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Topics: 
– Review of Classical Reinforcement Learning
– Value-based Deep RL
– Policy-based Deep RL



Types of Learning
• Supervised learning

– Learning from a “teacher”
– Training data includes desired outputs

• Unsupervised learning
– Training data does not include desired outputs

• Reinforcement learning
– Learning to act under evaluative feedback (rewards)
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Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification, 
regression, object detection, 
semantic segmentation, image 
captioning, etc.

Cat

Classification

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying 
hidden structure of the data

Examples: Clustering, 
dimensionality reduction, feature 
learning, density estimation, etc. 2-d density estimation

2-d density images left and right
are CC0 public domain

1-d density estimation
Figure	copyright	Ian	Goodfellow,	2016.	Reproduced	with	permission.	

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



What is Reinforcement Learning?

Agent-oriented learning—learning by interacting with an 
environment to achieve a goal 

• more realistic and ambitious than other kinds of machine 
learning

Learning by trial and error, with only delayed evaluative feedback 
(reward)

• the kind of machine learning most like natural learning

• learning that can tell for itself when it is right or wrong

Slide Credit: Rich Sutton



David Silver 2015



Example: Hajime Kimura’s RL Robots

Before After

Backward New Robot, Same algorithmSlide Credit: Rich Sutton



Signature challenges of RL

Evaluative feedback (reward)

Sequentiality, delayed consequences

Need for trial and error, to explore as well as exploit

Non-stationarity

The fleeting nature of time and online data

Slide Credit: Rich Sutton



RL API
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State
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Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright + 
forward movement

Figures	copyright	John	Schulman	et	al.,	2016.	Reproduced	with	permission.	

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures	copyright	Volodymyr	Mnih	et	al.,	2013.	Reproduced	with	permission.	

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Go

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Demo
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Markov Decision Process
- Mathematical formulation of the RL problem

Defined by: 

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Markov Decision Process
- Mathematical formulation of the RL problem

- Life is trajectory: 

Defined by: 

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Markov Decision Process
- Mathematical formulation of the RL problem

- Life is trajectory: 

- Markov property: Current state completely characterizes the state of the 
world

Defined by: 

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Components of an RL Agent
• Policy

– How does an agent behave?

• Value function
– How good is each state and/or state-action pair?

• Model
– Agent’s representation of the environment
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Policy
• A policy is how the agent acts

• Formally, map from states to actions
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What’s a good policy? 

The optimal policy 𝝿*



What’s a good policy? 

Maximizes current reward? Sum of all future reward? 

The optimal policy 𝝿*



What’s a good policy? 

Maximizes current reward? Sum of all future reward? 

Discounted future rewards!

The optimal policy 𝝿*



What’s a good policy? 

Maximizes current reward? Sum of all future reward? 

Discounted future rewards!

Formally:

with 

The optimal policy 𝝿*



Value Function
• A value function is a prediction of future reward

• “State Value Function” or simply “Value Function”
– How good is a state? 
– Am I screwed? Am I winning this game?

• “Action Value Function” or Q-function
– How good is a state action-pair? 
– Should I do this now?
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Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state? 
The value function at state s, is the expected cumulative reward from state s
(and following the policy thereafter):

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths)  s0, a0, r0, s1, a1, r1, …

How good is a state? 
The value function at state s, is the expected cumulative reward from state s
(and following the policy thereafter):

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from 
taking action a in state s (and following the policy thereafter):

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Model
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Model
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• Model predicts what the world will do next

Slide Credit: David Silver



Maze Example
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Maze Example: Policy
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Maze Example: Value
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Maze Example: Model
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Components of an RL Agent
• Value function

– How good is each state and/or state-action pair?

• Policy
– How does an agent behave?

