
CS 7643: Deep Learning

Dhruv Batra
Georgia Tech

Topics:
– Generative Models (PixelRNNs, VAEs, GANs)
– Key Ideas

– AE, Reparameterization, Variational Inference

Invited Talk
• Peter Anderson, ANU

– Visual Understanding in Natural Language
– Co-located as ML@GT Seminar, Nov 27 11am, Nano 1117

(C) Dhruv Batra 2

Administrativia
• Poster Presentation:

– Wed 11/29, 2-4pm
• In two sessions

– Klaus Auditorium
– Less text, more pictures.

(C) Dhruv Batra 3

Best Project Award!

Overview

● Unsupervised Learning

● Generative Models
○ PixelRNN and PixelCNN
○ Variational Autoencoders (VAE)
○ Generative Adversarial Networks (GAN)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Cat

Classification

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

DOG, DOG, CAT

This image is CC0 public domain

Object Detection

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Semantic Segmentation

GRASS, CAT,
TREE, SKY

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Image captioning

A cat sitting on a suitcase on the floor

Caption generated using neuraltalk2
Image is CC0 Public domain.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc.

K-means clustering

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc.

Principal Component Analysis
(Dimensionality reduction)

This image from Matthias Scholz
is CC0 public domain

3-d 2-d

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc.

2-d density estimation

2-d density images left and right
are CC0 public domain

1-d density estimation
Figure	copyright	Ian	Goodfellow,	2016.	Reproduced	with	permission.	

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc.

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generative Models

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generative Models

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for pmodel(x)
- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models
(nonlinear ICA)

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models
(nonlinear ICA)

Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain
Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Today: discuss 3 most
popular types of generative
models today

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for simulation and
planning (reinforcement learning applications!)

- Training generative models can also enable inference of latent
representations that can be useful as general features

FIgures from L-R are copyright: (1) Alec Radford et al. 2016; (2) David Berthelot et al. 2017; Phillip Isola et al. 2017. Reproduced with authors permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

PixelRNN and PixelCNN

Fully Observable Model

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

Explicit density model

Likelihood of
image x

Probability of i’th pixel value
given all previous pixels

Then maximize likelihood of training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Then maximize likelihood of training data

Likelihood of
image x

Probability of i’th pixel value
given all previous pixels

Fully Observable Model

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

Explicit density model

Complex distribution over pixel values
=> Express using a neural network!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Then maximize likelihood of training data
Complex distribution over pixel values

=> Express using a neural network!

Likelihood of
image x

Probability of i’th pixel value
given all previous pixels

Fully Observable Model

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

Explicit density model

Will need to define ordering
of “previous pixels”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

PixelRNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

PixelRNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Drawback: sequential generation is slow!

PixelRNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Still generate image pixels starting from
corner

Dependency on previous pixels now
modeled using a CNN over context region

Figure	copyright	van	der	Oord	et	al.,	2016.	Reproduced	with	permission.	

PixelCNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Still generate image pixels starting from
corner

Dependency on previous pixels now
modeled using a CNN over context region

Training: maximize likelihood of training
images

Figure	copyright	van	der	Oord	et	al.,	2016.	Reproduced	with	permission.	

Softmax loss at each pixel

PixelCNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Still generate image pixels starting from
corner

Dependency on previous pixels now
modeled using a CNN over context region

Training is faster than PixelRNN
(can parallelize convolutions since context region
values known from training images)

Generation must still proceed sequentially
=> still slow

Figure	copyright	van	der	Oord	et	al.,	2016.	Reproduced	with	permission.	

PixelCNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generation Samples

Figures	copyright	Aaron	van	der	Oord	et	al.,	2016.	Reproduced	with	permission.	

