CS 7643: Deep Learning

Topics:

- Regularization
- Neural Networks
	- Modular Design
- Computing Gradients

Dhruv Batra Georgia Tech

Recall from last time: Linear Classifier

Recall from last time: Linear Classifier

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Plan for Today

- Regularization
- Neural Networks
	- Modular Design
- Computing Gradients

 \boldsymbol{N} $L(W)$ $L_i(f(x_i,W_i))$ $y_i)$

Data loss: Model predictions should match training data

$$
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i)
$$

Data loss: Model predictions
should match training data

$$
L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)
$$

Data loss: Model predictions should match training data

Regularization: Model should be "simple", so it works on test data

Occam's Razor:

"Among competing hypotheses, the simplest is the best" William of Ockham, 1285 - 1347

Regularization

 λ = regularization strength (hyperparameter)

$$
L = \textstyle\frac{1}{N} \sum_{i=1}^N \sum_{j \neq y_i} \max(0, f(x_i;W)_j - f(x_i;W)_{y_i} + 1) + \Delta R(W)
$$

In common use: $R(W) = \sum_k \sum_l W_{lk,l}^2$ **L2 regularization** $R(W) = \sum_{k} \sum_{l} |W_{k,l}|$ L1 regularization Elastic net (L1 + L2) $R(W) = \sum_k \sum_l \beta W_{k,l}^2 + |W_{k,l}|$ Dropout (will see later) Fancier: Batch normalization, stochastic depth

L2 Regularization (Weight Decay)

$$
x=[1,1,1,1] \hspace{3.9cm} R(W)=\textstyle{\sum_k\sum_l W_{k,l}^2}
$$

$$
\begin{aligned} w_1 &= [1,0,0,0] \\ w_2 &= [0.25,0.25,0.25,0.25] \end{aligned}
$$

$$
w_1^Tx=w_2^Tx=1\\
$$

L2 Regularization (Weight Decay)

$$
x = [1, 1, 1, 1]
$$

$$
w_1 = [1, 0, 0, 0]
$$

$$
w_2 = [0.25, 0.25, 0.25, 0.25]
$$

$$
R(W) = \textstyle\sum_k \textstyle\sum_l W_{k,l}^2
$$

(If you are a Bayesian: L2 regularization also corresponds MAP inference using a Gaussian prior on W)

$$
w_1^Tx=w_2^Tx=1\\
$$

Recap

- We have some dataset of (x,y)
- We have a **score function:**

$$
s=f(x;W)\mathop{=}\limits^{\rm e.g.} Wx
$$

- We have a **loss function**:

Recap

How do we find the best W?

- We have some dataset of (x,y)
- We have a **score function:**

$$
s=f(x;W)\overset{\mathtt{e.g}}{=} Wx
$$

- We have a **loss function**:

Error Decomposition

Next: Neural Networks

(**Before**) Linear score function:

 $= W x$

(**Before**) Linear score function: W_2 max $(0,$ (**Now**) 2-layer Neural Network $\frac{1}{1000}$ Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Full implementation of training a 2-layer Neural Network needs ~20 lines:

```
import numpy as np
 1\overline{2}from numpy.random import randn
 \overline{3}N, D_in, H, D_out = 64, 1000, 100, 10
 \overline{4}x, y = \text{randn}(N, D_in), \text{randn}(N, D.out)5^{\circ}w1, w2 = \text{randn}(D_in, H), randn(H, D_out)
 6
 \overline{7}for t in range(2000):
8
       h = 1 / (1 + np.exp(-x.dot(w1)))9
       y pred = h.dot(w2)
10
       loss = np \cdot square(y_pred - y) \cdot sum()11print(t, loss)
12<sup>2</sup>13
       grad_y_pred = 2.0 * (y_pred - y)14grad_w2 = h.T.dot(grad_y_pred)15
       grad_h = grad_y pred.dot(w2.T)
16
       grad_w1 = x.T.dot(grad h * h * (1 - h))17
18
       w1 - 1e-4 * grad_w119
       w2 = 1e-4 * grad_w220
```
In Assignment 2: Writing a 2-layer

```
# receive W1, W2, b1, b2 (weights/biases), X (data)
```

```
# forward pass:
```

```
h1 = #... function of X, W1, b1
```

```
scores = #... function of h1, W2, b2
```

```
loss = #... (several lines of code to evaluate Softmax loss)
```

```
# backward pass:
```
 $dscores = #...$

 $dh1, dW2, db2 = #...$

 $dW1, db1 = #...$

This image by Fotis Bobolas is licensed under CC-BY 2.0

Impulses carried toward cell body

Impulses carried toward cell body

Impulses carried toward cell body

Be very careful with your brain analogies!

Biological Neurons:

- Many different types
- Dendrites can perform complex non-linear computations
- Synapses are not a single weight but a complex non-linear dynamical system
- Rate code may not be adequate

[Dendritic Computation. London and Hausser]

Example feed-forward computation of a neural network

```
class Neuron:
 \#...
 def neuron tick(inputs):
    """ assume inputs and weights are 1-D numpy arrays and bias is a number """
    cell body sum = np.sum(inputs * self.weights) + self.biasfiring rate = 1.0 / (1.0 + math.exp(-cell body sum)) # sigmoid activation function
    return firing rate
```
We can efficiently evaluate an entire layer of neurons.

Example feed-forward computation of a neural network

forward-pass of a 3-layer neural network: $f =$ lambda x: 1.0/(1.0 + np.exp(-x)) # activation function (use sigmoid) $x = np.random.randn(3, 1) # random input vector of three numbers (3x1)$ $h1 = f(np.dot(W1, x) + b1)$ # calculate first hidden layer activations (4x1) $h2 = f(np.dot(W2, h1) + b2)$ # calculate second hidden layer activations (4x1) out = $np.dot(W3, h2) + b3 # output neuron (1x1)$

Optimization

This image is CC0 1.0 public domain

Strategy: **Follow the slope**

Strategy: **Follow the slope**

In 1-dimension, the derivative of a function:

$$
\frac{df(x)}{dx}=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}
$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives) along each dimension

The slope in any direction is the **dot product** of the direction with the gradient The direction of steepest descent is the **negative gradient**

Stochastic Gradient Descent (SGD)

(C) Dhruv Batra **45**

How do we compute gradients?

- Manual Differentiation
- Symbolic Differentiation
- Numerical Differentiation
- Automatic Differentiation
	- Forward mode AD
	- Reverse mode AD
		- aka "backprop"

Chain Rule: Jacobian view

Chain Rule: Tensors