CS 7643: Deep Learning

Topics:
— Generative Models (PixelRNNs, VAEs, GANSs)
— Key Ideas

— AE,\Rep‘aLameterizatioa Yariational InfererEe

—-_—— —

—\

Dhruv Batra
Georgia Tech

-
Invited Talk

 Peter Anderson, ANU

— Visual Understanding in Natural Language
— Co-located as ML@GT Seminar, Nov 27 11am, Nano 1117

Publications

(woman long har al

- = 1 Bottom-Up and Top-Down Attention for Image Captioning
e » — and Visual Question Answering

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson,
Stephen Gould, Lei Zhang

preprint arXiv:1707.07998, 2017.

PhD student in Computer
Vision / Deep Learning

Project PDF Code
Q Sydney / Canberra

,
B Email
Twitt Tips and Tricks for Visual Question Answering: Learnings
iter from the 2017 Challenge
@ LinkedIn Damien Teney, Peter Anderson, Xiaodong He, Anton van den Hengel
What is on the coffee table ? What color is the hydrant ? reprint arXiv:1708.02711, 2017.
G Google Scholar — prep
PDF Slides
-4

Finite-state machine C1 ={chair, chairs}, C2 = {desk, table}

Ll m 11 Guided Qpen Vocabulary Image Captioning with
B (D Constrained Beam Search
e @m V Peter Anderson, Basura Fernando, Mark Johnson and Stephen Gould

In Conference on Empirical Methods for Natural Language Processing
(EMNLP), 2017.

Possible sequence extensions

Beam 0: ~C/ & ~C2

[8) e) i)
L N N e | e | (e |
PDF
e SPICE: Semantic Propositional Image Caption Evaluation
9ii—»Qstanding Peter Anderson, Basura Fernando, Mark Johnson and Stephen Gould
o on top of In Proceedings of the European Conference on Computer Vision (ECCV),
‘ court—Otennis 2016.

(C) Dhruv Batra 2

-
Administrativia

T Poster Presentation: / Best Project Award!

I

— Wed 11/29, 2-4pm

* |n two sessions

[~ Kiaus Auditorium |
— Less text, more pictures.

==

(C) Dhruv Batra 3

Overview

e Unsupervised Learning

e Generative Models
o PixelRNN and PixelCNN
o Variational Autoencoders (VAE)
o Generative Adversarial Networks (GAN)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

‘Supervised vs Unsupervised Learning

—_—

Supervised Learning

Data? (X, y)l
X is data, y is label

—_——

Goal: Learn a function to map|x =2 vy

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)

X is data, y is label
— Cat
Goal: Learn a functiontomap x 2 vy

Examples: Classification,
regression, object detection, Classification
semantic segmentation, image
captioning, etc.

This image is CCO public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a functiontomap x 2 vy

Examples: Classification, DOG. DOG. CAT
regression, object detection, ’ ’
semantic segmentation, image Object Detection

captioning, etc.

This image is CCO public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a functionto map x 2 vy

GRASS, ;
TREE, SKY

Examples: Classification,
regression, object detection,
semantic segmentation, image Semantic Segmentation
captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
X is data, y is label

Goal: Learn a functiontomap x 2 vy

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

g A cat sitting on a suitcase on the floor
Image captioning

neuraltalk2
Image = CCO Public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning

R it
Unsupervised Learning

Dat@
Just data, no labels!

S

[Goal: Learn some underlying

hidden structure of the data

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, K-means clustering
feature learning, density
estimation, etc.

This image is CCO public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning

Unsupervised Learning

original data space

component space

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,

dimensionality reduction, Principal Component Analysis
feature learning, density (Dimensionality reduction)
estimation, etc. i e

CCO public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

T

Supervised vs Unsupervised Learning

Unsupervised Learning

1-d density estimation

Goal: Learn some underlying | | ;
hidden structure of the data s A .
Examples: Clustering,

dimensionality reduction,
feature learning, density
estimation, etc. .

CCO public domain

Data: x
Just data, no labels!

