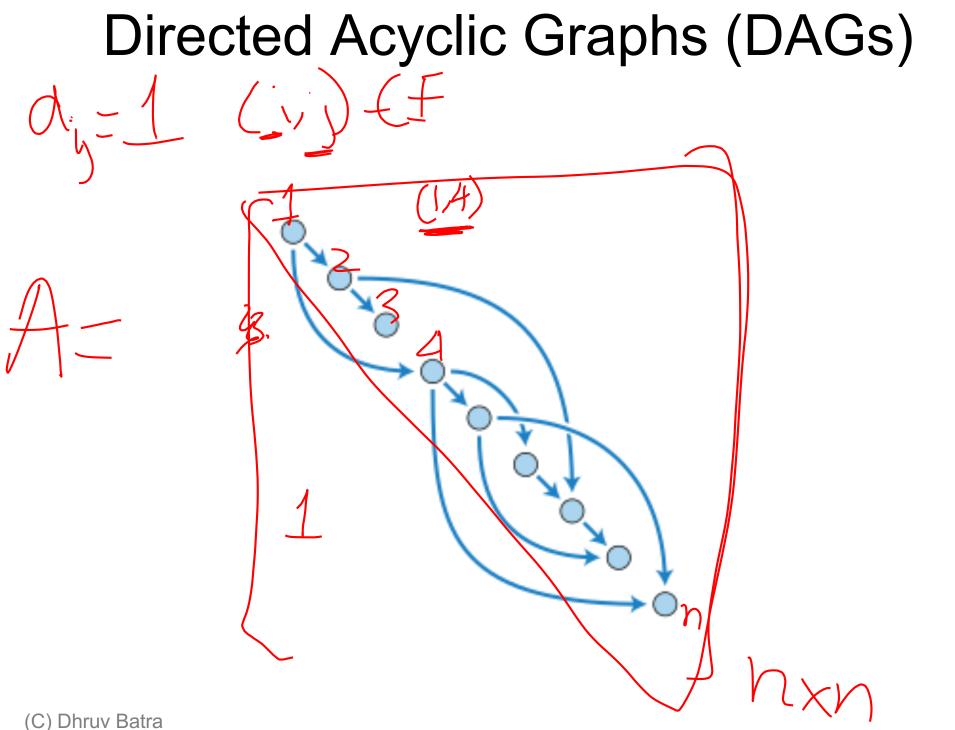
Computational Graph





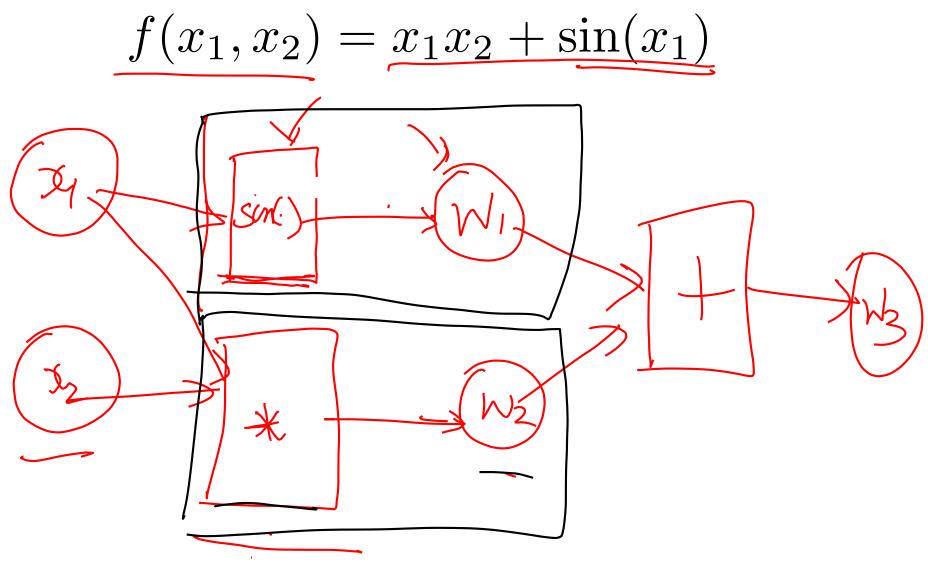
Directed Acyclic Graphs (DAGs) $G: V \rightarrow [n] = [!]$ Concept • Topological Ordering Sit (V: Vi BA x_1 x_3 x_8 x_4 x_{I}

