
CS 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Computational Graphs

– Notation + example
– Computing Gradients

– Forward mode vs Reverse mode AD



Administrativia
• No class on Tuesday next week (Sep 12)

• HW0 solutions posted
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Invited Talk #1
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• Note: Change in time: 12:30-1:30pm (Lunch at Noon)



Invited Talk #2
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Project
• Goal

– Chance to try Deep Learning
– Combine with other classes / research / credits / anything

• You have our blanket permission
• Extra credit for shooting for a publication

– Encouraged to apply to your research (computer vision, NLP, 
robotics,…)

– Must be done this semester. 

• Main categories
– Application/Survey

• Compare a bunch of existing algorithms on a new application domain of 
your interest

– Formulation/Development
• Formulate a new model or algorithm for a new or old problem

– Theory
• Theoretically analyze an existing algorithm
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Project
• Deliverables: 

– No formal proposal document due 
• Consider talking to your TAs

– Final Poster Session
– (tentative): Week of Nov 27. 

• Questions/support/ideas
– Stop by and talk to TAs

• Teaming
– Encouraged to form teams of 2-3. 
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TAs
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Michael Cogswell

3rd year CS PhD student

http://mcogswell.io/

Abhishek Das

2nd year CS PhD student

http://abhishekdas.com/

Zhaoyang Lv

3rd year CS PhD student

https://www.cc.gatech.edu/~zlv30/
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Lectures
CS 7643: Deep Learning

Dhruv Batra 
School of Interactive Computing

Georgia Tech

www.cc.gatech.edu/classes/AY2018/cs7643_fall/
piazza.com/gatech/fall2017/cs7643

Canvas: gatech.instructure.com/courses/772
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CS 7643: Deep Learning

Dhruv Batra 
School of Interactive Computing

Georgia Tech

www.cc.gatech.edu/classes/AY2018/cs7643_fall/
piazza.com/gatech/fall2017/cs7643

Canvas: gatech.instructure.com/courses/772
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Lectures Paper of the Day



Paper Reviews
• Length

– 200-400 words. 
• Due: Midnight before class on Piazza

• Organization
– Summary:

• What is this paper about? What is the main contribution? Describe the main approach & results. Just 
facts, no opinions yet.

– List of positive points / Strengths:
• Is there a new theoretical insight? Or a significant empirical advance? Did they solve a standing open 

problem? Or is a good formulation for a new problem? Or a faster/better solution for an existing 
problem? Any good practical outcome (code, algorithm, etc)? Are the experiments well executed? 
Useful for the community in general?

– List of negative points / Weaknesses:
• What would you do differently? Any missing baselines? missing datasets? any odd design choices in the 

algorithm not explained well? quality of writing? Is there sufficient novelty in what they propose? Has it 
already been done? Minor variation of previous work? Why should anyone care? Is the problem 
interesting and significant?

– Reflections
• How does this relate to other papers we have read? What are the next research directions in this line of 

work?

(C) Dhruv Batra 12



Presentations
• Frequency

– Once in the semester: 5 min presentation.

• Expectations
– Present details of 1 paper

• Describe formulation, experiment, approaches, datasets
• Encouraged to present a broad picture
• Show results; demo code if possible

– Please clearly cite the source of each slide that is not your 
own. 

– Meet with TA 1 week before class to dry run presentation 
• Worth 40% of presentation grade
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Recap of last time
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Data loss: Model predictions 
should match training data

Regularization: Model 
should be “simple”, so it 
works on test data

Occam’s Razor: 
“Among competing hypotheses, 
the simplest is the best”
William of Ockham, 1285 - 1347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



= regularization strength
(hyperparameter)

In common use:
L2 regularization
L1 regularization
Elastic net (L1 + L2)
Dropout (will see later)
Fancier: Batch normalization, stochastic depth

Regularization

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(Before) Linear score function:

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



18

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2

3072 100 10

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2

3072 100 10

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(Before) Linear score function:

(Now) 2-layer Neural Network
or 3-layer Neural Network

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Activation functions



“Fully-connected” layers
“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural networks: Architectures



Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain

Optimization

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Full sum expensive 
when N is large!