2—d density estimation

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Supervised vs Unsupervised Learning

Supervised Learning

Data: (X, y)

—_

X Is data, y is label
|]

Goal: Learn a function to map x ->y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

\

Unsupervised Learning

Data;\g
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction,
feature learning, density
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generative Models

Given traini generate new samples from same distribution

A F:'q}

Tra|n|ng data ~ pyaia(X Generated sample pmode,(x
%

Want to learn p,o4e(X) Similar to pdata(x)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generative Models

Given training data, generate new samples from same distribution

4 Jq

-

Training data ~ pyaa(X) Generated samples ~ P, ogel(X)

Want to learn p,o4e(X) Similar to py,ia(X)

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for p,,,q4e/(X)
- Implicit density estimation: learn model that can sample from p,,.4.(X) W/0 explicitly defining it

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Taxonomy of Generative Models

s —

Direct

—

Generative mo§dels

e —

— T~

ﬁ Explicit density | 1 Implicit density
Tractable density \ Approximate density \\\ Markov Chain
. : - Z — GSN
Fully Visible Belief Nets
- NADE rd —

Variational Markov Chain

- MADE
- | PixeRNN/CNN Variational Autoencoder ~ Boltzmann Machine
Cha es models

(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Taxonomy of Generative Models

Direct
Today: discuss 3 most GAN
popular types of generative Generative models -~ _
models today /\
Explicit density implicit density

m Chain

Tractable density\ Approximate density

Fully Visible Belief Nets / \ \GSN\

- NADE — .
- MADE | - Variational N Markov Chain
- PixelRNN/ONN ariational Autoencodeﬂ) Boltzmann Machine
Change of variables models Y
(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

m ﬁf‘\
S\
W W\
:) Pra \

T N 3 >
¥ = TR] ' .
: « a o i 7 ¢
& i . il \ A
— - ol . . - S
\ : oy . ! UL
). - . - -
- ~ -
~ . =]
sl I 4 .
. - » - 2 - “ y;
SRl A J \ T]
» ’4 5 . S S & - _,l’ R &
-~ - - o
& =

- Generative models of time-series data can be used for simulation and
planning (reinforcement learning applications!)

- Training generative models can also enable inference of latent
representations that can be useful as general features

Flgures from L-R are copyright: (1) Alec Radford et al. 2016: (2) David Berthelot et al. 2017; Phillip Isola et al. 2017. Reproduced with authors permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

PixelRNN and PixelCNN

Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d

g(%) = H}g@ml, ...,xi_‘lﬂ
i=1 4 =

—

Likelihood of Probability of i'th pixel value
Image X given all previous pixels

Then maximize likelihood of training data

Fi-e - i NN =

h\~

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e
Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
n

p(z) = | [p(zilas, ..., zi1)
toE

Likelihood of Probability of i'th pixel value
Image X given all previous pixels

Complex distribution over pixel values
Then maximize likelihood of training data => Express using a neural network!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e
Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

n
p(z) = | I p(zi|T1,..., Ti—1)
‘1

T ¢ T Will need to define ordering

Likelihood of Probability of i'th pixel value of “previous pixels”

image x given all previous pixels — —

Complex distribution over pixel values

Then maximize likelihood of training data => Express using a neural network!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

PixelRNN [van der Oord et al. 2016]
- MIAeIR

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

QQQSL@
o O

O
O O O O O
O O O O O
O O O O O

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

o

O O O O O

Dependency on previous pixels modeled
using an RNN (LSTM)

O O O
O O O
O O O O O
O O O O O

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

O O

O O O

O O O O
O O O O O
O O O O O

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

PixelRNN [van der Oord et al. 2016]

——
Generate image pixels starting from corner O
. . o O
Dependency on previous pixels modeled
using an RNN (LSTM) ~Y 0O O O
é o O O O
Drawback: sequential generation is slow! O 0 O O O

FCDC(\ < >> ~ENN(
Sedfrex(—| 4

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

J

¢

)

PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from Lﬂ
corner

Dependency on previous pixels now 2 - /

modeled using a CNN over context region

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

-) =
PixelCNN [van der Oord et al. 2016] \]> -’{7(, - - -

Softmax loss at each pixel

Still generate image pixels starting from Lﬂ
corner

Dependency on previous pixels now / s
modeled using a CNN over context region

Training: maximize likelihood of training

. -
Images —
n
p(z) = HP(CBz'|SU1, oy Ti—1)
i=1

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from Lﬂ
corner

0 255
f
. . ‘Aj N

Dependency on previous pixels now

modeled using a CNN over context region /

Training is faster than PixelRNN -

(can parallelize convolutions since context region —_—

values known from training images) — o
- —

Generation must still proceed sequentially
=> still slow

Figure copyright van der Oord et al., 2016. Reproduced with permission.

e

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generation Samples

i P 2.
El?iﬁﬂnﬁ“ﬂﬂi
et T o R
ESERERS, oL fr Bl
ﬁli’ﬂﬂ.ﬁ.ﬂﬂ
El.ﬂ.l.ﬁ SR Gk Bt S
):A_z CIFAR-10 |] 32x32)ImageNet

