CS 7643: Deep Learning

Topics:

- Notation + Supervised Learning view
- Linear Classifiers
- Neural Networks
	- Modular Design

Dhruv Batra Georgia Tech

Administrativia

- Now that the dust has settled
	- Nearly everyone who submitted HW0 was added to class from waitlist
- Canvas
	- Anybody not have access?
- HW0
	- People who were on waitlist, your HW0 scores will be uploaded soon.
	- Remember, doesn't count towards final grade.
	- Self-assessment tool.

Plan for Today

- Notation + Supervised Learning view
- Linear Classifiers
- Neural Networks
	- Modular Design

 \vec{x} $\in \mathbb{R}^d$ Paw Inpert $e^{f|xNx^{3}}$ ϵ $V = 91, 78$ EY^T $\{1a', 11b', 12\}$ $y \in R^{k}$ $\{-1, +1\}$ $\{1, - , 4\}$

 f^* , \times — \rightarrow (\vec{x}, y) (\vec{x}, y) \mathcal{L} X^{\sim} $\int \frac{1}{\epsilon} \, \gamma \, \gamma \, f$ $(x,y)\sim\bar{f}$ $\bigg\{$ $pQ: (sim)$ \bigcup

 f^* , \times — \rightarrow (\vec{x}, y) (\vec{x}, y) \mathcal{L} X^{\sim} $\int \frac{1}{\epsilon} \, \gamma \, \gamma \, f$ $(x,y)\sim f$ $\bigg\{$ p al: (p) \bigcup

Supervised Learning

- Input: x (images, text, emails...)
- Output: y (spam or non-spam...)
- (Unknown) Target Function – f: $X \rightarrow Y$ (the "true" mapping / reality)
- Data
	- $(X_1,Y_1), (X_2,Y_2), \ldots, (X_N,Y_N)$
- Model / Hypothesis Class $- h: X \rightarrow Y$ $-y = h(x) = sign(w^Tx)$
- Learning = Search in hypothesis space
	- Find best h in model class.

Error Decomposition

Error Decomposition

Error Decomposition

- Approximation/Modeling Error
	- You approximated reality with model
- Estimation Error
	- You tried to learn model with finite data
- Optimization Error
	- You were lazy and couldn't/didn't optimize to completion
- Bayes Error
	- Reality just sucks

Linear Classification

This image is CC0 1.0 public domain

Visual Question Answering

Recall CIFAR10

50,000 training images each image is **32x32x3**

10,000 test images.

Parametric Approach: Linear Classifier

Parametric Approach: Linear Classifier

Image parameters or weights W \rightarrow f(\times ,**W**) \rightarrow 10 numbers giving class scores Array of **32x32x3** numbers (3072 numbers total) $f(x, W)$ **3072x1 10x1 10x3072 10x1** Parametric Approach: Linear Classifier

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Interpreting a Linear Classifier

Hard cases for a linear classifier

Class 1: number of pixels > 0 odd

Class 1: $1 \le L2$ norm ≤ 2

Class 1: Three modes

Class 2: Everything else

So far: Defined a (linear) score function

Example class scores for 3 images for some W:

 $f(x,W) = Wx + b$

How can we tell whether this W is good or bad?

So far: Defined a (linear) score function

Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

tr

TODO:

- 1. Define a **loss function** that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function. **(optimization)**

5.1

-1.7

cat

car

frog

4.9

2.0 **-3.1**

2.5

A **loss function** tells how good our current classifier is

Given a dataset of examples

 $\{(x_i, y_i)\}_{i=1}^N$

Where x_i is image and y_i is (integer) label

Loss over the dataset is a sum of loss over examples:

 $L = \frac{1}{N} \sum_i L_i(f(x_i, W), y_i)$

3.2

5.1

-1.7

cat

car

frog

4.9

1.3

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

2.0 **-3.1**

2.5

2.2

cat

car

frog

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

4.9

2.0 **-3.1**

1.3

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

= $\max(0, 5.1 - 3.2 + 1)$
+ $\max(0, -1.7 - 3.2 + 1)$
= $\max(0, 2.9) + \max(0, -3.9)$
= 2.9

cat

car

frog

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

= max(0, 2.2 - (-3.1) + 1)
+ max(0, 2.5 - (-3.1) + 1)
= max(0, 6.3) + max(0, 6.6)
= 6.3 + 6.6
= 12.9

