CS 7643: Deep Learning

Topics:
— Computational Graphs
— Notation + example
— Computing Gradients
— Forward mode vs Reverse mode AD

Dhruv Batra
Georgia Tech

-
Administrativia

* No class on Tuesday next week (Sep 12)

 HWO solutions posted

(C) Dhruv Batra 2

Invited Talk #1

* Note: Change in time: 12:30-1:30pm (Lunch at Noon)

ML@GT Seminar Series
Wednesday Sep 6 2017, 12:30 pm - 1:30 pm
Location: Marcus Nanotechnology Building, Room 1118

Speaker: Soumith Chintala

An Overview of Deep Learning Frameworks
and an Introduction to PyTorch

Abstract: In this talk, you will get an exposure to the various types of deep learning frameworks — declarative and imperative frameworks such as TensorFlow and PyTorch. After a broad
overview of frameworks, you will be introduced to the PyTorch framework in more detail. We will discuss your perspective as a researcher and a user, formalizing the needs of research
workflows (covering data pre-processing and loading, model building, etc.). Then, we shall see how the different features of PyTorch map to helping you with these workflows.

Bio: Soumith Chintala is a Researcher at Facebook Al Research, where he works on deep learning, reinforcement learning, generative image models, agents for video games and large-scale
high-performance deep learning. With over 500 commits, Soumith is also one of the primary developers of the popular open-source PyTorch framework for deep learning. Prior to joining
Facebook in August 2014, he worked at MuseAmi, where he built deep learning models for music and vision targeted at mobile devices. He holds a Masters in CS from NYU, and spent time in
Yann LeCun’s NYU lab building deep learning models for pedestrian detection, natural image OCR, and depth-images among others.

(C) Dhruv Batra 3

Invited Talk #2

Special Guest Speaker - CS 7643 Deep Learning
Thursday Sep 7 2017, 4:30 pm - 5:45 pm
Location: Clough 144

Speaker: Nathan Silberman

TF-Slim: A Lightweight Library for Defining, Training
and Evaluating Complex Models in TensorFlow

Abstract: TF-Slim is a TensorFlow-based library with various components. These include modules for easily defining neural network models with few lines of code, routines for training and evaluating
such models in a highly distributed fashion and utilities for creating efficient data loading pipelines. Additionally, the TF-Slim Image Models library provides many commonly used networks (ResNet,
Inception, VGG, etc) that make replicating results and creating new networks using existing components simple and straightforward. | will discuss some of the design choices and constraints that guided
our development process as well as several high-impact projects in the medical domain that utilize most or all components of the TF-Slim library.

Bio: Nathan Silberman is the Lead Deep Learning Scientist at 4Catalyzer where he works on a variety of healthcare related projects. His machine learning interests include semantic segmentation,
detection and reinforcement learning and how to best apply these areas to high-impact areas in the medical world. Prior to joining 4Catalyzer, Nathan was a researcher at Google where among various
projects, he co-wrote TensorFlow-Slim, which is now a major component of the TensorFlow library. Nathan received his PhD in 2015 from New York University under Rob Fergus and David Sontag

(C) Dhruv Batra 4

-]
Project

« Goal
— Chance to try Deep Learning

— Combine with other classes / research / credits / anything
* You have our blanket permission
« Extra credit for shooting for a publication

— Encouraged to apply to your research (computer vision, NLP,
robotics,...)

— Must be done this semester.

 Main categories
— Application/Survey

« Compare a bunch of existing algorithms on a new application domain of
your interest

— Formulation/Development
» Formulate a new model or algorithm for a new or old problem

— Theory

« Theoretically analyze an existing algorithm

(C) Dhruv Batra 5

-]
Project

« Deliverables:

— No formal proposal document due
» Consider talking to your TAs

— Final Poster Session
— (tentative): Week of Nov 27.

* Questions/support/ideas
— Stop by and talk to TAs

 Teaming
— Encouraged to form teams of 2-3.