32x32 CIFAR-10 32x32 ImageNet

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

PixelRNN and PixelCNN

Improving PixelCNN performance
- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc…

See
- Van der Oord et al. NIPS 2016
- Salimans et al. 2017

(PixelCNN++)

Pros:
- Can explicitly compute

likelihood p(x)
- Explicit likelihood of

training data gives good
evaluation metric

- Good samples

Con:
- Sequential generation

=> slow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Variational
Autoencoders (VAE)

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

So far...

VAEs define intractable density function with latent z:

Cannot optimize directly, derive and optimize lower bound on likelihood instead

PixelCNNs define tractable density function, optimize likelihood of training data:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick

(C) Dhruv Batra 36

Autoencoders

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Originally: Linear +
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Originally: Linear +
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality
reduction?

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Originally: Linear +
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality
reduction?

A: Want features to
capture meaningful
factors of variation in
data

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Encoder

Input data

Features

How to learn this feature representation?

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed
input data

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed
input data

Originally: Linear +
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN (upconv)

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Encoder

Input data

Features

Decoder

Reconstructed
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function:
Train such that features
can be used to
reconstruct original data

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Encoder

Input data

Features

Decoder

Reconstructed
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function:
Train such that features
can be used to
reconstruct original data

Doesn’t use labels!

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Encoder

Input data

Features

Decoder

Reconstructed
input data

After training,
throw away decoder

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Encoder

Input data

Features

Classifier

Predicted Label
Fine-tune
encoder
jointly with
classifier

Loss function
(Softmax, etc)

Encoder can be
used to initialize a
supervised model

plane
dog deer

bird
truck

Train for final task
(sometimes with

small data)

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Encoder

Input data

Features

Decoder

Reconstructed
input data

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Features capture factors of
variation in training data. Can we
generate new images from an
autoencoder?

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick

(C) Dhruv Batra 51

Basic Problem

• Goal

• Need to compute:

(C) Dhruv Batra 52

min
✓

Ez⇠p✓(z)[f(z)]

r✓ Ez⇠p✓(z)[f(z)]

Example

(C) Dhruv Batra 53

Example

(C) Dhruv Batra 54

Two Options
• Score Function based Gradient Estimator

aka REINFORCE (and variants)

• Path Derivative Gradient Estimator
aka “reparameterization trick”

(C) Dhruv Batra 55

Option 1
• Score Function based Gradient Estimator

aka REINFORCE (and variants)

(C) Dhruv Batra 56

Example

(C) Dhruv Batra 57

Two Options
• Score Function based Gradient Estimator

aka REINFORCE (and variants)

(C) Dhruv Batra 58

• Path Derivative Gradient Estimator
aka “reparameterization trick”

Option 2

(C) Dhruv Batra 59

• Path Derivative Gradient Estimator
aka “reparameterization trick”

Example

(C) Dhruv Batra 60

Reparameterization Intuition

(C) Dhruv Batra 61

z = µ+ �2✏i

✏i ⇠ p(✏)

�2

Figure Credit: http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/

Two Options
• Score Function based Gradient Estimator

aka REINFORCE (and variants)

(C) Dhruv Batra 62

• Path Derivative Gradient Estimator
aka “reparameterization trick”

Example

(C) Dhruv Batra 63Figure Credit: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

Example

(C) Dhruv Batra 64Figure Credit: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

Aside: Gumbel Softmax
• Meet the Gumbel Softmax “trick”

(C) Dhruv Batra 65

Aside: Gumbel Softmax
• Sampling on the Simplex

(C) Dhruv Batra 66

Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick

(C) Dhruv Batra 67

What is Variational Inference?
• A class of methods for

– approximate inference, parameter learning
– And approximating integrals basically..

• Key idea
– Reality is complex
– Instead of performing approximate computation in something

complex,
– Can we perform exact computation in something “simple”?
– Just need to make sure the simple thing is “close” to the

complex thing.