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

$$
L = \frac{1}{N} \sum_{i=1}^{N} L_i
$$

L = (2.9 + 0 + 12.9)/3
= 5.27

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

Q: What happens to loss if car image

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat

car

frog

where x_i is the image and where y_i is the (integer) label, and using the shorthand for the scores vector: $s = f(x_i, W)$ the SVM loss has the form: 1.3 **3.2** 2.2 $\max(0, s_j - s_{y_i})$ L_i 2.5 5.1 **4.9** Q3: At initialization W 2.0 **-3.1** -1.7 is small so all s \approx 0. Losses: 2.9 0 12.9 What is the loss? $Hclagses$

Multiclass SVM loss:

Given an example (x_i, y_i)

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

cat

car

frog

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

and using the shorthand for the scores vector: $s = f(x_i, W)$

Multiclass SVM loss:

Multiclass SVM Loss: Example code

$$
\begin{aligned} & f(x,W)=Wx \\ & L=\tfrac{1}{N}\sum_{i=1}^N\sum_{j\neq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1) \end{aligned}
$$

E.g. Suppose that we found a W such that $L = 0$. Is this W unique?

$$
\begin{aligned} & f(x,W)=Wx \\ & L=\tfrac{1}{N}\sum_{i=1}^N\sum_{j\neq y_i}\max(0,f(x_i;W)_j-f(x_i;W)_{y_i}+1) \end{aligned}
$$

E.g. Suppose that we found a W such that $L = 0$. Is this W unique?

No! 2W is also has L = 0!

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

Before:

 $= max(0, 1.3 - 4.9 + 1)$ $+max(0, 2.0 - 4.9 + 1)$ $= max(0, -2.6) + max(0, -1.9)$ $= 0 + 0$ $= 0$

With W twice as large: $= max(0, 2.6 - 9.8 + 1)$ $+max(0, 4.0 - 9.8 + 1)$ $= max(0, -6.2) + max(0, -4.8)$ $= 0 + 0$ $= 0$

cat

car

frog

scores = unnormalized log probabilities of the classes.

$$
\boxed{s=f(x_i;W)}
$$

cat frog car **3.2** 5.1 -1.7

scores = unnormalized log probabilities of the classes.

$$
\boxed{P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_j e^{s_j}}}
$$

where

Softmax function

$$
s=f(x_i;W)\\
$$

3.2

5.1

-1.7

frog

car

scores = unnormalized log probabilities of the classes.

$$
\boxed{P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_j e^{s_j}}\quad\text{ where }\quad s=f(x_i;W)}
$$

Want to maximize the log likelihood, or (for a loss function) cat 3.2 to minimize the negative log likelihood of the correct class:

$$
\lfloor L_i \rfloor = -\log P(Y=y_i|X=x_i)
$$

3.2

5.1

 -1.7

frog

car

scores = unnormalized log probabilities of the classes.

$$
\boxed{P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_j e^{s_j}}\quad\text{ where }\quad s=f(x_i;W)}
$$

Want to maximize the log likelihood, or (for a loss function) cat 3.2 to minimize the negative log likelihood of the correct class:

$$
L_i = -\log P(Y=y_i|X=x_i)
$$

$$
\boxed{\text{in summary: } \boxed{L_i = -\log(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}})}
$$

unnormalized log probabilities

$$
L_i = -\log(\tfrac{e^{s_{y_i}}}{\sum_j e^{s_j}})
$$

unnormalized probabilities

unnormalized log probabilities

Softmax vs. SVM

$$
L_i = -\log(\tfrac{e^{s_{y_i}}}{\sum_j e^{s_j}}) \hspace{1cm} L_i = \textstyle \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

Softmax vs. SVM

 \sim

$$
L_i = -\log(\tfrac{e^{s y_i}}{\sum_j e^{s_j}})
$$

$$
L_i = \textstyle\sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

assume scores: [10, -2, 3] [10, 9, 9] [10, -100, -100] and $y_i =$

Q: Suppose I take a datapoint and I jiggle a bit (changing its score slightly). What happens to the loss in both cases?

Recap

- We have some dataset of (x,y)
- We have a **score function:**

$$
s=f(x;W)\mathop{\stackrel{\mathrm{e.g.}}{=}} Wx
$$

- We have a **loss function**:

$$
L_i = -\log(\frac{e^{s_{y_i}}}{\sum_j e^{s_j}})
$$

\n
$$
L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)
$$

\n
$$
L = \frac{1}{N} \sum_{i=1}^N L_i + R(W) \text{ Full loss}
$$

- We have some dataset of (x,y)
- We have a **score function:**

$$
s=f(x;W)\overset{\mathtt{e.g.}}{=} Wx
$$

- We have a **loss function**:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n