(C) Dhruv Batra 6

Michael Cogswell Abhishek Das Zhaoyang Lv
3 year CS PhD student 2nd year CS PhD student 3 year CS PhD student
http://mcogswell.io/ http://abhishekdas.com/ https://www.cc.gatech.edu/~zIv3(Q

- 0000000000000
Paper Reading Intuition:

Multi-Task Learning Task 1

Task 2

Task N

(C) Dhruv Batra 8

- 0000000000000
Paper Reading Intuition:

Multi-Task Learning

arXiv.org

Shared Shared
... Layer N

arXiv.org

(C) Dhruv Batra 9

- 0000000000000
Paper Reading Intuition:

Multi-Task Learning

Cornell University
5 Library

arXiv.org

Shared Shared
... Layer N

CS 7643: Deep Learning

www.cc.gatech.edu/classes/AY2018/cs7643_fall/
iazza.com/gatech/fall2017/cs7643

R Cornell University
Library

Dhruv Batra
School of Interactive Computing
Georgia Tech

arXiv.org

(C) Dhruv Batra 10

- 0000000000000
Paper Reading Intuition:

Multi-Task Learning

Cornell University
Library

arXiv.org

Shared Shared
... Layer N

Paper of the Day

" Frempry Agrou_p of people
Deep NN Generating| |Shopping at an
RNN outdoor market.

There are many
tables at the
fruit stand.

W
B

Dhruv Batra
School of Interactive Computing
Georgia Tech

arXiv.org

(C) Dhruv Batra 11

- 0000000000
Paper Reviews

* Length
— 200-400 words.
« Due: Midnight before class on Piazza

« Organization
— Summary:

* What is this paper about? What is the main contribution? Describe the main approach & results. Just
facts, no opinions yet.

— List of positive points / Strengths:

» Is there a new theoretical insight? Or a significant empirical advance? Did they solve a standing open
problem? Or is a good formulation for a new problem? Or a faster/better solution for an existing
problem? Any good practical outcome (code, algorithm, etc)? Are the experiments well executed?
Useful for the community in general?

— List of negative points / Weaknesses:

* What would you do differently? Any missing baselines? missing datasets? any odd design choices in the
algorithm not explained well? quality of writing? Is there sufficient novelty in what they propose? Has it
already been done? Minor variation of previous work? Why should anyone care? Is the problem
interesting and significant?

— Reflections
* How does this relate to other papers we have read? What are the next research directions in this line of
work?

(C) Dhruv Batra 12

-]
Presentations

* Frequency
— Once in the semester: 5 min presentation.

« EXxpectations

— Present details of 1 paper
» Describe formulation, experiment, approaches, datasets
* Encouraged to present a broad picture
» Show results; demo code if possible

— Please clearly cite the source of each slide that is not your
own.

— Meet with TA 1 week before class to dry run presentation
» Worth 40% of presentation grade

(C) Dhruv Batra 13

Recap of last time

(C) Dhruv Batra 14

J \ J
Y Y
Data loss: Model predictions Regularization: Model
should match training data should be “simple”, so it

works on test data

Occam’s Razor:

“Among competing hypotheses,
the simplest is the best”

William of Ockham, 1285 - 1347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

-]
Regularization

A= regularization strength
(hyperparameter)

L=+l 3, ., max(0, f(zi; W); — f(zs; W)y, + 1) +AR(W)

In common use: Ty

L2 regularization E(W) =22, W S
L1 regularization RW) =221 20|Whi| ——
Elastic net (L1 + L2) BV = D ZzﬂWkQ,z + Wiyl
Dropout

Fancier: Batch normalization, stochastic depth

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

]
Neural networks: without the brain stuff

(Before) Linear score function: f = Wz

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural networks: without the brain stuff

(Before) Linear score function: f Z/VQ
(Now) 2-layer Neural Network f = Wy max(0, Wix)

\.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

-
Neural networks: without the brain stuff

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network f = Wy max(0, Wix)

3072 100 10

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

-
Neural networks: without the brain stuff

(Before) Linear score function: f = Wzx
(Now) 2-layer Neural Network f = Ws max(0, Wix)

X | W1 hil W2 S

3072

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

-
Neural networks: without the brain stuff

(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network f = Wy max(0, Wix)
or 3-layer Neural Network

f = W3 max(0, W max(0, Wiz))

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Activation functions

S|gmo|d 1 Leaky RelLU
1 max(0.1x, x)
O'(ZE) T 14e*

tanh V Maxout
tanh(m) 4 * max(wi x + by, w3 x + be)
ReLU ELU
0 T x>0
maX(’ .’,13) . {a(ew —1) =<0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural networks: Architectures

\J
X
m&‘

4
\
.

output layer

)
®

output layer
input layer input layer
hidden layer hidden layer 1 hidden layer 2

“3-layer Neural Net”, or
“2-layer Neural Net”, or “2-hidden-layer Neural Net”

“1-hidden-layer Neural Net” “Fully-connected” layers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

-]
ptimization

Vanilla Gradient Descent

while True:
weights grad = evaluate gradient(loss fun, data, weights)
Landscape image is CCO 1.0 public domain weights += - step size * weights_grad # perform parameter update

Walking man image is CCO0 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)

Full sum expensive
Z Li(xi,yi, W) + AR(W when N is large!

