CS 7643: Deep Learning

Topics:

- Generative Models (PixelRNNs, VAEs, GANs)
- Key Ideas

- AE, Reparameterization, Variational Inference

Dhruv Batra Georgia Tech

Invited Talk

- Peter Anderson, ANU
 - Visual Understanding in Natural Language
 - Co-located as ML@GT Seminar, Nov 27 11am, Nano 1117

PhD student in Computer Vision / Deep Learning

Sydney / Canberra

🖸 Email

Twitter

in LinkedIn

G Google Scholar

Publications

Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering

Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, Lei Zhang

preprint arXiv:1707.07998, 2017.

Project PDF Code

Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge

Damien Teney, Peter Anderson, Xiaodong He, Anton van den Hengel preprint arXiv:1708.02711, 2017.

PDF Slides

PDF

Guided Open Vocabulary Image Captioning with Constrained Beam Search

Peter Anderson, Basura Fernando, Mark Johnson and Stephen Gould In Conference on Empirical Methods for Natural Language Processing (EMNLP), 2017.

SPICE: Semantic Propositional Image Caption Evaluation

Peter Anderson, Basura Fernando, Mark Johnson and Stephen Gould In *Proceedings of the European Conference on Computer Vision (ECCV)*, 2016.

(C) Dhruv Batra

Administrativia

- Poster Presentation: Best Project Award!
 - Wed 11/29, 2-4pm
 - In two sessions
 - Klaus Auditorium
 - Less text, more pictures.

Overview

- Unsupervised Learning
- Generative Models
 - PixelRNN and PixelCNN
 - Variational Autoencoders (VAE)
 - Generative Adversarial Networks (GAN)

Supervised Learning

Data. (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Classification

This image is CC0 public domain

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

DOG, DOG, CAT

Object Detection

This image is CC0 public domain

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

GRASS, CAT,⊬ TREE, SKY

Semantic Segmentation

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map $x \rightarrow y$

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

A cat sitting on a suitcase on the floor

Image captioning

Caption generated using <u>neuraltalk2</u> Image is <u>CC0 Public domain</u>.

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

K-means clustering

This image is CC0 public domain

Unsupervised Learning

Data: x Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Principal Component Analysis (Dimensionality reduction)

This image from Matthias Scholz is CC0 public domain

Unsupervised Learning

- **Data**: x Just data, no labels!
- **Goal**: Learn some underlying hidden *structure* of the data
- **Examples**: Clustering, dimensionality reduction, feature learning, density estimation, etc.

Figure copyright Ian Goodfellow, 2016. Reproduced with permission.

1-d density estimation

2-d density estimation

2-d density images <u>left</u> and <u>right</u> are <u>CC0 public domain</u>

Supervised Learning

Data: (x, y) x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc. Unsupervised Learning Data: Just data, no labels! Goal: Learn some underlying hidden *structure* of the data Examples: Clustering, dimensionality reduction, feature learning, density

estimation, etc.

Generative Models

Given training data, generate new samples from same distribution

Generative Models

Given training data, generate new samples from same distribution

Training data ~ $p_{data}(x)$ Generated samples ~ $p_{model}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Addresses density estimation, a core problem in unsupervised learning

Several flavors:

- Explicit density estimation: explicitly define and solve for p_{model}(x)
- Implicit density estimation: learn model that can sample from p_{model}(x) w/o explicitly defining it

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for simulation and planning (reinforcement learning applications!)
- Training generative models can also enable inference of latent representations that can be useful as general features

Flgures from L-R are copyright: (1) Alec Radford et al. 2016; (2) David Berthelot et al. 2017; Phillip Isola et al. 2017. Reproduced with authors permission.

PixelRNN and PixelCNN

Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d distributions:

Then maximize likelihood of training data

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d distributions:

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1})$$

Likelihood of image x

Probability of i'th pixel value given all previous pixels

Complex distribution over pixel values => Express using a neural network!

Then maximize likelihood of training data

Fully Observable Model

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d distributions:

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1})$$

$$\uparrow$$
Likelihood of
image x
Probability of i'th pixel value
given all previous pixels
Will need to define ordering
of "previous pixels"

Complex distribution over pixel values => Express using a neural network!

Then maximize likelihood of training data

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)

PixeIRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)

PixeIRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)

PixeIRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)

Drawback: sequential generation is slow!

 $P(\chi;) < \chi$

PixeICNN [van der Oord et al. 2016]

Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region

Figure copyright van der Oord et al., 2016. Reproduced with permission.

PixeICNN [van der Oord et al. 2016]

Softmax loss at each pixel

· R -

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region

Training: maximize likelihood of training images

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, \dots, x_{i-1})$$

PixeICNN [van der Oord et al. 2016]

Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region

Training is faster than PixelRNN (can parallelize convolutions since context region values known from training images)

Generation must still proceed sequentially => still slow

Figure copyright van der Oord et al., 2016. Reproduced with permission.