N

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

PixelRNN and PixelCNN

Pros:
- Can explicitly compute
likelihood pix) Improving PixelCNN performance
- - Gated convolutional layers
- Explicit likelihood of - Short-cut connections
training data gives good - Discretized logistic loss
: : - Multi-scale
evaluation metric . Training tricks
- Good samples - Etc... \/
See
Con: - Van der Oord et al. NIPS 2016
_ _ - Salimans et al. 2017
- Sequential generation (Pixel CNN++)
=> slow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Variational
Autoencoders (VAE)

e
So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

T
T) = zilz1, ..., Ti_i
pr() EEO(z| 1 7 1)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

So far...

PixelCNNs define tractable density function, optimize likelihood of training data;

n
pQ(IE) = Hp9($i|$1, ceny .’E.i_]_)
1=1

VAEs define intractable density function with latent z:

po(z =]pe(Z)pe(w|,z)dz

j.

Cannot opt?mize directly, derive and optimize lower bound on likelihood instead

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Variational Auto Encoders

/

VAEs are a combination of the following ideas:

rT1._/Agto Er@deah /\
2. Variational Approximation . /
« Variational Lower Bound / ELBO

3. Amortized Inference Neural Neﬂvﬁ

4. "Reparameterization” Trick

—_—

(C) Dhruv Batra 36

Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Feature > uiﬁ .ﬂ

‘ ER\Oder uﬂﬁ@

Input data T) gsaw
sl < [H62

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation

from unlabeled training data

’__/—"

Originally: Linear +
nonlinearity (sigmoid)

Later: Deep, fully-connected

Later: ReLU CNN

Features J

Y

Input data

A
T Entoder
€T

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

! PR |
2 Y 1T

o S
sl < s

Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation

from unlabeled training data

! PR |
2 Y 1T

ol MRS S

z usually smaller than x Originally: Linear +
(dimensionality reduction) nonlinearity (sigmoid)
Later: Deep, fully-connected
Q: Why dimensionality Later: ReLU CNN
reduction? '
Features 2
T Encoder
Input data T

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

a7l < S

Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x Originally: Linear +

(dimensionality reduction)

Q: Why dimensionality
reduction?

A: Want features to

nonlinearity (sigmoid)

Later: Deep, fully-connected

Later: ReLU CNN

capture meaningful Features <

factors of variation in

data Encoder
Input data T

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e = N
b AN

o S
sl < s

Autoencoders

How to learn this feature representation?

Features < %
T Encoder
Input data T

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

i PR e
l!gﬁﬁ@
o el e] ¥ M

a7l <« [ES

-]
Autoencoders

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Reconstructed]
input data
Decoder
Features A uﬁﬁ‘» .H
T Encoder Aﬁﬁ@
Input data gsaw
i z sl « B

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Autoencoders

How to learn this feature representation?

Train such that features can be used to reconstruct original data

“Autoencoding” - encoding itself

Reconstructed

input data

Features

/

Decoder

Encoder

Input data

S—N— R

Originally: Linear +
nonlinearity (sigmoid)

Later: Deep, fully-connected
Later: ReLU CNN (upconv)

e ———

2 R
2 Y 1T

o S
sl < s

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Autoencoders

Reconstructed data

e i =N

How to learn this feature representation? ,3. n@
Train such that features can be used to reconstruct original data n EEE

“Autoencoding” - encoding itself -
-H: k%

Re.conStru cted .’.% Encoder: 4-layer conv

Input data Decoder: 4-layer upconv

T Decoder 4

Input data

Features 2 ! PR e
T Encoter 2 T
Input data T %sgg
M (60 < NISS

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Autoencoders

Train such that features

can be used to L2 Loss function:
reconstruct original data ||:c — & |2 <
Reconstructed 53
input data A
/’(Decoder
[—a— —
Features|| () 9 Z¢ U
Encoder
Input data T

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Reconstructed data

e i =N

B L&l
2R Rl

-H: LT

Encoder: 4-layer conv
Decoder: 4-layer upconv

Input data
. | = NS

=
R

el MRS
a7l <« [ES

-]
Autoencoders

Reconstructed data

o RS
Trai h that f D ’ labels! .
c;?]"é:uucse:jg[eatures L2 Loss function: oesn use labels Esgg

reconstruct original data |z — 53”2 < -
) il < S
RgconStru cted .’f) Encoder: 4-layer conv