• Model
– Agent’s representation of the environment
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Approaches to RL
• Value-based RL

– Estimate the optimal action-value function

• Policy-based RL
– Search directly for the optimal policy 

• Model
– Build a model of the world

• State transition, reward probabilities

– Plan (e.g. by look-ahead) using model
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Deep RL
• Value-based RL

– Use neural nets to represent Q function 

• Policy-based RL
– Use neural nets to represent policy 

• Model
– Use neural nets to represent and learn the model
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Q(s, a; ✓⇤) ⇡ Q⇤(s, a)

Q(s, a; ✓)

⇡✓

⇡✓⇤ ⇡ ⇡⇤



Approaches to RL
• Value-based RL

– Estimate the optimal action-value function
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Optimal Value Function
• Optimal Q-function is the maximum achievable value
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Optimal Value Function
• Optimal Q-function is the maximum achievable value

• Once we have it, we can act optimally
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Optimal Value Function

• Optimal value maximizes over all future decisions
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Optimal Value Function

• Optimal value maximizes over all future decisions

• Formally, Q* satisfies Bellman Equations
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Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



What’s the problem with this?

Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state 
pixels, computationally infeasible to compute for entire state space!

Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state 
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network! 

Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Demo
• http://cs.stanford.edu/people/karpathy/reinforcejs/grid

world_td.html
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Deep RL
• Value-based RL

– Use neural nets to represent Q function 

• Policy-based RL
– Use neural nets to represent policy 

• Model
– Use neural nets to represent and learn the model

(C) Dhruv Batra 47

Q(s, a; ✓⇤) ⇡ Q⇤(s, a)

Q(s, a; ✓)

⇡✓

⇡✓⇤ ⇡ ⇡⇤



Q-Networks

Slide Credit: David Silver



Case Study: Playing Atari Games 

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures	copyright	Volodymyr	Mnih	et	al.,	2013.	Reproduced	with	permission.	

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



:
neural network 
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



:
neural network 
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

Input: state st

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



:
neural network 
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

Familiar conv layers, 
FC layer

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



:
neural network 
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d 
output (if 4 actions), 
corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



:
neural network 
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d 
output (if 4 actions), 
corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

Number of actions between 4-18 
depending on Atari game

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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:
neural network 
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d 
output (if 4 actions), 
corresponding to Q(st, 
a1), Q(st, a2), Q(st, a3), 
Q(st,a4)

Number of actions between 4-18 
depending on Atari game

A single feedforward pass 
to compute Q-values for all 
actions from the current 
state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Remember: want to find a Q-function that satisfies the Bellman Equation: 

Deep Q-learning 

Q⇤
(s, a) = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Remember: want to find a Q-function that satisfies the Bellman Equation: 

Deep Q-learning 

Loss function:
Forward Pass

Li(✓i) = E
⇥
(yi �Q(s, a; ✓i)

2
⇤

Q⇤
(s, a) = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Remember: want to find a Q-function that satisfies the Bellman Equation: 

Deep Q-learning 

Loss function:

where

Forward Pass
Li(✓i) = E

⇥
(yi �Q(s, a; ✓i)

2
⇤

Q⇤
(s, a) = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

yi = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Remember: want to find a Q-function that satisfies the Bellman Equation: 

Deep Q-learning 

Loss function:

where

Forward Pass

Backward Pass
Gradient update (with respect to Q-function parameters θ):

Li(✓i) = E
⇥
(yi �Q(s, a; ✓i)

2
⇤

Q⇤
(s, a) = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

yi = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Remember: want to find a Q-function that satisfies the Bellman Equation: 

Deep Q-learning 

Loss function:

where

Iteratively try to make the Q-value 
close to the target value (yi) it 
should have, if Q-function 
corresponds to optimal Q* (and 
optimal policy 𝝿*)

Forward Pass

Backward Pass
Gradient update (with respect to Q-function parameters θ):

Li(✓i) = E
⇥
(yi �Q(s, a; ✓i)

2
⇤

Q⇤
(s, a) = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

yi = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Training the Q-network: Experience Replay

61

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing 

action is to move left, training samples will be dominated by samples from left-hand 
size) => can lead to bad feedback loops

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Training the Q-network: Experience Replay

62

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing 

action is to move left, training samples will be dominated by samples from left-hand 
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (st, at, rt, st+1) as game 

(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, 

instead of consecutive samples 

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Experience Replay

(C) Dhruv Batra 63Slide Credit: David Silver



Video by Károly Zsolnai-Fehér. Reproduced with permission.
https://www.youtube.com/watch?v=V1eYniJ0Rnk

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Deep RL
• Value-based RL

– Use neural nets to represent Q function 

• Policy-based RL
– Use neural nets to represent policy 

• Model
– Use neural nets to represent and learn the model

(C) Dhruv Batra 65

Q(s, a; ✓⇤) ⇡ Q⇤(s, a)

Q(s, a; ✓)

⇡✓

⇡✓⇤ ⇡ ⇡⇤



Formally, let’s define a class of parameterized policies:

For each policy, define its value:

Policy Gradients

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Formally, let’s define a class of parameterized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this? 