(C) Dhruv Batra



Computational Graphs

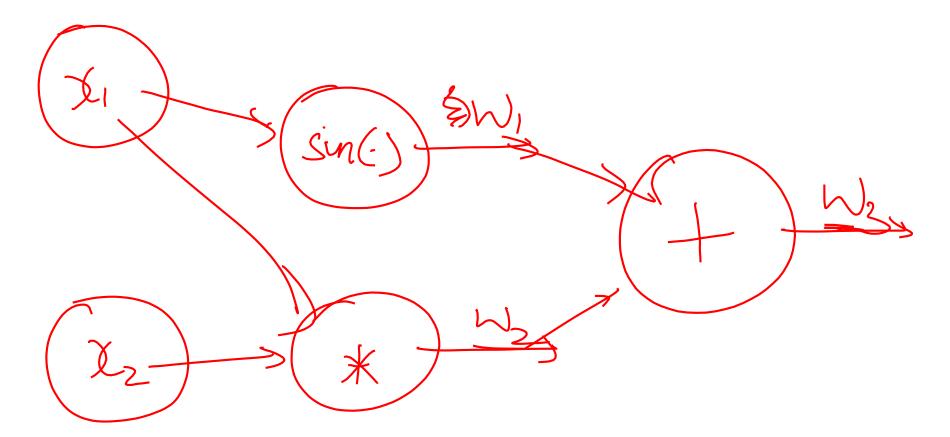
• Notation #1



Computational Graphs

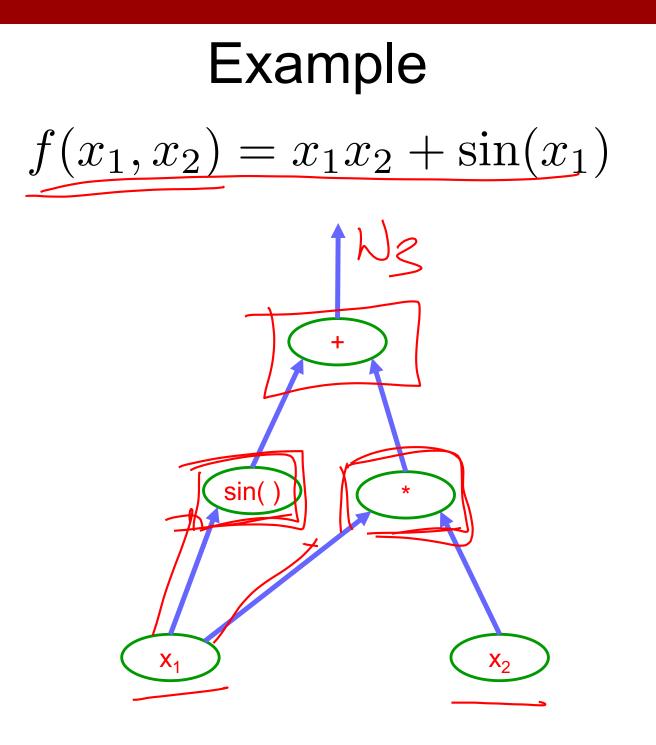
• Notation #2

$$f(x_1, x_2) = x_1 x_2 + \sin(x_1)$$



Example

 $f(x_1, x_2) = x_1 x_2 + \sin(x_1)$

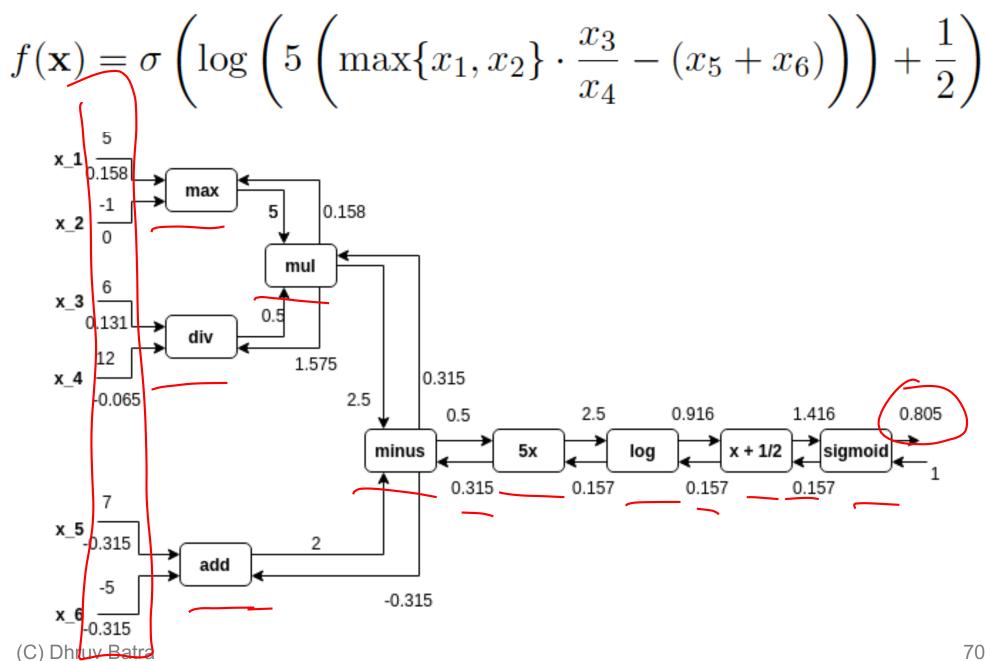


(C) Dhruv Batra

HW0

$$f(\mathbf{x}) = \sigma \left(\log \left(5 \left(\max\{x_1, x_2\} \cdot \frac{x_3}{x_4} - (x_5 + x_6) \right) \right) + \frac{1}{2} \right)$$