Input data Decoder: 4-layer upconv

T Decoder 4

Input data

Features 2 ﬁ '.; sl
T Encoder Eﬁ@
Pl S A
Input data T .E <€ .E

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Autoencoders

Reconstructed 7
input data A
Decoder
—_ ‘ N
— Features / 2 (fter training,
_ L throw away decoder
Encoder I
Input data (q;

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Autoencoders

Loss function

(Softmax, etc) bird plane
dog deer truck

Predicted Label

Train for final task

Fine-tune _ :
Encoder canbe encoder (sometimes with
used to initialize a Features j’ jointly with small data)
supervised model classifier

el o R

Input data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

-]
Autoencoders

gl e r i)

’ Autoencoders can reconstruct

L data, and can learn features to
initialize a supervised model
,{ﬂ
Relconstructed T / Features capture factors of
input data BN variation in training data. Can we
Decoder generate new images from an
— autoencoder?
Features z
ncoder
Input data T

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

e
Variational Autoencoders

———

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

-
Variational Auto Encoders

VAEs are a combination of the following ideas:

A1._—Auto Encodeig\\
2. Variational Approximation
« Variational Lower Bound / ELBO
3. Amortized Inference Neural Networks

L‘Rﬂ\rameterizatim

(C) Dhruv Batra 51

 Goal

Basic Problem

min DZN&) [@]

6 ~

e

Needtocomale, - ToZarp)|/
% E LY "t [LGy, 9>J

52

Example

(C) Dhruv Batra 54

- _________________0___0000__]
Two Options

» _Score Function based Gradient Estimator
aka REINFORCE (and variants)

V4E; [£(2)] = E; [£(2)Ve log po(2)

 Path Derivative Gradient Estimator
aka “reparameterization trick”

%, d _ of 0g
5B U] = B (906, 0)] = Eeny, | 5228

—_——

(C) Dhruv Batra 55

Option 1

 Score Function based Gradient Estimator
aka REINFORCE (and variants)

2)| = E; [f(2)Velog pg(2)]

JEC?/ Q.ﬁ,@/ CJ&L ﬁ,) J%(Z>V ﬂogf/:j) P[ZBOQZ

\A Qogfe@\ _ _é_ [iB\%)_LQ]
L U

N o

(C) Dhruv Batra 56

- _________________0___0000__]
Two Options

 Score Function based Gradient Estimator
aka REINFORCE (and variants)

Vs [£(2)] = E: [£(2)Vslogpy(2)

—_—

—————

« Path Derivative Gradient Estimator
aka “reparameterization trick”

0 o %, _ of g
5B V()] = 2B (006, 0)) = vy |2 58]

—
——

(C) Dhruv Batra 58

Option 2

 Path Derivative Gradient Estimator
aka "reparameterization trick”

- _ 0 _ af 9g
a—elEzfvpe [f(2))] = 6—0]Ee f(g(0,€))] = E.p, [@6_9]9%2

Z~ Pe(2) -
7 = g(?/§> Con~ NCO/‘)

g P& EWC(QJ - Eé P (&) BC 5 E)J

e —

(C) Dhruv Batra 59

- _________________0___0000__]
Reparameterization Intuition

Léi ~ p(@)

LA I N

o2

(C) Dhruv Batra Figure Credit: http://!élog.shakirm.)om/2015/10/machine-Iearning—trick—of—the—day—4—reparameterisation—tricl&ﬂ

- _________________0___0000__]
Two Options

 Score Function based Gradient Estimator
aka REINFORCE (and variants)

VoE, [f(2)] = E. [f(2)Vqlogpe(2)]

« Path Derivative Gradient Estimator
aka “reparameterization trick”

0 0 [8fc‘-)_g]

%Ezwpe [f(Z))] — %]Ee [f(g(ﬂ, 6))] — IEempc % o0

(C) Dhruv Batra 62

-]
Example

import numpy as np

N = 1000
theta = 2.0
X = _np.random.randn(N) + ;hgfa

eps =‘gp.random.randn(N):>

gradl = lambda x: np.sum(pp.§qggre(x)*gx-theta)) / X.slze
grad2 = lambda eps: np.sum(2*(theta + eps)) / x.size

print gradl(x)
print grad2(eps)

4.46239612174
4.1840532024

(C) Dhruv Batra Figure Credit: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/ 63