(C) Dhruv Batra 68

Intuition

(C) Dhruv Batra 69

• Given two distributions p and q KL divergence:

• D(p||q) = 0 iff p=q

• Not symmetric – p determines where difference is
important

KL divergence:
Distance between distributions

(C) Dhruv Batra 70Slide Credit: Carlos Guestrin

Find simple approximate distribution

• Suppose p is intractable posterior
• Want to find simple q that approximates p
• KL divergence not symmetric

• D(p||q)
– true distribution p defines support of diff.
– the “correct” direction
– will be intractable to compute

• D(q||p)
– approximate distribution defines support
– tends to give overconfident results
– will be tractable

(C) Dhruv Batra 71Slide Credit: Carlos Guestrin

Example 1
• p = 2D Gaussian with arbitrary co-variance
• q = 2D Gaussian with diagonal co-variance

(C) Dhruv Batra 72

z1

z2

(a)
0 0.5 1
0

0.5

1

z1

z2

(b)
0 0.5 1
0

0.5

1
argmin_q KL (p || q)

p = Green; q = Red

argmin_q KL (q || p)

Example 2
• p = Mixture of Two Gaussians
• q = Single Gaussian

(C) Dhruv Batra 73

argmin_q KL (p || q)

p = Blue; q = Red

argmin_q KL (q || p)

• Marginal likelihood – x is observed, z is missing:

The general learning problem with missing data

74(C) Dhruv Batra

ll(� : D) = log

NY

i=1

P (xi | �)

=

NX

i=1

logP (xi | �)

=

NX

i=1

log

X

z

P (xi, z | �)

Applying Jensen’s inequality

• Use: log åz P(z) f(z) ≥ åz P(z) log f(z)

75(C) Dhruv Batra

Applying Jensen’s inequality

• Use: log åz P(z) f(z) ≥ åz P(z) log f(z)

76(C) Dhruv Batra

ll(� : D) =

NX

i=1

log

X

z

Qi(z)
P (xi, z | �)

Qi(z)

Evidence Based Lower Bound

• Define potential function F(q,Q):

77(C) Dhruv Batra

ll(� : D) � F (�, Qi) =

NX

i=1

X

z

Qi(z) log
P (xi, z | �)

Qi(z)

Evidence Based Lower Bound

• Define potential function F(q,Q):

• EM corresponds to coordinate ascent on F
– Thus, maximizes lower bound on marginal log likelihood

78(C) Dhruv Batra

ll(� : D) � F (�, Qi) =

NX

i=1

X

z

Qi(z) log
P (xi, z | �)

Qi(z)

GMM

(C) Dhruv Batra 79

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure Credit: Kevin Murphy

(C) Dhruv Batra 80

EM for Learning GMMs
• Simple Update Rules

– E-Step: estimate Qi(z) = Pr(z = j | xi)
– M-Step: maximize full likelihood weighted by posterior

(C) Dhruv Batra 81

Gaussian Mixture Example: Start

82(C) Dhruv Batra Slide Credit: Carlos Guestrin

After 1st iteration

83(C) Dhruv Batra Slide Credit: Carlos Guestrin

After 2nd iteration

84(C) Dhruv Batra Slide Credit: Carlos Guestrin

After 3rd iteration

85(C) Dhruv Batra Slide Credit: Carlos Guestrin

After 4th iteration

86(C) Dhruv Batra Slide Credit: Carlos Guestrin

After 5th iteration

87(C) Dhruv Batra Slide Credit: Carlos Guestrin

After 6th iteration

88(C) Dhruv Batra Slide Credit: Carlos Guestrin

After 20th iteration

89(C) Dhruv Batra Slide Credit: Carlos Guestrin

Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick

(C) Dhruv Batra 90

Amortized Inference Neural Networks

(C) Dhruv Batra 91

Putting it all together: maximizing the
likelihood lower bound

Variational Auto Encoders

Input Data

Putting it all together: maximizing the
likelihood lower bound

Let’s look at computing the bound
(forward pass) for a given minibatch of
input data