Generation Samples

Figures copyright Aaron van der Oord et al., 2016. Reproduced with permission.

PixelRNN and **PixelCNN**

Pros:

- Can explicitly compute likelihood p(x)
- Explicit likelihood of training data gives good evaluation metric
- Good samples

Con:

Sequential generation
 slow

Improving PixelCNN performance

- Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc...

See

- Van der Oord et al. NIPS 2016
- Salimans et al. 2017 (PixelCNN++)

Variational Autoencoders (VAE)

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i | x_1, \dots, x_{i-1})$$

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i | x_1, ..., x_{i-1})$$

VAEs define intractable density function with latent **z**: $p_{\theta}(x) = \iint_{z} p_{\theta}(z) p_{\theta}(x|z) dz$

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Variational Auto Encoders

VAEs are a combination of the following ideas:

How to learn this feature representation?

How to learn this feature representation?

Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself

How to learn this feature representation?

Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself

How to learn this feature representation?

Train such that features can be used to reconstruct original data "Autoencoding" - encoding itself

Reconstructed data

Reconstructed data

Reconstructed data

Autoencoders can reconstruct data, and can learn features to initialize a supervised model

Features capture factors of variation in training data. Can we generate new images from an

Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Variational Auto Encoders

VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation

- Variational Lower Bound / ELBO
- 3. Amortized Inference Neural Networks

. "Reparameterization" Trick

Basic Problem

Goal

 \mathbb{E} min $z \sim p_{\theta}(z) [f(z)]$

• Need to compute: $\nabla_{\theta} \mathbb{E}_{z \sim p_{\theta}(z)}[f(z)]$ $\nabla_{\theta} \mathbb{E}_{x,y} \mathcal{P}_{\theta} \mathbb{E}_$

Two Options

• Score Function based Gradient Estimator aka REINFORCE (and variants)

$$\nabla_{\theta} \mathbb{E}_{z} \left[f(z) \right] = \mathbb{E}_{z} \left[\underline{f(z)} \nabla_{\theta} \log p_{\theta}(z) \right]$$

 Path Derivative Gradient Estimator aka "reparameterization trick"

$$\frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_{\theta}} \left[f(z) \right] = \frac{\partial}{\partial \theta} \mathbb{E}_{\epsilon} \left[f(\underline{g(\theta, \epsilon)}) \right] = \mathbb{E}_{\epsilon \sim p_{\epsilon}} \left[\frac{\partial f}{\partial g} \frac{\partial g}{\partial \theta} \right]$$

Option 1

 Score Function based Gradient Estimator aka REINFORCE (and variants)

Two Options

 Score Function based Gradient Estimator aka REINFORCE (and variants)

$$\nabla_{\theta} \mathbb{E}_{z} \left[\underline{f(z)} \right] = \mathbb{E}_{z} \left[\underline{f(z)} \nabla_{\theta} \log p_{\theta}(z) \right]$$

• Path Derivative Gradient Estimator aka "reparameterization trick"

$$\frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_{\theta}} \left[f(z) \right] = \frac{\partial}{\partial \theta} \mathbb{E}_{\epsilon} \left[f(g(\theta, \epsilon)) \right] = \mathbb{E}_{\epsilon \sim p_{\epsilon}} \left[\frac{\partial f}{\partial g} \frac{\partial g}{\partial \theta} \right]$$

Option 2

 Path Derivative Gradient Estimator aka "reparameterization trick"

$$\frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_{\theta}} [f(z))] = \frac{\partial}{\partial \theta} \mathbb{E}_{\epsilon} [f(g(\theta, \epsilon))] = \mathbb{E}_{\epsilon \sim p_{\epsilon}} \left[\frac{\partial f}{\partial g} \frac{\partial g}{\partial \theta} \right] \approx 1 \leq Z \sim P_{\Phi}(z)$$

$$Z \sim P_{\Phi}(z)$$

$$Z = g\left(\begin{array}{c} \Theta \\ - \end{array} \right) \qquad \mathcal{E} \sim \mathcal{N}(0, 1)$$

$$E_{z \sim P(z)} \left[f(z) \right] = \mathcal{E}_{z \sim P(\epsilon)} \left[f(g(\theta, \epsilon)) \right]$$

Reparameterization Intuition

(C) Dhruv Batra Figure Credit: http://plog.shakirm.gom/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/

Two Options

 Score Function based Gradient Estimator aka REINFORCE (and variants)

 $\nabla_{\theta} \mathbb{E}_{z} \left[f(z) \right] = \mathbb{E}_{z} \left[f(z) \nabla_{\theta} \log p_{\theta}(z) \right]$

