
CS 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Generative Models (PixelRNNs, VAEs, GANs)
– Key Ideas

– AE, Reparameterization, Variational Inference



Invited Talk
• Peter Anderson, ANU

– Visual Understanding in Natural Language
– Co-located as ML@GT Seminar, Nov 27 11am, Nano 1117
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Administrativia
• Poster Presentation:

– Wed 11/29, 2-4pm 
• In two sessions

– Klaus Auditorium 
– Less text, more pictures.
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Best Project Award!



Overview

● Unsupervised Learning

● Generative Models
○ PixelRNN and PixelCNN
○ Variational Autoencoders (VAE)
○ Generative Adversarial Networks (GAN)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Cat

Classification

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

DOG, DOG, CAT

This image is CC0 public domain

Object Detection

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Semantic Segmentation

GRASS, CAT, 
TREE, SKY

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x à y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Image captioning

A cat sitting on a suitcase on the floor

Caption generated using neuraltalk2
Image is CC0 Public domain.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

K-means clustering

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Principal Component Analysis 
(Dimensionality reduction)

This image from Matthias Scholz  
is CC0 public domain

3-d 2-d

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

2-d density estimation

2-d density images left and right
are CC0 public domain

1-d density estimation
Figure	copyright	Ian	Goodfellow,	2016.	Reproduced	with	permission.	

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Supervised vs Unsupervised Learning
Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, 
feature learning, density 
estimation, etc.

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Models

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Models

Training data ~ pdata(x) Generated samples ~ pmodel(x)

Want to learn pmodel(x) similar to pdata(x)

Given training data, generate new samples from same distribution

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for pmodel(x) 
- Implicit density estimation: learn model that can sample from pmodel(x) w/o explicitly defining it

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain

Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models 
(nonlinear ICA)

Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Fully Visible Belief Nets
- NADE
- MADE
- PixelRNN/CNN

Change of variables models 
(nonlinear ICA)

Taxonomy of Generative Models

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density Markov Chain

Variational Markov Chain
Variational Autoencoder Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Today: discuss 3 most 
popular types of generative 
models today

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for simulation and 
planning (reinforcement learning applications!)

- Training generative models can also enable inference of  latent 
representations that can be useful as general features

FIgures from L-R are copyright: (1) Alec Radford et al. 2016; (2) David Berthelot et al. 2017; Phillip Isola et al. 2017. Reproduced with authors permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelRNN and PixelCNN



Fully Observable Model

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Then maximize likelihood of training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Then maximize likelihood of training data

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Fully Observable Model

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Complex distribution over pixel values 
=> Express using a neural network!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Then maximize likelihood of training data
Complex distribution over pixel values 

=> Express using a neural network!

Likelihood of 
image x

Probability of i’th pixel value 
given all previous pixels

Fully Observable Model

Use chain rule to decompose likelihood of an image x into product of 1-d 
distributions:

Explicit density model

Will need to define ordering 
of “previous pixels”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

PixelRNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

PixelRNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generate image pixels starting from corner

Dependency on previous pixels modeled 
using an RNN (LSTM)

Drawback: sequential generation is slow!

PixelRNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region

Figure	copyright	van	der	Oord	et	al.,	2016.	Reproduced	with	permission.	

PixelCNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region

Training: maximize likelihood of training 
images

Figure	copyright	van	der	Oord	et	al.,	2016.	Reproduced	with	permission.	

Softmax loss at each pixel

PixelCNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Still generate image pixels starting from 
corner

Dependency on previous pixels now 
modeled using a CNN over context region

Training is faster than PixelRNN
(can parallelize convolutions since context region 
values known from training images)

Generation must still proceed sequentially
=> still slow

Figure	copyright	van	der	Oord	et	al.,	2016.	Reproduced	with	permission.	

PixelCNN [van der Oord et al. 2016]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generation Samples

Figures	copyright	Aaron	van	der	Oord	et	al.,	2016.	Reproduced	with	permission.	

32x32 CIFAR-10 32x32 ImageNet

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



PixelRNN and PixelCNN

Improving PixelCNN performance
- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc…

See
- Van der Oord et al. NIPS 2016
- Salimans et al. 2017 

(PixelCNN++)

Pros:
- Can explicitly compute 

likelihood p(x)
- Explicit likelihood of 

training data gives good 
evaluation metric

- Good samples

Con:
- Sequential generation 

=> slow

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variational 
Autoencoders (VAE)



So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



So far...

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

PixelCNNs define tractable density function, optimize likelihood of training data:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick

(C) Dhruv Batra 36



Autoencoders

Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 
reduction?

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Unsupervised approach for learning a lower-dimensional feature representation 
from unlabeled training data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality 
reduction?

A: Want features to 
capture meaningful 
factors of variation in 
data

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

How to learn this feature representation?

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

Originally: Linear + 
nonlinearity (sigmoid)
Later: Deep, fully-connected
Later: ReLU CNN (upconv)

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

How to learn this feature representation?
Train such that features can be used to reconstruct original data
“Autoencoding” - encoding itself

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 
can be used to 
reconstruct original data

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Decoder

Reconstructed 
input data

Reconstructed data

Input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

L2 Loss function: 
Train such that features 
can be used to 
reconstruct original data

Doesn’t use labels!