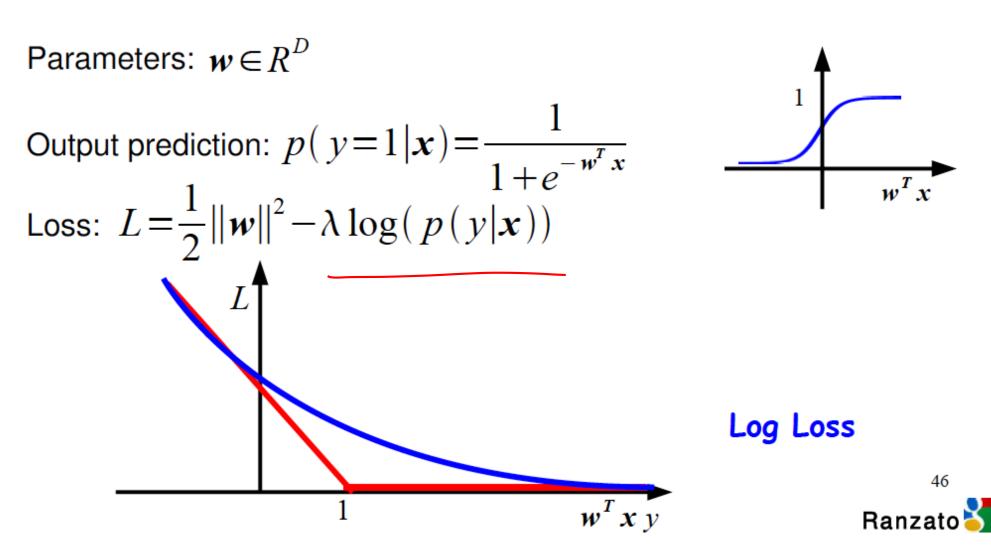
HW0 Submission by Samyak Datta



Linear Classifier: Logistic Regression

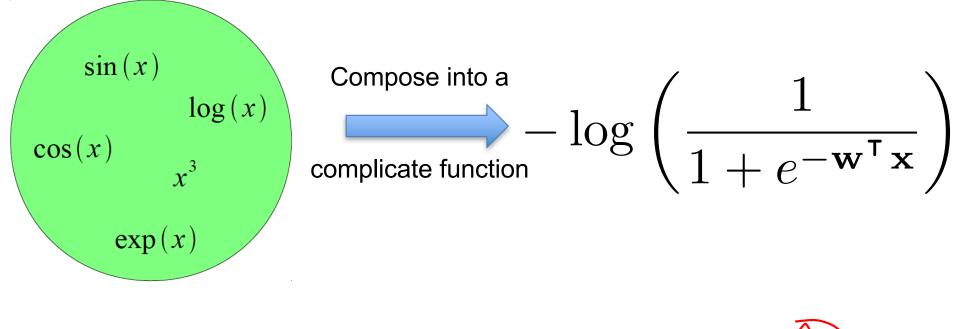
Input: $x \in R^{D}$

Binary label: $y \in \{-1, +1\}$