Ns = [10, 100, 1000, 10000, 100000]
reps = 100

-
J
/

meansl = np.zeros(len(Ns))
varsl = np.zeros(len(Ns))
means2 = np.zeros(len(Ns))
vars2 = np.zeros(len(Ns))

estl = np.zeros(reps)
est2 = np.zeros(reps)
for i, N in enumerate(Ns):
for r in range(reps):
X = np.random.randn(N) + theta
estl[r] = gradl(x)
eps = np.random.randn(N)
est2[r] = grad2(eps)
means1[i] = np.mean(estl)
means2[i] = np.mean(est2)
varsl[i] np.var(estl)
vars2[i] np.var(est2)

print meansl

print means2
print

print varsl
print vars2

(we)
o
D
un
—
(we)
—
v
N

(e
N
un

[3.8409546 3.97298803 4.03007634 3.98531095 3.99579423]
[3.97775271 4.00232825 3.99894536 4.00353734 3.99995899]

[6.45307927e+00 6.80227241e-01 8.69226368e-02 1.00489791e-02
8.62396526e-04]

[4.59767676e-01 4.26567475e-02 3.33699503e-03 5.17148975e-04
4.65338152e-05]

(C) Dhruv Batra Figure Credit: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

w

(W)

N

64

Aside: Gumbel Softmax

e Meet the Gumbel Softmax “trick”

-;- @)
e (=2t [0

O O

.
[log o | log s | log 03] [G1 G, | G3 [log oy |logas | log agj [Gl G2 Gs)

(C) Dhruv Batra 65

Aside: Gumbel Softmax

« Sampling on the Simplex

@A=0 (b)yA=1/2 c)A=1 (dA=2

Figure 2: A discrete distribution with unnormalized probabilities (o, as,a3) = (2,0.5,1) and
three corresponding Concrete densities at increasing temperatures A. Each triangle represents the
set of points (y1, Y2, y3) in the simplex A% = {(y1,v2,y3) | yx € (0,1),y1 + y2 + y3 = 1}. For
A = 0 the size of white circles represents the mass assigned to each vertex of the simplex under the
discrete distribution. For A € {2,1, 0.5} the intensity of the shading represents the value of po A (¥).

(C) Dhruv Batra 66

-
Variational Auto Encoders

VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
« Variational Lower Bound / ELBO

——

("")
l

3. Amortized Inference Neural Networks

’ 4. "Reparameterization” Tric@

(C) Dhruv Batra 67

-
What is Variational Inference?

* A class of methods for
— approximate inference, parameter learning
— And approximating integrals basically..

 Key idea
— Reality is complex
— Instead of performing approximate computation in something
complex,
— Can we perform exact computation in something “simple”?

— Just need to make sure the simple thing is “close” to the
complex thing.

(C) Dhruv Batra 68

Intuition

|

G - A

)
F(1)

KL divergence:
Distance between distributions

o Gi istributions p and q KL divergence:

(

oli)) 5 o6 Loy %_@

T Dpllg) =0iffp=q ()
C~— %&

* Not symmetric — p determines where difference is

important

(C) Dhruv Batra Slide Credit: Carlos Guestrin 70

Find simple approximate distribution

« Suppose p is intractable posterior
« Want to find simple g that approximates p
« KL divergence not symmetric

* D(pllq)
— true distribution p defines support of diff.

— the “correct” direction

— will be intractable to compute

+ D(qllp)

— approximate distribution defines support
— tends to give overconfident results
— will be tractable

(C) Dhruv Batra Slide Credit: Carlos Guestrin

71

Example 1

» _p = 2D Gaussian with arbitrary co-variance

—~—— —

« q = 2D Gaussian with diagonal co-variance

argmin_q KL (p || q) argmin_q KL (q | p)
1 - 1 —
Z9 Z2
0.5 0.5
0 - 0
0 0.5 2 1 0

(b)

(C) Dhruv Batra p = Green; g = Red 72

Example 2

* p = Mixture of Two Gaussians

S—

* (= Single Gaussian

—_—

argmin_q KL (p|[q)

Dhruv Batra p = Blue; q = Red

argmin_q j_(L\(q_LLp)

\\
:

O

73

The general learning problem with missing data

* Marginal likelihood — x is observed, z is missing:

ZZ(H:D):IogHP_(ii\H) @

(C) Dhruv Batra 74

Applying Jensen’s inequality

» Use: log ¥, P(2) f(z) 2 3, P(2) log f(2) /F@)

Q@%(‘) ﬁ}_é&,)

il T —

ERES

| -

(C) Dhruv Batra 75

Applying Jensen’s inequality

L -

+ Use: log 2, P(z) f(z) =2 2., P(z) log f(2)