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Decoder

Reconstructed 
input data

After training, 
throw away decoder

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Classifier

Predicted Label
Fine-tune
encoder
jointly with
classifier

Loss function 
(Softmax, etc)

Encoder can be 
used to initialize a 
supervised model

plane
dog deer

bird
truck

Train for final task 
(sometimes with 

small data)

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Encoder

Input data

Features

Decoder

Reconstructed 
input data

Autoencoders can reconstruct 
data, and can learn features to 
initialize a supervised model

Features capture factors of 
variation in training data. Can we 
generate new images from an 
autoencoder?

Autoencoders

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick

(C) Dhruv Batra 51



Basic Problem

• Goal

• Need to compute: 

(C) Dhruv Batra 52

min
✓

Ez⇠p✓(z)[f(z)]

r✓ Ez⇠p✓(z)[f(z)]



Example
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Example
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Two Options
• Score Function based Gradient Estimator 

aka REINFORCE (and variants) 

• Path Derivative Gradient Estimator 
aka “reparameterization trick”
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Option 1
• Score Function based Gradient Estimator 

aka REINFORCE (and variants) 
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Example
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Two Options
• Score Function based Gradient Estimator 

aka REINFORCE (and variants) 
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• Path Derivative Gradient Estimator 
aka “reparameterization trick”



Option 2
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• Path Derivative Gradient Estimator 
aka “reparameterization trick”



Example
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Reparameterization Intuition
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z = µ+ �2✏i

✏i ⇠ p(✏)

�2

Figure Credit: http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/



Two Options
• Score Function based Gradient Estimator 

aka REINFORCE (and variants) 
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• Path Derivative Gradient Estimator 
aka “reparameterization trick”



Example

(C) Dhruv Batra 63Figure Credit: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/



Example

(C) Dhruv Batra 64Figure Credit: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/



Aside: Gumbel Softmax
• Meet the Gumbel Softmax “trick”
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Aside: Gumbel Softmax
• Sampling on the Simplex
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Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick
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What is Variational Inference?
• A class of methods for 

– approximate inference, parameter learning
– And approximating integrals basically.. 

• Key idea
– Reality is complex
– Instead of performing approximate computation in something 

complex, 
– Can we perform exact computation in something “simple”?
– Just need to make sure the simple thing is “close” to the 

complex thing. 
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Intuition
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• Given two distributions p and q KL divergence:

• D(p||q) = 0 iff p=q

• Not symmetric – p determines where difference is 
important

KL divergence: 
Distance between distributions

(C) Dhruv Batra 70Slide Credit: Carlos Guestrin



Find simple approximate distribution

• Suppose p is intractable posterior
• Want to find simple q that approximates p
• KL divergence not symmetric

• D(p||q)
– true distribution p defines support of diff. 
– the “correct” direction
– will be intractable to compute

• D(q||p)
– approximate distribution defines support
– tends to give overconfident results
– will be tractable

(C) Dhruv Batra 71Slide Credit: Carlos Guestrin



Example 1
• p = 2D Gaussian with arbitrary co-variance
• q = 2D Gaussian with diagonal co-variance
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z1

z2

(a)
0 0.5 1
0

0.5

1

z1

z2

(b)
0 0.5 1
0

0.5

1
argmin_q KL (p || q) 

p = Green; q = Red

argmin_q KL (q || p) 



Example 2
• p = Mixture of Two Gaussians
• q = Single Gaussian
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argmin_q KL (p || q) 

p = Blue; q = Red

argmin_q KL (q || p) 



• Marginal likelihood – x is observed, z is missing:

The general learning problem with missing data

74(C) Dhruv Batra 

ll(� : D) = log

NY

i=1

P (xi | �)

=

NX

i=1

logP (xi | �)

=

NX

i=1

log

X

z

P (xi, z | �)



Applying Jensen’s inequality

• Use:  log åz P(z) f(z) ≥ åz P(z) log f(z) 

75(C) Dhruv Batra 



Applying Jensen’s inequality

• Use:  log åz P(z) f(z) ≥ åz P(z) log f(z) 
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ll(� : D) =

NX

i=1

log

X

z

Qi(z)
P (xi, z | �)

Qi(z)



Evidence Based Lower Bound

• Define potential function F(q,Q):

77(C) Dhruv Batra 

ll(� : D) � F (�, Qi) =

NX

i=1

X

z

Qi(z) log
P (xi, z | �)

Qi(z)



Evidence Based Lower Bound

• Define potential function F(q,Q):

• EM corresponds to coordinate ascent on F
– Thus, maximizes lower bound on marginal log likelihood

78(C) Dhruv Batra 

ll(� : D) � F (�, Qi) =

NX

i=1

X

z

Qi(z) log
P (xi, z | �)

Qi(z)



GMM

(C) Dhruv Batra 79

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure Credit: Kevin Murphy
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EM for Learning GMMs
• Simple Update Rules