 Path Derivative Gradient Estimator aka "reparameterization trick"

$$\frac{\partial}{\partial \theta} \mathbb{E}_{z \sim p_{\theta}} \left[f(z) \right] = \frac{\partial}{\partial \theta} \mathbb{E}_{\epsilon} \left[f(g(\theta, \epsilon)) \right] = \mathbb{E}_{\epsilon \sim p_{\epsilon}} \left[\frac{\partial f}{\partial g} \frac{\partial g}{\partial \theta} \right]$$

Example

Example

Aside: Gumbel Softmax

Meet the Gumbel Softmax "trick"

Aside: Gumbel Softmax

• Sampling on the Simplex

Figure 2: A discrete distribution with unnormalized probabilities $(\alpha_1, \alpha_2, \alpha_3) = (2, 0.5, 1)$ and three corresponding Concrete densities at increasing temperatures λ . Each triangle represents the set of points (y_1, y_2, y_3) in the simplex $\Delta^2 = \{(y_1, y_2, y_3) \mid y_k \in (0, 1), y_1 + y_2 + y_3 = 1\}$. For $\lambda = 0$ the size of white circles represents the mass assigned to each vertex of the simplex under the discrete distribution. For $\lambda \in \{2, 1, 0.5\}$ the intensity of the shading represents the value of $p_{\alpha,\lambda}(y)$.

Variational Auto Encoders

VAEs are a combination of the following ideas:

- 1. Auto Encoders
- 2. Variational Approximation
 - Variational Lower Bound / ELBO
- 3. Amortized Inference Neural Networks

4. "Reparameterization" Trick

What is Variational Inference?

- A class of methods for
 - approximate inference, parameter learning
 - And approximating integrals basically..
- Key idea
 - Reality is complex
 - Instead of performing approximate computation in something complex,
 - Can we perform exact computation in something "simple"?
 - Just need to make sure the simple thing is "close" to the complex thing.

Intuition

KL divergence: Distance between distributions

• Given two distributions *p* and *q* KL divergence:

• D(p||q) = 0 iff p=q

 Not symmetric – p determines where difference is important

Find simple approximate distribution

- Suppose *p* is intractable posterior
- Want to find simple *q* that approximates *p*
- KL divergence not symmetric
- D(p||q)
 - true distribution p defines support of diff.
 - the "correct" direction
 - will be intractable to compute
- D(q||p)
 - approximate distribution defines support
 - tends to give overconfident results
 - will be tractable

Example 1

- p = 2D Gaussian with arbitrary co-variance
- q = 2D Gaussian with diagonal co-variance

Example 2

- p = Mixture of Two Gaussians
- q = Single Gaussian

The general learning problem with missing data

• Marginal likelihood – **x** is observed, **z** is missing:

$$ll(\theta : D) = \log \prod_{i=1}^{N} P(\mathbf{x}_i \mid \theta)$$
$$= \sum_{i=1}^{N} \log P(\mathbf{x}_i \mid \theta)$$
$$= \sum_{i=1}^{N} \log \sum_{\mathbf{z}} P(\mathbf{x}_i, \mathbf{z} \mid \theta)$$

Applying Jensen's inequality

• Use: $\log \sum_{z} P(z) f(z) \ge \sum_{z} P(z) \log f(z)$

 $log(\cdot)$

Applying Jensen's inequality

• Use: $\log \sum_{z} P(z) f(z) \ge \sum_{z} P(z) \log f(z)$

$$ll(\theta: \mathcal{D}) = \sum_{i=1}^{N} \log \sum_{\mathbf{z}} Q_i(\mathbf{z}) \frac{P(\mathbf{x}_i, \mathbf{z} \mid \theta)}{Q_i(\mathbf{z})}$$

Evidence Based Lower Bound

Evidence Based Lower Bound

• Define potential function $F(\theta, Q)$:

$$ll(\theta : \mathcal{D}) \ge F(\theta, Q_i) = \sum_{i=1}^{N} \sum_{\mathbf{z}} Q_i(\mathbf{z}) \log \frac{P(\mathbf{x}_i, \mathbf{z} \mid \theta)}{Q_i(\mathbf{z})}$$

- EM corresponds to coordinate ascent on F
 - Thus, maximizes lower bound on marginal log likelihood

(C) Dhruv Batra

EM for Learning GMMs

- Simple Update Rules
 - E-Step: estimate $Q_i(z) = Pr(z = j | x_i)$
 - M-Step: maximize full likelihood weighted by posterior

Gaussian Mixture Example: Start/

(C) Dhruv Batra

Slide Credit: Carlos Guestrin

After 1st iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

VAEs are a combination of the following ideas:

1. Auto Encoders

2. Variational Approximation

Variational Lower Bound / ELBO

3. Amortized Inference Neural Networks

4. "Reparameterization" Trick

Putting it all together: maximizing the likelihood lower bound

 $\underbrace{\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)}$

Putting it all together: maximizing the likelihood lower bound

$$\underbrace{\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)}$$

Let's look at computing the bound (forward pass) for a given minibatch of input data

Putting it all together: maximizing the likelihood lower bound

 $\underbrace{\mathbf{E}_{z}\left[\log p_{\theta}(x^{(i)} \mid z)\right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid\mid p_{\theta}(z))}_{\mathcal{L}(x^{(i)}, \theta, \phi)}$

Putting it all together: maximizing the likelihood lower bound

Putting it all together: maximizing the likelihood lower bound

Putting it all together: maximizing the likelihood lower bound

Use decoder network. Now sample z from prior!

Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014

Use decoder network. Now sample z from prior!

Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014

Use decoder network. Now sample z from prior!

Kingma and Welling, "Auto-Encoding Variational Bayes", ICLR 2014

32x32 CIFAR-10

Labeled Faces in the Wild

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.

Probabilistic spin to traditional autoencoders => allows generating data Defines an intractable density => derive and optimize a (variational) lower bound

Pros:

- Principled approach to generative models
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:

- Maximizes lower bound of likelihood: okay, but not as good evaluation as PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANs)

Active areas of research:

- More flexible approximations, e.g. richer approximate posterior instead of diagonal Gaussian
- Incorporating structure in latent variables

P (Thigh | Ilon)

Generative Adversarial Networks (GAN)

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i | x_1, ..., x_{i-1})$$

VAEs define intractable density function with latent z:

$$p_{ heta}(x) = \int p_{ heta}(z) p_{ heta}(x|z) dz$$

Cannot optimize directly, derive and optimize lower bound on likelihood instead
So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i | x_1, ..., x_{i-1})$$

VAEs define intractable density function with latent z:

$$p_{ heta}(x) = \int p_{ heta}(z) p_{ heta}(x|z) dz$$

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

So far...

PixelCNNs define tractable density function, optimize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i | x_1, ..., x_{i-1})$$

VAEs define intractable density function with latent z:

$$p_{ heta}(x) = \int p_{ heta}(z) p_{ heta}(x|z) dz$$

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: don't work with any explicit density function!

Generative Adversarial Networks

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution.

Q: What can we use to represent this complex transformation?

Generative Adversarial Networks

lan Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Problem: Want to sample from complex, high-dimensional training distribution. No direct way to do this!

Solution: Sample from a simple distribution, e.g. random noise. Learn transformation to training distribution.

Q: What can we use to represent this complex transformation?

A: A neural network!

Output: Sample from training distribution

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in minimax game

Minimax objective function:

Discriminator outputs likelihood in (0,1) of real image

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Discriminator output for real data x Discriminator output for generated fake data G(z)

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Generator network: try to fool the discriminator by generating real-looking images **Discriminator network**: try to distinguish between real and fake images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Discriminator output for for real data x Discriminator output for generated fake data G(z)

- Discriminator (θ_d) wants to maximize objective such that D(x) is close to 1 (real) and D(G(z)) is close to 0 (fake)
- Generator (θ_g) wants to minimize objective such that D(G(z)) is close to 1 (discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Minimax objective function:

1

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Gradient signal dominated by region where sample is already good

2. Gradient descent on generator

$$\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z)))$$

In practice, optimizing this generator objective does not work well!

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

2. Instead: Gradient ascent on generator, different objective $\max \mathbb{F} = \left(\sum_{i=1}^{n} \log(D_{i} \cdot (C_{i} \cdot (z))) \right)$

$$\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$$

Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong. Same objective of fooling discriminator, but now higher gradient signal for bad samples => works much better! Standard in practice.

Ian Goodfellow et al., "Generative Adversarial Nets", NIPS 2014

Minimax objective function:

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Alternate between:

1. Gradient ascent on discriminator

$$\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log(1 - D_{\theta_d}(G_{\theta_g}(z))) \right]$$

Aside: Jointly training two networks is challenging, can be unstable. Choosing objectives with better loss landscapes helps training, is an active area of research.

2. Instead: Gradient ascent on generator, different objective $\max \mathbb{F} \left(\sum_{i=1}^{n} \log(D_{i} \left(G_{i} \left(c_{i} \right) \right) \right)$

 $\max_{\theta_g} \mathbb{E}_{z \sim p(z)} \log(D_{\theta_d}(G_{\theta_g}(z)))$

Instead of minimizing likelihood of discriminator being correct, now maximize likelihood of discriminator being wrong. Same objective of fooling discriminator, but now higher gradient signal for bad samples => works much better! Standard in practice.