Logistic Regression as a Cascade

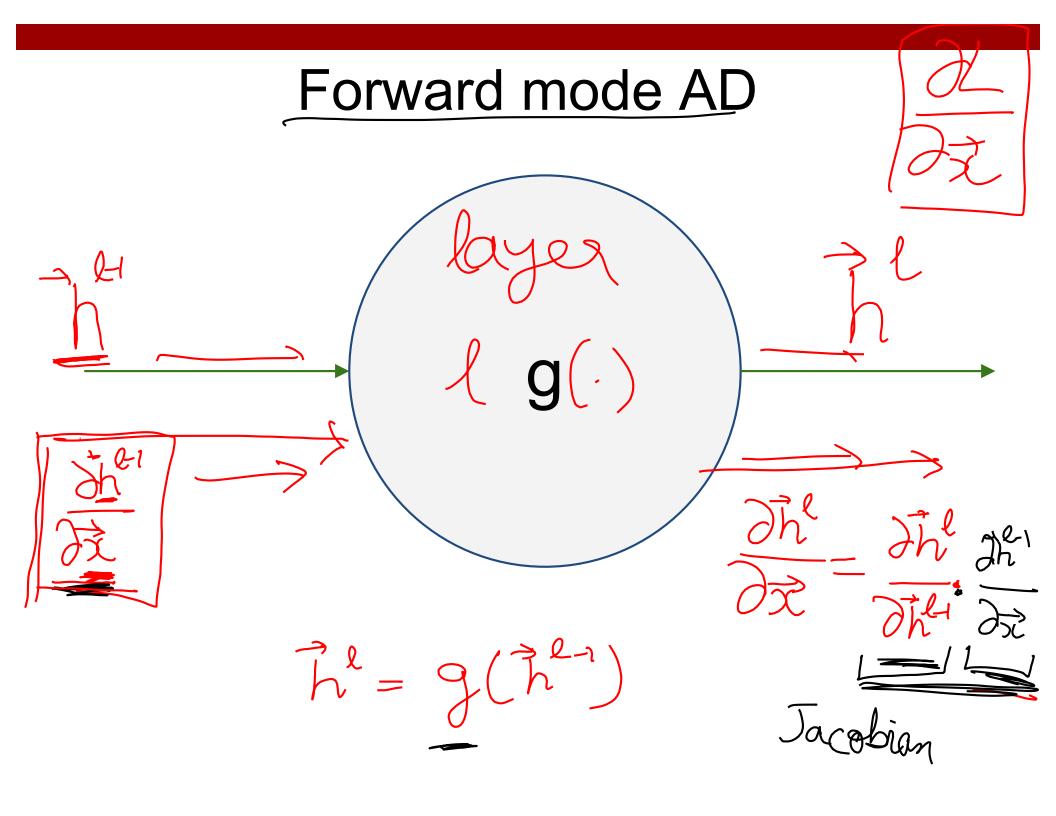
Given a library of simple functions

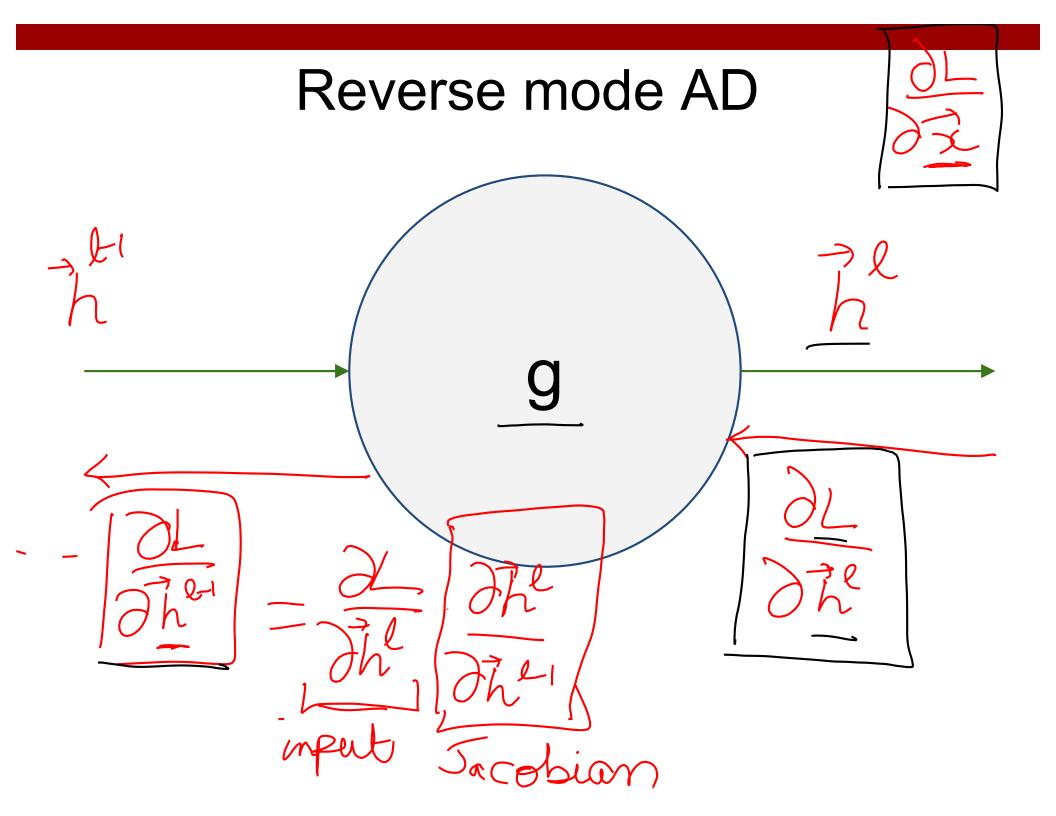


$$\mathbf{w}^{\mathsf{T}}\mathbf{x}$$
 u 1 p $-\log(p)$ L

