
CS 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Regularization
– Neural Networks

– Modular Design
– Computing Gradients



f(x,W) = Wx + b

Recall from last time: Linear Classifier

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



1. Define a loss function
that quantifies our 
unhappiness with the 
scores across the training 
data.

1. Come up with a way of 
efficiently finding the 
parameters that minimize 
the loss function. 
(optimization)

TODO:

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

Recall from last time: Linear Classifier

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Softmax vs. SVM

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Plan for Today
• Regularization
• Neural Networks

– Modular Design
• Computing Gradients
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Data loss: Model predictions 
should match training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Data loss: Model predictions 
should match training data

Regularization: Model 
should be “simple”, so it 
works on test data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Data loss: Model predictions 
should match training data

Regularization: Model 
should be “simple”, so it 
works on test data

Occam’s Razor: 
“Among competing hypotheses, 
the simplest is the best”
William of Ockham, 1285 - 1347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



= regularization strength
(hyperparameter)

In common use:
L2 regularization
L1 regularization
Elastic net (L1 + L2)
Dropout (will see later)
Fancier: Batch normalization, stochastic depth

Regularization

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



L2 Regularization (Weight Decay)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(If you are a Bayesian: L2 
regularization also corresponds 
MAP inference using a 
Gaussian prior on W)

L2 Regularization (Weight Decay)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recap



- We have some dataset of (x,y)
- We have a score function: 
- We have a loss function: 

e.g.

Softmax

SVM

Full loss

How do we find the best W?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recap



Error Decomposition
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Reality

Input

Softmax

FC HxWx3

Multi-class Logistic Regression



Next: Neural Networks

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(Before) Linear score function:

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(Before) Linear score function:

(Now) 2-layer Neural Network

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2

3072 100 10

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2

3072 100 10

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(Before) Linear score function:

(Now) 2-layer Neural Network
or 3-layer Neural Network

Neural networks: without the brain stuff

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Full implementation of training a 2-layer Neural Network needs ~20 lines:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



In Assignment 2: Writing a 2-layer 
net

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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This image by Fotis Bobolas is 
licensed under CC-BY 2.0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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sigmoid activation function

Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Impulses carried toward cell body

Impulses carried away 
from cell body

This image by Felipe Perucho
is licensed under CC-BY 3.0

dendrite

cell 
body

axon

presynaptic   
terminal

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Be very careful with your brain analogies!

Biological Neurons:
● Many different types
● Dendrites can perform complex non-linear computations
● Synapses are not a single weight but a complex non-linear dynamical 

system
● Rate code may not be adequate

[Dendritic Computation. London and Hausser]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Activation functions



“Fully-connected” layers
“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural networks: Architectures



Example feed-forward computation of a neural network

We can efficiently evaluate an entire layer of neurons.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example feed-forward computation of a neural network

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Optimization



This image is CC0 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Strategy: Follow the slope

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Strategy: Follow the slope

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives) along 
each dimension

The slope in any direction is the dot product of the direction with the gradient
The direction of steepest descent is the negative gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Gradient Descent

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



original W

negative gradient direction
W_1

W_2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Full sum expensive 
when N is large!

Approximate sum 
using a minibatch of 
examples
32 / 64 / 128 common

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Stochastic Gradient Descent (SGD)
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How do we compute gradients?
• Manual Differentiation  

• Symbolic Differentiation

• Numerical Differentiation

• Automatic Differentiation
– Forward mode AD
– Reverse mode AD

• aka “backprop”
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How do we compute gradients?
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Matrix/Vector Derivatives Notation
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Matrix/Vector Derivatives Notation
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Vector Derivative Example
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Extension to Tensors
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Chain Rule: Composite Functions
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Chain Rule: Scalar Case
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Chain Rule: Vector Case
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Chain Rule: Jacobian view
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Chain Rule: Tensors
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