Approximate sum 
using a minibatch of 
examples
32 / 64 / 128 common

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)



How do we compute gradients?
• Manual Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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Matrix/Vector Derivatives Notation
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Matrix/Vector Derivatives Notation
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Vector Derivative Example
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Extension to Tensors
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Chain Rule: Composite Functions
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Chain Rule: Scalar Case
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Chain Rule: Vector Case
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Chain Rule: Jacobian view
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Plan for Today
• Computational Graphs

– Notation + example
• Computing Gradients

– Forward mode vs Reverse mode AD
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How do we compute gradients?
• Manual Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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(C) Dhruv Batra 38By Brnbrnz (Own work) [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)]



current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322



gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25322



gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your 
implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients



How do we compute gradients?
• Manual Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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Chain Rule: Vector Case

(C) Dhruv Batra 48



(C) Dhruv Batra 49



Logistic Regression Derivatives
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input image

loss

weights

Figure	copyright	Alex	Krizhevsky,	Ilya	Sutskever,	and	
Geoffrey	Hinton,	2012.	Reproduced	with	permission.	

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Chain Rule: Vector Case
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Chain Rule: Jacobian view
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Chain Rule: Long Paths
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Chain Rule: Long Paths

(C) Dhruv Batra 57



Chain Rule: Long Paths
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gradient dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…] 
loss 1.25347

dW = ...
(some function 
data and W)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



x

W

hinge 
loss

R

+ L
s (scores)

*

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Computational Graph



Any DAG of differentiable modules is 
allowed!

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 61

Computational Graph



Directed Acyclic Graphs (DAGs)
• Exactly what the name suggests

– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay
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Directed Acyclic Graphs (DAGs)
• Concept

– Topological Ordering
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Directed Acyclic Graphs (DAGs)
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Computational Graphs
• Notation #1
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f(x1, x2) = x1x2 + sin(x1)



Computational Graphs
• Notation #2
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f(x1, x2) = x1x2 + sin(x1)



Example
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f(x1, x2) = x1x2 + sin(x1)



Example
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*



HW0
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HW0 Submission by Samyak Datta
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Logistic Regression as a Cascade
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Given a library of simple functions

Compose into a

complicate function
� log

✓
1

1 + e�w

|
x

◆

w

|
x

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun



Forward mode vs Reverse Mode
• Key Computations
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g

Forward mode AD
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g

Reverse mode AD



Example: Forward mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*



Example: Forward mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*
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+

sin( )

x1 x2

*

ẋ1 ẋ1

ẇ1 = cos(x1)ẋ1

ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

Example: Forward mode AD
f(x1, x2) = x1x2 + sin(x1)
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+

sin( )

x1 x2

*

ẋ1 ẋ1

ẇ1 = cos(x1)ẋ1

ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

Example: Forward mode AD
f(x1, x2) = x1x2 + sin(x1)



Example: Reverse mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*



Example: Reverse mode AD
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f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*
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Example: Reverse mode AD
f(x1, x2) = x1x2 + sin(x1)

+

sin( )

x1 x2

*

w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄1 cos(x1) x̄1 = w̄2x2 x̄2 = w̄2x1



Forward mode vs Reverse Mode
• What are the differences? 
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+

sin( )

x2

*

+

sin( )

x1 x2

*

ẋ1 ẋ1 ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2 w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄2x2 x̄2 = w̄2x1x̄1 = w̄1 cos(x1)

ẇ1 = cos(x1)ẋ1

x1



Forward mode vs Reverse Mode
• What are the differences? 

• Which one is more memory efficient (less storage)? 
– Forward or backward?
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Forward mode vs Reverse Mode
• What are the differences? 

• Which one is more memory efficient (less storage)? 
– Forward or backward?

• Which one is faster to compute? 
– Forward or backward?
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