– E-Step: estimate Qi(z) = Pr(z = j | xi)
– M-Step: maximize full likelihood weighted by posterior
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Gaussian Mixture Example: Start

82(C) Dhruv Batra Slide Credit: Carlos Guestrin



After 1st iteration
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After 2nd iteration
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After 3rd iteration
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After 4th iteration
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After 5th iteration
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After 6th iteration

88(C) Dhruv Batra Slide Credit: Carlos Guestrin



After 20th iteration
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Variational Auto Encoders
VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation
• Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. “Reparameterization” Trick
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Amortized Inference Neural Networks
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Putting it all together: maximizing the 
likelihood lower bound

Variational Auto Encoders



Input Data

Putting it all together: maximizing the 
likelihood lower bound

Let’s look at computing the bound 
(forward pass) for a given minibatch of 
input data

Variational Auto Encoders



Encoder network

Input Data

Putting it all together: maximizing the 
likelihood lower bound

Variational Auto Encoders



Encoder network

Input Data

Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Variational Auto Encoders



Encoder network

Sample z from

Input Data

Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Variational Auto Encoders



Encoder network

Decoder network

Sample z from

Input Data

Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Variational Auto Encoders



Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Maximize 
likelihood of 
original input 
being 
reconstructed

Variational Auto Encoders



Encoder network

Decoder network

Sample z from

Sample x|z from

Input Data

Putting it all together: maximizing the 
likelihood lower bound

Make approximate 
posterior distribution 
close to prior

Maximize 
likelihood of 
original input 
being 
reconstructed

For every minibatch of input 
data: compute this forward 
pass, and then backprop!

Variational Auto Encoders



Decoder network

Sample z from

Sample x|z from

Use decoder network.  Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Auto Encoders: Generating Data



Decoder network

Sample z from

Sample x|z from

Use decoder network.  Now sample z from prior!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Auto Encoders: Generating Data



Decoder network

Sample z from

Sample x|z from

Use decoder network.  Now sample z from prior! Data manifold for 2-d z

Vary 
z1

Vary 
z2

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Auto Encoders: Generating Data



Vary 
z1

Vary 
z2

Degree of smile

Head pose

Diagonal prior on z
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Auto Encoders: Generating Data



Vary 
z1

Vary 
z2

Degree of smile

Head pose

Diagonal prior on z
=> independent 
latent variables

Different 
dimensions of z 
encode 
interpretable factors 
of variation

Also good feature representation that 
can be computed using qɸ(z|x)! 

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Variational Auto Encoders: Generating Data



32x32 CIFAR-10
Labeled Faces in the Wild

Figures	copyright	(L)	Dirk	Kingma	et	al.	2016;	(R)	Anders	Larsen	et	al.	2017.	Reproduced	with	permission.	

Variational Auto Encoders: Generating Data



Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound
Pros:

- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as 

PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal 

Gaussian
- Incorporating structure in latent variables 



Generative Adversarial 
Networks (GAN)
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So far...
PixelCNNs define tractable density function, optimize likelihood of training data:

VAEs define intractable density function with latent z:  

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: don’t work with any explicit density function!



Generative Adversarial Networks
Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution.  No direct 
way to do this!

Solution: Sample from a simple distribution, e.g. random noise.  Learn transformation to 
training distribution.

Q: What can we use to 
represent this complex 
transformation?



Problem: Want to sample from complex, high-dimensional training distribution.  No direct 
way to do this!

Solution: Sample from a simple distribution, e.g. random noise.  Learn transformation to 
training distribution.

Generative Adversarial Networks

zInput: Random noise

Generator 
Network

Output: Sample from 
training distribution

Q: What can we use to 
represent this complex 
transformation?

A: A neural network!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game
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zRandom noise

Generator Network

Discriminator Network

Fake Images
(from generator)

Real Images
(from training set)

Real or Fake

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.
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Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

Discriminator output 
for real data x

Discriminator output for 
generated fake data G(z) 

Discriminator outputs likelihood in (0,1) of real image 

- Discriminator (θd) wants to maximize objective such that D(x) is close to 1 (real) and 
D(G(z)) is close to 0 (fake)

- Generator (θg) wants to minimize objective such that D(G(z)) is close to 1 
(discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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Minimax objective function:
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Training GANs: Two-player game

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Gradient descent on generator

In practice, optimizing this generator objective 
does not work well!

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014

When sample is likely 
fake, want to learn 
from it to improve 
generator. But 
gradient in this region 
is relatively flat!

Gradient signal 
dominated by region 
where sample is 
already good



Training GANs: Two-player game

Minimax objective function:

Alternate between:
1. Gradient ascent on discriminator

2.    Instead: Gradient ascent on generator, different 
objective

Instead of minimizing likelihood of discriminator being correct, now 
maximize likelihood of discriminator being wrong. 
Same objective of fooling discriminator, but now higher gradient 
signal for bad samples => works much better! Standard in practice.

Ian Goodfellow et al., “Generative 
Adversarial Nets”, NIPS 2014
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High gradient signal 

Low gradient signal 

Aside: Jointly training two 
networks is challenging, 
can be unstable.  
Choosing objectives with 
better loss landscapes 
helps training, is an active 
area of research.


