
CS 7643: Deep Learning

Dhruv Batra
Georgia Tech

Topics:
– Computational Graphs

– Notation + example
– Computing Gradients

– Forward mode vs Reverse mode AD

Administrativia
• No class on Tuesday next week (Sep 12)

• HW0 solutions posted

(C) Dhruv Batra 2

Invited Talk #1

(C) Dhruv Batra 3

• Note: Change in time: 12:30-1:30pm (Lunch at Noon)

Invited Talk #2

(C) Dhruv Batra 4

Project
• Goal

– Chance to try Deep Learning
– Combine with other classes / research / credits / anything

• You have our blanket permission
• Extra credit for shooting for a publication

– Encouraged to apply to your research (computer vision, NLP,
robotics,…)

– Must be done this semester.

• Main categories
– Application/Survey

• Compare a bunch of existing algorithms on a new application domain of
your interest

– Formulation/Development
• Formulate a new model or algorithm for a new or old problem

– Theory
• Theoretically analyze an existing algorithm

(C) Dhruv Batra 5

Project
• Deliverables:

– No formal proposal document due
• Consider talking to your TAs

– Final Poster Session
– (tentative): Week of Nov 27.

• Questions/support/ideas
– Stop by and talk to TAs

• Teaming
– Encouraged to form teams of 2-3.

(C) Dhruv Batra 6

TAs

(C) Dhruv Batra 7

Michael Cogswell

3rd year CS PhD student

http://mcogswell.io/

Abhishek Das

2nd year CS PhD student

http://abhishekdas.com/

Zhaoyang Lv

3rd year CS PhD student

https://www.cc.gatech.edu/~zlv30/

Shared
Layer 1

Shared
Layer 2 … … Shared

Layer N

Task
Layers

Task
Layers

Task
Layers

...

Task 1

Task 2

Task N

data

Paper Reading Intuition:
Multi-Task Learning

(C) Dhruv Batra 8

Shared
Layer 1

Shared
Layer 2 … … Shared

Layer N

Task
Layers

Task
Layers

Task
Layers

...

Paper 1

Paper 2

Paper 6

data

Paper Reading Intuition:
Multi-Task Learning

(C) Dhruv Batra 9

Shared
Layer 1

Shared
Layer 2 … … Shared

Layer N

Task
Layers

Task
Layers

Task
Layers

...

Paper 1

Paper 2

Paper 6

data

Paper Reading Intuition:
Multi-Task Learning

(C) Dhruv Batra 10

Lectures
CS 7643: Deep Learning

Dhruv Batra
School of Interactive Computing

Georgia Tech

www.cc.gatech.edu/classes/AY2018/cs7643_fall/
piazza.com/gatech/fall2017/cs7643

Canvas: gatech.instructure.com/courses/772

(C) Dhruv Batra 8

Shared
Layer 1

Shared
Layer 2 … … Shared

Layer N

Task
Layers

Task
Layers

Task
Layers

...

Paper 1

Paper 2

Paper 6

data

Paper Reading Intuition:
Multi-Task Learning

(C) Dhruv Batra 11

CS 7643: Deep Learning

Dhruv Batra
School of Interactive Computing

Georgia Tech

www.cc.gatech.edu/classes/AY2018/cs7643_fall/
piazza.com/gatech/fall2017/cs7643

Canvas: gatech.instructure.com/courses/772

(C) Dhruv Batra 8

Lectures Paper of the Day

Paper Reviews
• Length

– 200-400 words.
• Due: Midnight before class on Piazza

• Organization
– Summary:

• What is this paper about? What is the main contribution? Describe the main approach & results. Just
facts, no opinions yet.

– List of positive points / Strengths:
• Is there a new theoretical insight? Or a significant empirical advance? Did they solve a standing open

problem? Or is a good formulation for a new problem? Or a faster/better solution for an existing
problem? Any good practical outcome (code, algorithm, etc)? Are the experiments well executed?
Useful for the community in general?

– List of negative points / Weaknesses:
• What would you do differently? Any missing baselines? missing datasets? any odd design choices in the

algorithm not explained well? quality of writing? Is there sufficient novelty in what they propose? Has it
already been done? Minor variation of previous work? Why should anyone care? Is the problem
interesting and significant?

– Reflections
• How does this relate to other papers we have read? What are the next research directions in this line of

work?

(C) Dhruv Batra 12

Presentations
• Frequency

– Once in the semester: 5 min presentation.

• Expectations
– Present details of 1 paper

• Describe formulation, experiment, approaches, datasets
• Encouraged to present a broad picture
• Show results; demo code if possible

– Please clearly cite the source of each slide that is not your
own.

– Meet with TA 1 week before class to dry run presentation
• Worth 40% of presentation grade

(C) Dhruv Batra 13

Recap of last time

(C) Dhruv Batra 14

Data loss: Model predictions
should match training data

Regularization: Model
should be “simple”, so it
works on test data

Occam’s Razor:
“Among competing hypotheses,
the simplest is the best”
William of Ockham, 1285 - 1347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

= regularization strength
(hyperparameter)

In common use:
L2 regularization
L1 regularization
Elastic net (L1 + L2)
Dropout (will see later)
Fancier: Batch normalization, stochastic depth

Regularization

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(Before) Linear score function:

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

18

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

19

(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2

3072 100 10

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

20

(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2

3072 100 10

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

21

(Before) Linear score function:

(Now) 2-layer Neural Network
or 3-layer Neural Network

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Activation functions

“Fully-connected” layers
“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural networks: Architectures

Landscape image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain

Optimization

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Full sum expensive
when N is large!