10(6:D) = log > |Qi(z \/P(’Si’(zz) 0)

(C) Dhruv Batra 76

Evidenc‘e Based Lower Bound

 Define potential function F(0,Q): P(j},{z—’@ FCZ)6>

. N .ZO;XQ;,Z‘@)

(C) Dhruv B ﬁ\—)@%} }l %Q> 77

-
Evidence Based Lower Bound

» Define potential function F(O Q):

P(x;,z | 0)

1(6:D) > F,Q;) = ZZQz) log 0.2

1=1 =z

 EM corresponds to coordinate ascent on F
— Thus, maximizes lower bound on marginal log likelihood

(C) Dhruv Batra 78

GMM

(C) Dhruv Batra Figure Credit: Kevin Murphy 79

(C) Dhruv Batra 80

EM for Learning GMMs

« Simple Update Rules
— E-Step: estimate Q,(z) = Pr(z=j | x;)
— M-Step: maximize full likelihood weighted by posterior

(C) Dhruv Batra 81

Gaussian Mixture Example: Start/

(C) Dhruv Batra Slide Credit: Carlos Guestrin 82

After 1st iteration

(C) Dhruv Batra Slide Credit: Carlos Guestrin 83

After 2nd iteration

(C) Dhruv Batra Slide Credit: Carlos Guestrin 84

After 3rd iteration

(C) Dhruv Batra Slide Credit: Carlos Guestrin 85

After 4th iteration

(C) Dhruv Batra Slide Credit: Carlos Guestrin 86

After 5th iteration

(C) Dhruv Batra Slide Credit: Carlos Guestrin 87

After 6th iteration

(C) Dhruv Batra Slide Credit: Carlos Guestrin 88

After 20th iteration

(C) Dhruv Batra Slide Credit: Carlos Guestrin 89

Variational Auto Encoders

VAEs are a combination of the following ideas:

/

1. Auto Encodersj

m—

e

2. Variational Approximation
« Variational Lower Bound / ELBO

‘ 3. Amortized Inference Neural Networksj

—

\

4. "Reparameterization” Trick
T \

(C) Dhruv Batra 90

Amortized Inference Neural Networks

l(z) SN % CZ(XO

{ ﬂ: ﬁ%ym

i 8567&"‘9\4
2L

. 2 o N, [EL,)

/ —

Variational Auto Encoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e? | 2)] = Dicr(as(z | 22) || po(2))

A -

\\ (29,0, 0)

—

-
Variational Auto Encoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e? | 2)] = Dicr(as(z | 22) Il po(2))

A -

£(z9,0,6)

Let’s look at computing the bound
(forward pass) for a given minibatch of
input data

Input Data XL

-
Variational Auto Encoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e? | 2)] = Dicr(as(z | 22) || po(2))

A - -

£(z9,0,6)

S
/‘I'ZI:B Zzlm
Encoder network __\/;\
9(2|z)
Input Data XL
e,

-
Variational Auto Encoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a'” | 2)] — Dicay(z |) [1po(z)

L(z®,0,0¢)

Make approximate
posterior distribution
close to prior Hz|z Zzl:c

Encoder network
Wil N

Input Data XL

-
Variational Auto Encoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(e? | 2)] = Dicr(as(z | 22) || po(2))

- -

£(z9,0,6)

yA
Sample z from z|z ~ N)y
Make approximate P | (“Z|-’E7 ZI.’B)

posterior distribution / \

close to prior Hz|x Zz|:c
Encoder network \/
e (2|)

Input Data XL

-
Variational Auto Encoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpa(e? | 2)] - Dicr(ao(z |) || po(2) Ha|z Yig)z

- -

£(z9,0,6)

Decoder network

po(x|2)

(Z2)

Sample z from z|5'<l N(Mz|a;, Zz|m)

/

/‘I'ZI:B Zzlm
Encoder network
Wil N

Input Data XL

Make approximate
posterior distribution
close to prior

Variational Auto Encoders

(e e —

aximize \-/

F.’utt.lng it all er: maximizing the [.. 0 . Safple x|z from |z ~ N(:u'aclza Zmlz)
likelihood lgwer bound riginal input
& ‘ being / \
E. [logpe(:c(” | Z)] — Dicr.(qg(2 | 2@) || po(2))\[[reconstructed Hz|z Dk
L(a:(i>, 0,) Decoder network— \QLJ
— polelz) — =

.