Variational Auto Encoders

Encoder network

Input Data

Putting it all together: maximizing the
likelihood lower bound

Variational Auto Encoders

Encoder network

Input Data

Putting it all together: maximizing the
likelihood lower bound

Make approximate
posterior distribution
close to prior

Variational Auto Encoders

Encoder network

Sample z from

Input Data

Putting it all together: maximizing the
likelihood lower bound

Make approximate
posterior distribution
close to prior

Variational Auto Encoders

Encoder network

Decoder network

Sample z from

Input Data

Putting it all together: maximizing the
likelihood lower bound

Make approximate
posterior distribution
close to prior

Variational Auto Encoders

Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Putting it all together: maximizing the
likelihood lower bound

Make approximate
posterior distribution
close to prior

Maximize
likelihood of
original input
being
reconstructed

Variational Auto Encoders

Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Putting it all together: maximizing the
likelihood lower bound

Make approximate
posterior distribution
close to prior

Maximize
likelihood of
original input
being
reconstructed

For every minibatch of input
data: compute this forward
pass, and then backprop!

Variational Auto Encoders

Decoder network

Sample z from

Sample x|z from

Use decoder network. Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Auto Encoders: Generating Data

Decoder network

Sample z from

Sample x|z from

Use decoder network. Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Auto Encoders: Generating Data

Decoder network

Sample z from

Sample x|z from

Use decoder network. Now sample z from prior! Data manifold for 2-d z

Vary
z1

Vary
z2

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Auto Encoders: Generating Data

Vary
z1

Vary
z2

Degree of smile

Head pose

Diagonal prior on z
=> independent
latent variables

Different
dimensions of z
encode
interpretable factors
of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Auto Encoders: Generating Data

Vary
z1

Vary
z2

Degree of smile

Head pose

Diagonal prior on z
=> independent
latent variables

Different
dimensions of z
encode
interpretable factors
of variation

Also good feature representation that
can be computed using qɸ(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Auto Encoders: Generating Data

32x32 CIFAR-10
Labeled Faces in the Wild

Figures	copyright	(L)	Dirk	Kingma	et	al.	2016;	(R)	Anders	Larsen	et	al.	2017.	Reproduced	with	permission.	

Variational Auto Encoders: Generating Data

Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound
Pros:

- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal

Gaussian
- Incorporating structure in latent variables

Generative Adversarial
Networks (GAN)

So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:

Cannot optimize directly, derive and optimize lower bound on likelihood instead

So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: don’t work with any explicit density function!

Generative Adversarial Networks
Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to
represent this complex
transformation?

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Generative Adversarial Networks

zInput: Random noise

Generator
Network

Output: Sample from
training distribution

Q: What can we use to
represent this complex
transformation?

A: A neural network!

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

Discriminator output
for real data x

Discriminator output for
generated fake data G(z)

Discriminator outputs likelihood in (0,1) of real image

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

Discriminator output
for real data x

Discriminator output for
generated fake data G(z)

Discriminator outputs likelihood in (0,1) of real image

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to 0 (fake)

- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Training GANs: Two-player game

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2. Gradient descent on generator

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Training GANs: Two-player game

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2. Gradient descent on generator

In practice, optimizing this generator objective
does not work well!

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

When sample is likely
fake, want to learn
from it to improve
generator. But
gradient in this region
is relatively flat!

Gradient signal
dominated by region
where sample is
already good

Training GANs: Two-player game

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2. Instead: Gradient ascent on generator, different
objective

Instead of minimizing likelihood of discriminator being correct, now
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient
signal for bad samples => works much better! Standard in practice.

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

High gradient signal

Low gradient signal

Training GANs: Two-player game

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2. Instead: Gradient ascent on generator, different
objective

Instead of minimizing likelihood of discriminator being correct, now
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient
signal for bad samples => works much better! Standard in practice.

Ian Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

High gradient signal

Low gradient signal

Aside: Jointly training two
networks is challenging,
can be unstable.
Choosing objectives with
better loss landscapes
helps training, is an active
area of research.