1 Approximate sum
L Li(zs, ys using a minibatch of
Vw L(W) N z;vw i di A}FM examples
=1)

32/64 /128 common

SO R Rg—aataltanta

uelghts grad = evaluate _gradient(loss fun, data batch,

_W_GIQ%
weights += - step size * weights grad # pec aramet

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- 0000000000
How do we compute gradients?

Manual Differentiation

—_

Symbolic Differentiation

—_—

Numerical Differentiation

Automatic Differentiation
— Forward mode AD

— Reverse mode AD
» aka “backprop”

(C) Dhruv Batra 26

11 =T 1
lnyy = 4ln(1— 1) ‘

f(z) = lg = 64x(1 —)(1 — 2x)?(1 — 8z + 8x2)?

T e e - —— ——

Manual
Differentiation

Coding
v |
V4
f(x):
V=X
fori=1to3
v=4v(i-vwv) —_— \
, R
Symboli >
or, in closed-form, _SYmBboflc
Differentiation
£00) : of the Closed-form
64x (1-x) (1-2x)72 (1-8x+8x"2)"2
P N
Automatic Numerical

Differentiation

Differentiation

£'(x):
(v,v?) = (x,1)
fori=1to3

| (v,v’) = (4v(1-v), 4v’-8vv’)

(v,v?)

\

. —

f'(x) = 128z(1 — =)(—8 + 16x)(1 — 27)*(1 -
8r+872)+64(1—x)(1—22)%(1 — 8z + 8x2)% —
64z(1 —27)%(1 — 8z + 82%)% — 256x(1 — x)(1 —
27)(1 — 8x + 8x2%)?

/\f’(x):

128x(1 - x)(-8+16x)(1 -2
x)"2(1-8x+8x"2)+64 (1
-x)(1-2x)"2(1-8x+8
x"2)"2-64x(1-2x)"2(1-8
xX+8x"2)"2-256x(1 -x)(1 -
2x)(1-8x+8x"2)"2

f’(xp) (x5S
Exact

\/‘\/

f'(x):
h = 0.000001
(f(x+h) -f(x))/h

£ (xp) = f'(z0)
Approximate

27

Matrix/Vector Derivatives Notation °
r\ é ’\‘/ “‘I\/(F I/’ 3 2/{
0 >
Z ek
|

BRI
;j} G e R

M@c%/w 9% _Pal)
> 0t |
gl o2 | o X
)y T—— o P

N —

(C) Dhruv Batra 28

Matrix/Vector Derivatives-Notation
> ' O

|]
AN AR

0%

Vector Derivative Example

o O _ 20hA

Extension to Tensors Om

Chain Rule: Composi
/0= 419)] =({ 3} @L\ \

/K @@{\ (&

Chain Rule: Scalar Case
1> 2—=> 3}

y 2~ Ly L Go>= o)
_ 00 \
d R
;é Qé« _ 2__ e

Chain Rule: Vector Case

“iéﬁtq q: R =F %Ci&\&
Ee@ Pf[/iﬂgﬂ
-
| B|E :
ﬁ;é/ﬁ\f K é(
9\

—L
£l
S
~ ()
I
B |
l/%\)
Tﬂ\—w
.’fb/\ —
8
‘\)

% Chain Rule: Ja@%)\bian view

L

3] S

%T@/Zz Bg)2

L k= %5

(C) Dhruv Batra 35

Plan for Today

— Notation + example

-[Computational Graphs

« Computing Gradients
— Forward mode vs Reverse mode AD

See——

(C) Dhruv Batra 36

- 0000000000
How do we compute gradients?

Manual Differentiation

Symbolic Differentiation

Numerical Differentiation

Automatic Differentiation
— Forward mode AD

— Reverse mode AD
» aka “backprop”

(C) Dhruv Batra 37

(C) Dhruv Batra 38

current W: gradient dW:

0.34, |
-1.11,

0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
33, .