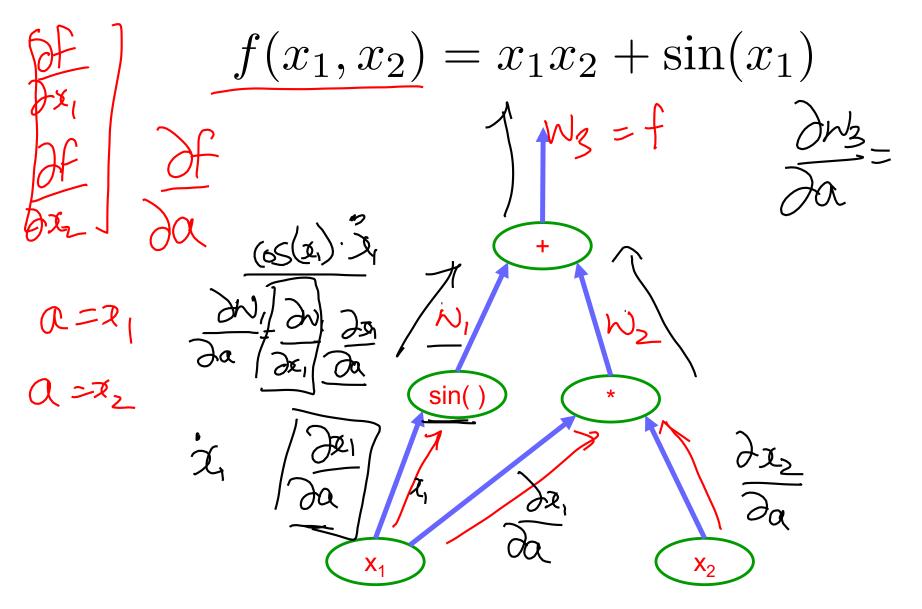
Forward mode vs Reverse Mode

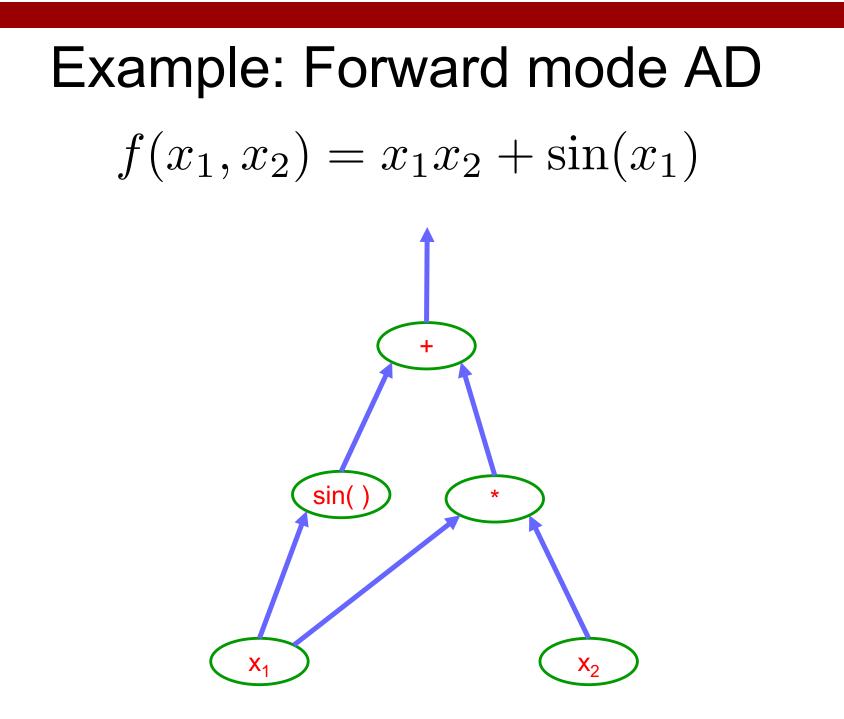
• Key Computations

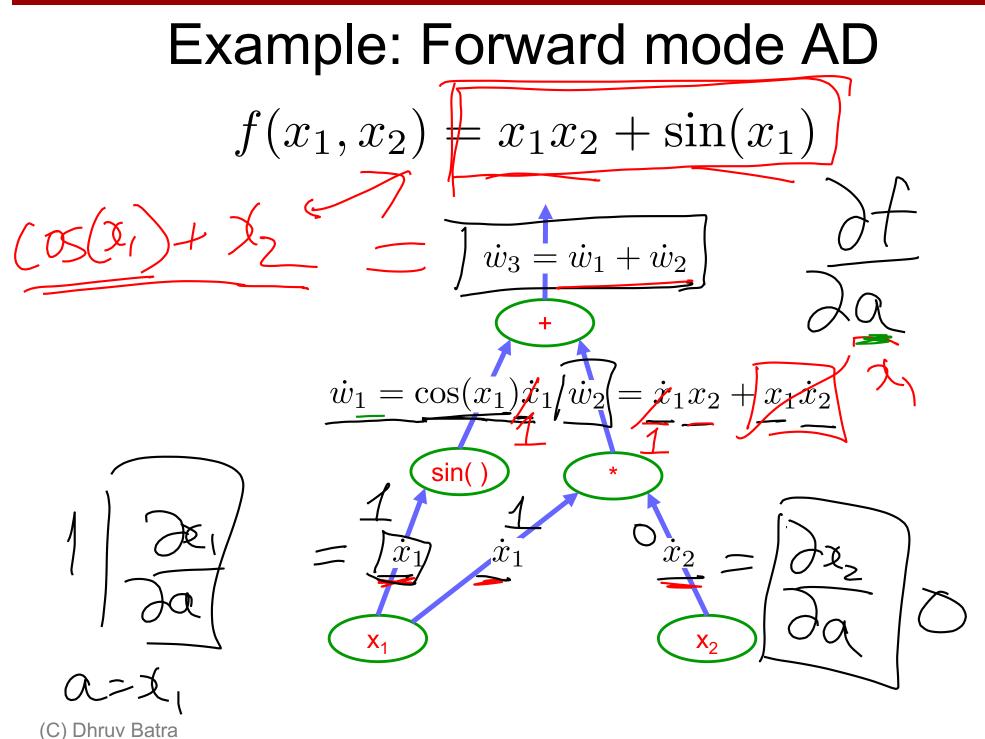




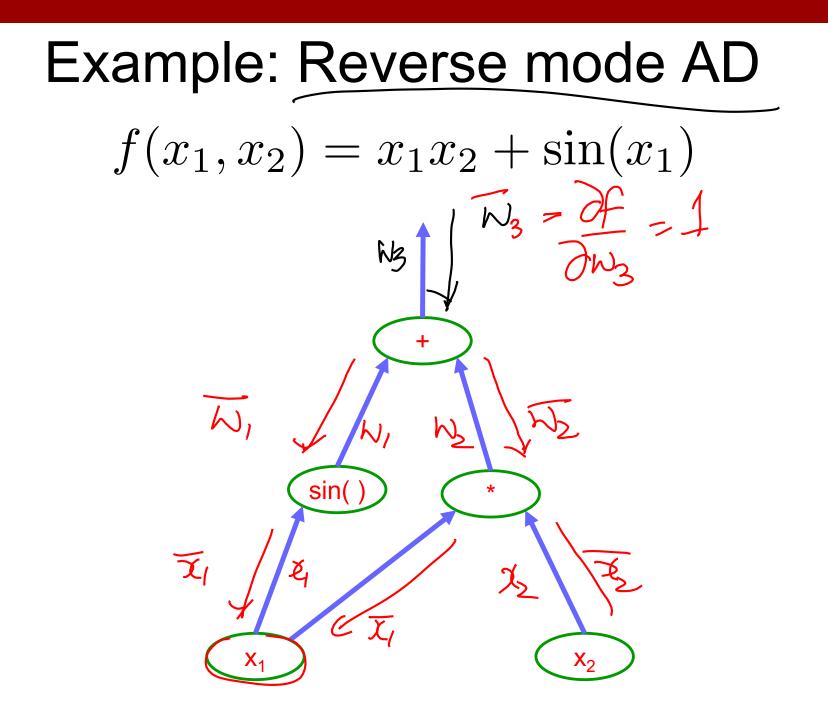
Example: Forward mode AD