Policy Gradients

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Formally, let’s define a class of parameterized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this? 

Policy Gradients

Gradient ascent on policy parameters!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE algorithm
Mathematically, we can write:

Where r(𝜏) is the reward of a trajectory

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE algorithm
Expected reward:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE algorithm

Now let’s differentiate this:

Expected reward:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE algorithm

Intractable! Expectation of gradient
is problematic when p depends on 
θ

Now let’s differentiate this:

Expected reward:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE algorithm

Intractable! Expectation of gradient
is problematic when p depends on 
θ

Now let’s differentiate this:

However, we can use a nice trick:

Expected reward:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE algorithm

Intractable! Expectation of gradient
is problematic when p depends on 
θ

Can estimate with 
Monte Carlo sampling

Now let’s differentiate this:

However, we can use a nice trick:
If we inject this back:

Expected reward:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE algorithm

75

Can we compute those quantities without knowing the transition probabilities?

We have:



REINFORCE algorithm

76

Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:



REINFORCE algorithm

77

Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:

And when differentiating:
Doesn’t depend on 

transition probabilities!



REINFORCE algorithm

78

Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:

And when differentiating:

Therefore when sampling a trajectory 𝜏, we can estimate J(𝜃) with

Doesn’t depend on 
transition probabilities!



Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Intuition
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Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is 
really hard. Can we help the estimator?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the 
image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

glimpse

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the 
image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE
Given state of glimpses seen so far, use RNN to model the state and output next action

glimpse

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

NN

(x1, y1)

Input 
image

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

NN

(x1, y1)

NN

(x2, y2)

Input 
image

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

Input 
image

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

NN

(x4, y4)

Input 
image

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

NN

(x4, y4)

NN

(x5, y5)

Softmax

Input 
image

y=2

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



REINFORCE in action: Recurrent Attention Model (RAM)

[Mnih et al. 2014]Figures	copyright	Daniel	Levy,	2017.	Reproduced	with	permission.	

Has also been used in many other tasks including fine-grained image recognition, 
image captioning, and visual question-answering!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were 
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is 
really hard. Can we help the estimator?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variance reduction
Gradient estimator:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variance reduction
Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative 
future reward from that state

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variance reduction
Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative 
future reward from that state

Second idea: Use discount factor 𝛾 to ignore delayed effects

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Variance reduction: Baseline
Problem: The raw value of a trajectory isn’t necessarily meaningful. 

For example, if rewards are all positive, you keep pushing up 
probabilities of actions.

What is important then? Whether a reward is better or worse than 
what you expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now: 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



How to choose the baseline?

A simple baseline: constant moving average of rewards experienced so far 
from all trajectories

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



How to choose the baseline?

A simple baseline: constant moving average of rewards experienced so far 
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla 
REINFORCE”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if 
this action was better than the expected value of what we should get from 
that state.

Q: What does this remind you of?
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How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if 
this action was better than the expected value of what we should get from 
that state.

Q: What does this remind you of?

A: Q-function and value function!
Intuitively, we are happy with an action at in a state st if                                       
is large. On the contrary, we are unhappy with an action if it’s small.

Using this, we get the estimator:
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Actor-Critic Algorithm
Initialize policy parameters 𝜃, critic parameters 𝜙
For iteration=1, 2 … do

Sample m trajectories under the current policy

For i=1, …, m do
For t=1, ... , T do

End for

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Summary
- Policy gradients: very general but suffer from high variance so 

requires a lot of samples. Challenge: sample-efficiency
- Q-learning: does not always work but when it works, usually more 

sample-efficient. Challenge: exploration

- Guarantees:
- Policy Gradients: Converges to a local minima of J(𝜃), often good 

enough!
- Q-learning: Zero guarantees since you are approximating Bellman 

equation with a complicated function approximator
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