Ioss 1 25347
e
—

—

S

-

~u

~u

- - -~

~u

10 BETS BETS BETS IETS BT BETS BT |

~u
[

[

| S|

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

current W: W + h (first dim): gradient dW:
0.34, [0.34 +0.0001, ?
111, 111, 2,
0.78, 0.78, 2.
0.12, 0.12, 2.
0.55, 0.55, 2.
281, 281, 2.
3.1, 3.1, 2.
15 15, 2.
0.33,..] 0.33,..] Y 2]
loss 1.25347— loss 1.25322

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dW:
_[-2.5,
?,
?,
(1.25322 - 1.25347)/0.0001
=-2.5
df(z) _ . fl@+h) - f(@)
dz h —0 h
?,
?,...]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25353

gradient dW:
[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,...]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,
0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25353

gradient dW:

-2.5,

0.6,
A
?

{1.25353 - 1.25347)/0.0001

=0.6 T
af(@) _ . fe+h) - f(a)
dx h =0 h
?2,...]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

-2.5,
0.6,

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

current W:

[0.34,]
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5, \
0.33,...]
loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

-2.5,
0.6,

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

-]
Numerical vs Analytic Gradients

df(z) _ . fz+h) - f@)

dx h —0 h

Numerical gradient_slow :(, approximate :(, easy to write :)

Analytic gradient:@:), exact :), error-prone (B

— \

In practice: Derive analytic gradient, check your
implementaticiﬁ'lh numerical gradient.
gr

This is called a gradient check.)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- 0000000000
How do we compute gradients?

 Manual Differentiation
« Symbolic Differentiation

 Numerical Differentiation

e ——

T

 Automatic Differentiation
— Forward mode AD

— Reverse mode AD
) » aka “backprop”

(C) Dhruv Batra 47

Chain Rule: Vector Case

3 <k q: R =F %Ci& @

26/‘%}/\ Pf[/iﬂgﬂ
-
& | B8 :
?Juﬁ/bi4 < é(
9\

- |
=
Q%UV
~ ()
—
l/%\;
T\;\—w
S
X
—)

|
Linear Classifier: Logistic Regression

Input: xeR”
Binary label: E{— 1,+1 '

Parameters: we R”

1 ’ w! x
Loss: L=§||w|)
A

L

Log Loss

46

T T
1 W Xy Ranzato"

Logistic Regression Derivatives

L —%3(le—‘@MT)

| __Z, — | e >
O M/Jef) (*@)j

| —

(

(C) Dhruv Batra 50

- 0000000000
Convolutional network (AlexNet)

iInput image

weights —

IOSS ¥ '
8
vz
-3
< al
= ® =Sy -
=] =2 =
2 <
~ ‘-'
|
- <
]
3
a

- X =
; - Figure copyright Alex Krizhevsky, llya Sutskever, and
: Geoffrey Hinton, 2012. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural Turing Machine

input image/

loss \

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- 0000000000
Neural Turing Machine

L~

L - Figure reproduced with permission fi witter post by Andrej Karpathy.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Chain Rule: Vector Case

“iéﬁtq q: R =F %Ci&\&
Ee@ Pf[/iﬂgﬂ
-
| B|E :
ﬁ;é/ﬁ\f K é(
9\

—L
£l
S
~ ()
I
B |
l/%\)
Tﬂ\—w
.’fb/\ —
8
‘\)

Chain Rule: lan view

e)
/ D | eSS

b

0Y: A=,
g BZ 5)@
() 3.
k/w u'di\>

Chgin Rule: Long Paths > &
l 2 , h{ :

oNdo g g yEs
X \[’@ /b O J
N \ — T . ==
h=TE % A, yF
g :_QQL; f 9%” oh, Bh;
3 _ ?

Chain Rule: Long Paths

(C) Dhruv Batra S7

Chain Rule: Long Paths

(C) Dhruv Batra 58

current W: gradient dW:
[0.34,\ [-2.5,

-1.11, 0.6,

0.78, 0,

0.12, dw = ... 0.2,

0.55, (some function 0.7

281, data and W) . _0_5,

-3.1, 1.1,

-1.5, 1.3,

0.33,...] -2.1,...]

loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Computational Graph

f—W

Li =) .,., max(0,s; — sy, + 1)

@ s (scores) ‘ o ?4»]?

R(W)
\

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Computational Graph

Any DAéF of d% ferentiable modules is
allowed!