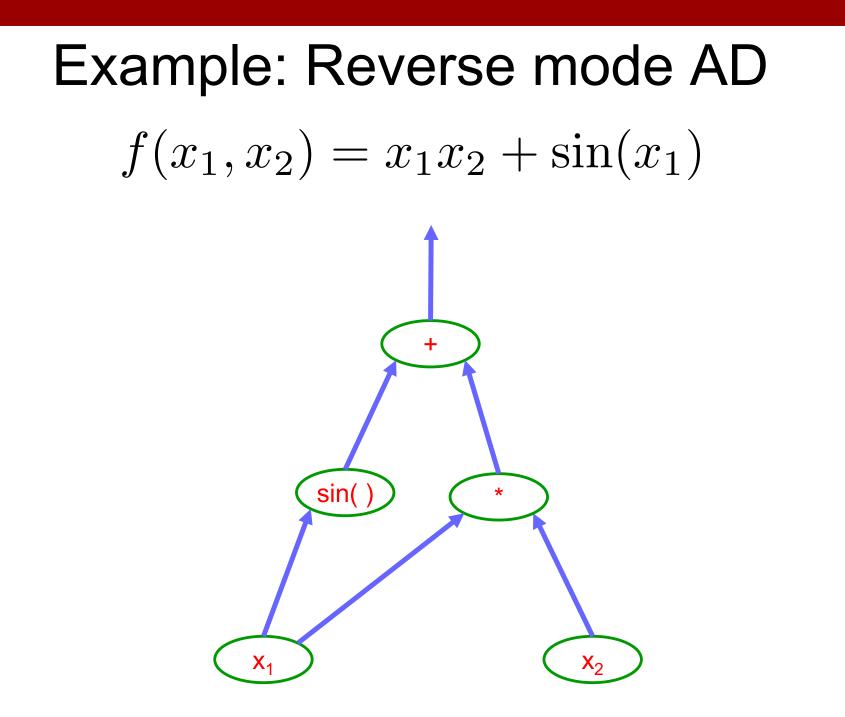


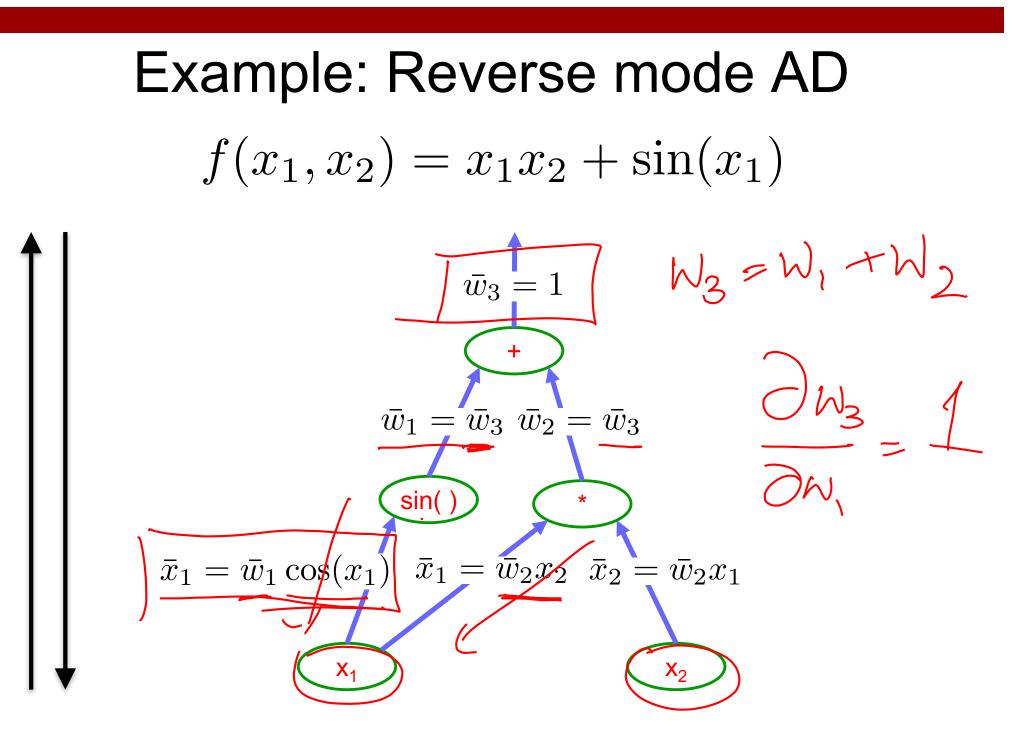


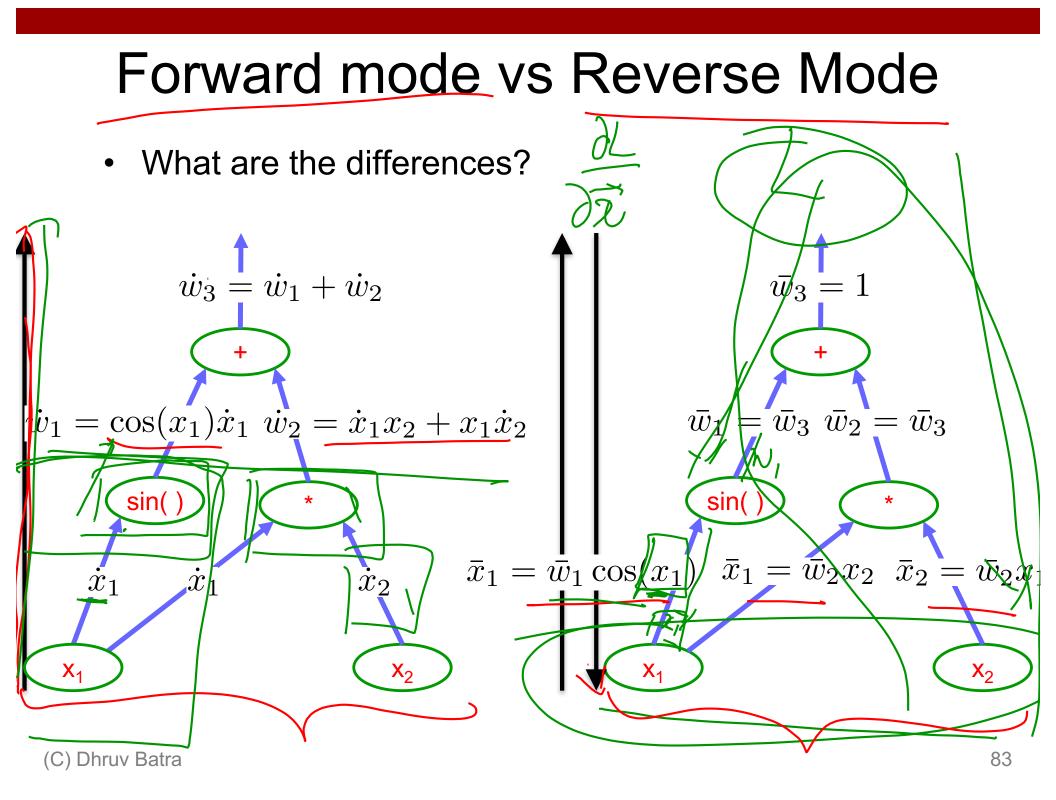


Example: Forward mode AD $f(x_1, x_2) = x_1 x_2 + \sin(x_1)$ $\dot{w}_3 = \dot{w}_1 + \dot{w}_2$ $\dot{w}_1 = \cos(x_1)\dot{x}_1$ $\dot{w}_2 = \dot{x}_1x_2 + x_1\dot{x}_2$ sin(\dot{x}_1 \dot{x}_1 x_2









Forward mode vs Reverse Mode

- What are the differences?
- Which one is more memory efficient (less storage)?
 - Forward or backward?

Forward mode vs Reverse Mode

- What are the differences?
- Which one is more memory efficient (less storage)?
 - Forward or backward?
- Which one is faster to compute?
 - Forward or backward?