l

Make approximate
posterior distribution

close to prior | Pz|z Zzﬂx
Encoder network \/ (
94(2|7)
Input Data T \
—\

-

Variational Auto Encoders

A

X
Maximize
likelihood of ~ Sample x|z from |2 ~ N (1|2, Xy)2)

er bound oriainal i
ginal input /V
being \

Putting it all
likelihood |

er: maximizing the

E. [logpe(rr(” | Z)] — Dir.(ag(2 | 2) || pe(2)) reconstructed Hz|z Dk
L(x("‘f, 0,0) Decoder network \/
po(x|2)

Z
Sample z from z|sc ~ N(Mz|a;, Zz|m)

posterior distribution /

close to prior Hz|x Zz|:c

= batch of Encoder network
or every minibatch of input \/
data: compute this forward 99 (2|)

pass, and then backprop! Input Data v

Make approximate

e
Variational Auto Encoders: Generating Data

Use decoder network. Now sample z from prior!

A

£Z
Sample x|z from CB|Z ~ N(,u'a:|z7 E:z:|z)

TN

M|z Ea:|z
Decoder network \/
po(x|2)
yA
a——

Sample z from z ~ N0, I)
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Data

ing

Generati

Variational Auto Encoders

Use decoder network. Now sample z from prior!

QAN NNNNANNNN S SNNNNNS
QAN EHELELLLLLWN NN~
QAVININNRKLGLELLLOVVYY YN~
QUAVVNININHL o G WVOVVY W~~~
QAVVHIHLINNHNVWWBVIYIVVY W W - —
QAOOHINININNHOEBPIBDIOIVY Y W W - —
QAQOOIMHINMNMMEN WD IOII D W - ——
QOODOMMMMMNMM®O DD D " — —
QODOMMMMMNNMMDD D D e e —
QOODMMOMMMM M N WW® DD e e —
QOMMME MMM DL LW N o om om = —
NI G G R R
Gl oo~
S dodogorororororrraaaon,~
SAddaddadorrcrrrrrTIIIINN
SAddddgrrrrrrdFTIIIRINN
Sdddorrrrrrrrrrdr2r2ranN
ST ToTororro oI RIRINNN

23::c|z

TN

Z
Sample z from z ~ N (0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample x|z from CB|Z ~ N(,u'a:|z7 2a:|z)
M|z

Decoder network
po(x|2)

Data

ing

Generati

Variational Auto Encoders

@a:::z;r;rrrrrf////@
QAT EHBELELLLLLVN NSNS
QAVININNRKLGLELLLOVVYY YN~
QUAVVNININHL o G WVOVVY W~~~
QAVVHIHLINNHNVWWBVIYIVVY W W - —
QOVDNHNININIMNWEBIVIVIV® @ w—— 4
QAQOOIMHINMNMMEN WD IOII D W - ——
QOODOMMMMMNMM®O DD D " — —
OODOMMMN MMM MDD LD D e e —
QOODMMOMMMM M N WW® DD e e —
QOMMME MMM DL LW N o om om = —
QOMMMM " "0 000 en oo - —
NI G G R R
rclz.&lz.‘.qqqqqqqqqa’nl.l./‘
JaAaaddddodogorororororrraoan~N
SAdadadddorcrrrr T TITIIINN
SddaddgorrrrrrdFITIIIXINN
SdddTrrrrrrrrrrdr2r2ranN

@Hu.u.u.u.a.q77777777770
< >

Vary

Data manifold for 2-d z

—

Vary
Z4
[—

23::c|z

TN

Z
Sample z from z ~ N (0,)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Sample x|z from CIJ|Z ~ N(,u'a:|z7 Za:|z)
M|z

Use decoder network. Now sample z from prior!
po(x|2)

Decoder network

e
Variational Auto Encoders: Generating Data

Diagonal prior on z

=> independent Degree of smile

latent variables — \
\ A

Different

dimensions of z Vary

encode Z,

interpretable factors

of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

e
Variational Auto Encoders: Generating Data

Diagonal prior on z

=> independent Degree of smile

latent variables ’
"\ A

Different

dimensions of z Vary

encode Z,

interpretable factors

of variation v

\

Also good feature representation that
can be computed using g,(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014 Vary

Variational Auto Encoders: Generating Data

' | Labeled Faces in the Wild
32x32 CIFAR-10 —_

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

e
Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Allows inferencmmwml feature representation for other tasks

e

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as
PixelRNN/Pixel CNN—
- Samples blurrier and lower quality compared to state-of-the-art (GANSs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian
- Incorporating structure in latent variables