(C) Dhruv Batra 61

Directed Acyclic Graphs (DAGs)
» Exactly what the name suggests \Z

— Directed edges £7 [\\’&\)\GB}

— No (directed) cycles

— Underlying undirected cycles okay % QC

| — Vo N\
5 0
G-) (D g - Jj

@e@

7

LE ¥ |

Dhruv Batra

Directed Acyclic Graphs (DAGs)
« Concept ’j 6z Y —> Enj ;«{)_ ,,‘,Yg(

— Topological Ordering T —————
St CV;,\/\;BQ E ¢lr) <5 C\}Q
2 Vv —— <

\

(C) Dhruv Batra

Dlrected Acycllc Graphs (DAGs)

(C) Dhruv Batra

Computational Graphs

* Notation #1
f(x1,22) = x122 + Sin(xq)

Computational Graphs

* Notation #2
f(x1,29) = 2122 + sin(xq)

(B3~

(C) Dhruv Batra 66

-]
Example

f(x1,29) = T122 + sin(xq)

(C) Dhruv Batra 67

(C) Dhruv Batra 68

HWO

X 1
f(X) — 0 (log (5 (max{:z:l, 1172} R (;1;5 + f6)>> + 5)
L4

P —

(C) Dhruv Batra 50

HWO Submission by Samyak Datta

T 1
X) =0 (log (5 (111&X{:Z?1. 11?2} . ? — (;[;5 — r6)>> + 2)
T4

\ :
X1
158
max
1 5| |0.158
X 2 0 —— e
6
X 3 |— —
d131) 0.
div
12 1.575
x 4 P 0.315
0.065 2.5
0 916 1.416 0.805
‘ mlnu X + 112]jsmmond
—1 0. 315 0. 157 0 157 0 157
7 —
2
add
-0.315

70

|
Linear Classifier: Logistic Regression

Input: x € R’
. 'I' ‘:.
Binary label: V€| — 1,+1 J

Parameters: we R”

Output prediction: p(y=1|x)= 1_,; :
1) l+e "7 wa>
Loss: L==|[w[]"—Alog(p(y|x))
A
L

Log Loss

46

T ki
1 w Xy Ranzato"

- 0000000000
Logistic Regression as a Cascade

Given a library of simple functions

Compose into a 1
| > —log -
complicate function 1 + e~W X

T u 1

(C) Dhruv Batra 72

-]
Forward mode vs Reverse Mode

« Key Computations

(C) Dhruv Batra 73

Forward mode AD ; ;z J
X

Reverse mode AD =
;;2: >

N =0
h h
9 ’
= 0
oL il oL
— | }h197bﬁ,1]

Example: Forward mode AD

2 f(x1,29) = T122 + sin(xq)

(C) Dhruv Batra 76

-]
Example: Forward mode AD

f(x1,29) = T122 + sin(xq)

(C) Dhruv Batra 77

Example: Forward mode AD
T =\
f(@1, z2) %M@ + Siil(%ﬂ
[os(3)+){Z:ﬁ: T’T* — Ot

W3 = W1 + Wa ——
| ga

o=k

(C) Dhruv Batra 78

Example: Forward mode AD

f(x1,29) = T122 + sin(xq)

A

W3 = W1 + Wa

s

w1, = COS(CBl).jZl Wy = 1T + T1To

R

T1 T1 T2
X

2 \\
— R

(C) Dhruv Batra 79

l

Example: Reverse mode AD

\ B

(C) Dhruv Batra 80

-]
Example: Reverse mode AD

f(x1,29) = T122 + sin(xq)

(C) Dhruv Batra 81

Example: Reverse mode AD

(C) Dhruv Batra 82

Forward mode vs Reverse Mode

/

 What are the differences? ,?;[: "‘\
AN
j3 =— 1

t

w3 = Wy + We

1 = COS(CIJl)iiil Wo = T1T9 + T1T9 Wy = w3 W = Wsy
— 0
= 3 N
=i G,
S g o BN LW s (A o
3'31 T }ZEZ \ L1 — W71 COSY ‘J L1 = WLy To = ZE\Q\
I~
= SRS
k/—\ M
~—— N\ 7 —

(C) Dhruv Batra 83

Forward mode vs Reverse Mode

« What are the differences?

\ * Which one is more memory efficient (less storage)?
— Forward or backward?

(C) Dhruv Batra 84

-
Forward mode vs Reverse Mode

« What are the differences?

* Which one is more memory efficient (less storage)?
— Forward or backward?

* Which one is faster to compute?
— Forward or backward?

(C) Dhruv Batra 85

