CS 7643: Deep Learning

Topics:

- Notation + Supervised Learning view
- Linear Classifiers
- Neural Networks
 - Modular Design

Dhruv Batra Georgia Tech

Administrativia

- Now that the dust has settled
 - Nearly everyone who submitted HW0 was added to class from waitlist
- Canvas
 - Anybody not have access?
- HW0
 - People who were on waitlist, your HW0 scores will be uploaded soon.
 - Remember, doesn't count towards final grade.
 - Self-assessment tool.

Plan for Today

- Notation + Supervised Learning view
- Linear Classifiers
- Neural Networks
 - Modular Design

Z ER Row Input GR HIXWX3 $EV = q_{1,--,dq}$ $e^{1a'}, the', -]$ YERK {-1, +1} {1. _ , Kg

f: X--> (x,y). . . (Xa. ya) Z' zr) /y~t $(x,y) \cap f$ ř ral: (jun \triangleright

f: X--> (x,y). . . (Xa. ya) Z' zr) /y~t (x,y) n fř ral: (jun \triangleright

Supervised Learning

- Input: x (images, text, emails...)
- Output: y (spam or non-spam...)
- (Unknown) Target Function

 f: X → Y
 (the "true" mapping / reality)
- Data
 - $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$
- Model / Hypothesis Class
 h: X → Y
 y = h(x) = sign(w^Tx)
- Learning = Search in hypothesis space
 - Find best h in model class.

Error Decomposition

Error Decomposition

Error Decomposition

- Approximation/Modeling Error
 - You approximated reality with model
- Estimation Error
 - You tried to learn model with finite data
- Optimization Error
 - You were lazy and couldn't/didn't optimize to completion
- Bayes Error
 - Reality just sucks

Linear Classification

This image is CC0 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Visual Question Answering

Recall CIFAR10

50,000 training images each image is 32x32x3

10,000 test images.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier 3072x1 f(x,W 0x1 Image 10x3072 **10** numbers giving class scores Array of 32x32x3 numbers (3072 numbers total) parameters or weights

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Interpreting a Linear Classifier

Hard cases for a linear classifier

Class 1: number of pixels > 0 odd

Class 1: 1 <= L2 norm <= 2

Class 1: Three modes

Class 2: Everything else

So far: Defined a (linear) score function

Example class scores for 3 images for some W:

f(x,W) = Wx + b

How can we tell whether this W is good or bad?

So far: Defined a (linear) score function

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

TODO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1

5.1

-1.7

cat

car

frog

4.9

2.0

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where $oldsymbol{x}_i$ is image and $oldsymbol{y}_i$ is (integer) label

Loss over the dataset is a sum of loss over examples:

 $L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$

2.5

-3.1

3.2

5.1

-1.7

cat

car

frog

1.3

4.9

2.0

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

2.2

2.5

-3.1

Multiclass SVM loss: "Hinge loss" s_{y_i} s_{j_1} s_{j_1} s_{j_1} s_{j_1} s_{j_1} s_{j_1} s_{j_2} s_{j_2} s_{j_1} s_{j_2} s_{j_2} s_{j_1} s_{j_2} s_{j_2}

cat3.21.32.2car5.14.92.5
$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \ge s_j \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
frog-1.72.0-3.1 $= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$

cat

car

frog

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

1.3	2.2
4.9	2.5
2.0	-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_{i} = \sum_{j \neq y_{i}} \max(0, s_{j} - s_{y_{i}} + 1)$$

= $\max(0, 5.1 - 3.2 + 1)$
+ $\max(0, -1.7 - 3.2 + 1)$
= $\max(0, 2.9) + \max(0, -3.9)$
= 2.9 + 0

cat

car

frog

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$\begin{aligned} L_i &= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1) \\ &= \max(0, 2.2 - (-3.1) + 1) \\ &+ \max(0, 2.5 - (-3.1) + 1) \\ &= \max(0, 6.3) + \max(0, 6.6) \\ &= 6.3 + 6.6 \\ &= 12.9 \end{aligned}$$

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Loss over full dataset is average:

$$L = \frac{1}{N} \sum_{i=1}^{N} L_i$$

$$L = (2.9 + 0 + 12.9)/3$$

$$= 5.27$$

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Q: What happens to loss if car image scores change a bit?

cat	3.2	1.3	2.2
car	5.1	4.9	2.5
frog	-1.7	2.0	-3.1
Losses:	2.9	0	12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat

car

frog

where x_i is the image and where y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$ the SVM loss has the form: 3.2 1.3 2.2 $\max(0,s_j-s_{y_i})$ L_i : 2.5 5.1 4.9 Q3: At initialization W 2.0 -3.1 -1.7 is small so all s ≈ 0. What is the loss? 12.9 2.9 Losses: #rlaggog

Multiclass SVM loss:

Given an example (x_i, y_i)

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat

car

frog

Losses:

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s=f(x_i,W)$

Multiclass SVM loss:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Multiclass SVM Loss: Example code

$$egin{aligned} f(x,W) &= Wx \ L &= rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i;W)_j - f(x_i;W)_{y_i} + 1) \end{aligned}$$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

$$egin{aligned} f(x,W) &= Wx \ L &= rac{1}{N} \sum_{i=1}^N \sum_{j
eq y_i} \max(0, f(x_i;W)_j - f(x_i;W)_{y_i} + 1) \end{aligned}$$

E.g. Suppose that we found a W such that L = 0. Is this W unique?

No! 2W is also has L = 0!

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Before:

 $= \max(0, 1.3 - 4.9 + 1)$ $+ \max(0, 2.0 - 4.9 + 1)$ $= \max(0, -2.6) + \max(0, -1.9)$ = 0 + 0= 0

With W twice as large: = max(0, 2.6 - 9.8 + 1)+max(0, 4.0 - 9.8 + 1)= max(0, -6.2) + max(0, -4.8)= 0 + 0 = 0

cat

car

frog

scores = unnormalized log probabilities of the classes.

$$s = f(x_i; W)$$

cat	3.2
car	5.1
frog	-1.7

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$

where

$$s = f(x_i; W)$$

cat	3.2
car	5.1
frog	-1.7

Softmax function

3.2

5.1

-1.7

cat

car

frog

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $oldsymbol{s}=oldsymbol{f}(x_i;W)$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

3.2

5.1

-1.7

cat

car

frog

scores = unnormalized log probabilities of the classes.

$$P(Y=k|X=x_i)=rac{e^{s_k}}{\sum_j e^{s_j}}$$
 where $oldsymbol{s}=oldsymbol{f}(x_i;W)$

Want to maximize the log likelihood, or (for a loss function) to minimize the negative log likelihood of the correct class:

$$L_i = -\log P(Y=y_i|X=x_i)$$

in summary:
$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized log probabilities

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

unnormalized probabilities

unnormalized log probabilities

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Softmax vs. SVM

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}}) \qquad \qquad L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Softmax vs. SVM

0

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100]and $y_i = 0$ Q: Suppose I take a datapoint and I jiggle a bit (changing its score slightly). What happens to the loss in both cases?

Recap

- We have some dataset of (x,y)
- We have a score function:

$$s=f(x;W) \stackrel{ ext{e.g.}}{=} Wx$$

- We have a loss function:

$$L_i = -\log(rac{e^{sy_i}}{\sum_j e^{s_j}})$$
 SVM $L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$ $L = rac{1}{N} \sum_{i=1}^N L_i + R(W)$ Full loss

- We have some dataset of (x,y)
- We have a **score function**:

$$s=f(x;W) \mathop{=}\limits^{ ext{e.g.}} Wx$$

- We have a loss function:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n