?L}%(7%@>

Generative Adversarial
Networks (GAN)

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

pe(x) — Hpe(:ci|331, weuy .’172'_1)
1=1

VAEs define intractable density function with latent z:

po(o) = [po(2Ipa(ale)d:

Cannot optimize directly, derive and optimize lower bound on likelihood instead

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

p@(x) — Hpg(:ci|331, weuy LEz'_l)
=1

VAEs define intractable density function with latent z:

po(o) = [po(2Ipa(ale)d:

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

p@(x) — Hpg(:ci|331, weuy LEz'_l)
=1

VAEs define intractable density function with latent z:

po(o) = [po(2Ipa(ale)d:

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANSs: don’t work with any explicit density function!

N
Generative Adversarial Networks

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to
training distribution.

Q: What can we use to
represent this complex
transformation?

Generative Adversarial Networks

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to

training distribution.

*

A: A neural network! Generator
Network

*

Input: Random noise Z

Q: What can we use to Output: Sample from
represent this complex training distribution
transformation?

- 0000000000
Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

Dlscrlmlnator Network

Fake Images Real Images
(from generator) (from training set)

Generator Network

*

Random noise y4

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game
Minimax objective function:

min max

1in 1 (g, 108 Do,(2) + Eanpz) 0g(1 — Do, (Ga, (2)))]

Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game
Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max

1in X |Epnpgs, 108 Do,(2) + Eanp(s) 1og(1 — Do, (Go, (2))]
g d |_|_l L]

Discriminator output
for real data x

Discrimina'tor output for
generated fake data G(z)

Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images
Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [wavpdam log Do, () + E,p(z) log(1 — Dg, (G, (Z)))]
04 04 — |]

Discriminator output Discrimina'tor output for
for real data x generated fake data G(z)

- Discriminator (8,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to O (fake)

- Generator (6,) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

- 0000000000
Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:

min max [Ewrvpdm log Dg,(z) + E;np(z) log(1 — Do, (G, (z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

meax [EfBdiata log D9d (.’B) T]EZNP(Z) log(l o ng (G99 (z)))]
d

2. Gradient descent on generator

i .y g(1 — Do, (G, (2))

- 0000000000
Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:

min max [Em~pdata log Dg,(z) + E;np(z) log(1 — Do, (G, (z)))]
g d

Alternate between:

1. Gradient ascent on discriminator
Gradient signal
max []Emfvpdam log Dy, (z) + E,~p(2) log(1 — Dy, (G, (z)))] dominated by region
¢ where sample is
2. Gradient descent on generator already good

4

Hgin Eonp(z) log(1 — D, (GGQ (2))) When sample is IikelyZi

' fake, wantto learn |

In practice, optimizing this generator objective from it to improve /O)V :
does not work well! generator. But |
gradient in this region| |

|S relatlvely ﬂat| 0 0.2 0.4 e 0.6 0.8 1.0

- 0000000000
Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:
min max [Empdm log D, (2) + Eznp(z) log(1 — Do, (G, (z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

mea,x [EfBdiata log D9d (.’B) T]EZNP(Z) log(l o ng (G99 (z)))]
d

2. Instead: Gradient ascent on generator, different
objective
. maxE. () log(Dg, (Go, (2)))

Instead of minimizing likelihood of discriminator being correct, now High gradié‘nt signal
maximize likelihood of discriminator being wrong.

Same obijective of fooling discriminator, but now higher gradient
signal for bad samples => works much better! Standard in practice.

-3 |

-4 L
0.0 0.2

Cow gradient signal

- 0000000000
Training GANs: Two-player game

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

Minimax objective function:

min max [Exrvpdm log Dg,(z) + E;np(z) log(1 — Do, (G, (z)))]
g ¢ Aside: Jointly training two

i networks is challenging,
Alternate between: can be unstable.

1. Gradient ascent on discriminator Choosing objectives with
mea,x [wavpdam log Dy, (zc) +]EZNP(Z) log(l — ng(Geg (z)))] better loss landscapes
d

helps training, is an active
area of research.

2. Instead: Gradient ascent on generator, different
objective |
J Inea,X]Ezrvp(z) log(ng (Ggg (Z))) }

Instead of minimizing likelihood of discriminator being correct, now High gradiént signal
maximize likelihood of discriminator being wrong.
Same obijective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice.

— log(1-D(G(»)) ||
— —logD(G(2)

-3 |

.
Tos .

Cow gradient signal

-4 L
0.0 0.2