Approximate sum
using a minibatch of
examples
32 / 64 / 128 common

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)

How do we compute gradients?
• Manual Differentiation

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”

(C) Dhruv Batra 26

(C) Dhruv Batra 27

Matrix/Vector Derivatives Notation

(C) Dhruv Batra 28

Matrix/Vector Derivatives Notation

(C) Dhruv Batra 29

Vector Derivative Example

(C) Dhruv Batra 30

Extension to Tensors

(C) Dhruv Batra 31

Chain Rule: Composite Functions

(C) Dhruv Batra 32

Chain Rule: Scalar Case

(C) Dhruv Batra 33

Chain Rule: Vector Case

(C) Dhruv Batra 34

Chain Rule: Jacobian view

(C) Dhruv Batra 35

Plan for Today
• Computational Graphs

– Notation + example
• Computing Gradients

– Forward mode vs Reverse mode AD

(C) Dhruv Batra 36

How do we compute gradients?
• Manual Differentiation

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”

(C) Dhruv Batra 37

(C) Dhruv Batra 38By Brnbrnz (Own work) [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,
0.6,
0,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

(1.25347 - 1.25347)/0.0001
= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your
implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients

How do we compute gradients?
• Manual Differentiation

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”

(C) Dhruv Batra 47

Chain Rule: Vector Case

(C) Dhruv Batra 48

(C) Dhruv Batra 49

Logistic Regression Derivatives

(C) Dhruv Batra 50

input image

loss

weights

Figure	copyright	Alex	Krizhevsky,	Ilya	Sutskever,	and	
Geoffrey	Hinton,	2012.	Reproduced	with	permission.	

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Chain Rule: Vector Case

(C) Dhruv Batra 54

Chain Rule: Jacobian view

(C) Dhruv Batra 55

Chain Rule: Long Paths

(C) Dhruv Batra 56

Chain Rule: Long Paths

(C) Dhruv Batra 57

Chain Rule: Long Paths

(C) Dhruv Batra 58

gradient dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

dW = ...
(some function
data and W)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

x

W

hinge
loss

R

+ L
s (scores)

*

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Computational Graph

Any DAG of differentiable modules is
allowed!

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 61

Computational Graph

Directed Acyclic Graphs (DAGs)
• Exactly what the name suggests

– Directed edges
– No (directed) cycles
– Underlying undirected cycles okay

(C) Dhruv Batra 62

Directed Acyclic Graphs (DAGs)
• Concept

– Topological Ordering

(C) Dhruv Batra 63

Directed Acyclic Graphs (DAGs)

(C) Dhruv Batra 64

Computational Graphs
• Notation #1

(C) Dhruv Batra 65

f(x1, x2) = x1x2 + sin(x1)

Computational Graphs
• Notation #2

(C) Dhruv Batra 66

f(x1, x2) = x1x2 + sin(x1)

Example

(C) Dhruv Batra 67

f(x1, x2) = x1x2 + sin(x1)

Example

(C) Dhruv Batra 68

f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

HW0

(C) Dhruv Batra 69

(C) Dhruv Batra 70

HW0 Submission by Samyak Datta

(C) Dhruv Batra 71

Logistic Regression as a Cascade

(C) Dhruv Batra 72

Given a library of simple functions

Compose into a

complicate function
� log

✓
1

1 + e�w

|
x

◆

w

|
x

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Forward mode vs Reverse Mode
• Key Computations

(C) Dhruv Batra 73

74

g

Forward mode AD

75

g

Reverse mode AD

Example: Forward mode AD

(C) Dhruv Batra 76

f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

Example: Forward mode AD

(C) Dhruv Batra 77

f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

(C) Dhruv Batra 78

+

sin()

x1 x2

*

ẋ1 ẋ1

ẇ1 = cos(x1)ẋ1

ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

Example: Forward mode AD
f(x1, x2) = x1x2 + sin(x1)

(C) Dhruv Batra 79

+

sin()

x1 x2

*

ẋ1 ẋ1

ẇ1 = cos(x1)ẋ1

ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2

Example: Forward mode AD
f(x1, x2) = x1x2 + sin(x1)

Example: Reverse mode AD

(C) Dhruv Batra 80

f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

Example: Reverse mode AD

(C) Dhruv Batra 81

f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

(C) Dhruv Batra 82

Example: Reverse mode AD
f(x1, x2) = x1x2 + sin(x1)

+

sin()

x1 x2

*

w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄1 cos(x1) x̄1 = w̄2x2 x̄2 = w̄2x1

Forward mode vs Reverse Mode
• What are the differences?

(C) Dhruv Batra 83

+

sin()

x2

*

+

sin()

x1 x2

*

ẋ1 ẋ1 ẋ2

ẇ2 = ẋ1x2 + x1ẋ2

ẇ3 = ẇ1 + ẇ2 w̄3 = 1

w̄1 = w̄3 w̄2 = w̄3

x̄1 = w̄2x2 x̄2 = w̄2x1x̄1 = w̄1 cos(x1)

ẇ1 = cos(x1)ẋ1

x1

Forward mode vs Reverse Mode
• What are the differences?

• Which one is more memory efficient (less storage)?
– Forward or backward?

(C) Dhruv Batra 84

Forward mode vs Reverse Mode
• What are the differences?

• Which one is more memory efficient (less storage)?
– Forward or backward?

• Which one is faster to compute?
– Forward or backward?

(C) Dhruv Batra 85

