
CS 7643: Deep Learning

Dhruv Batra
Georgia Tech

Topics:
– Review of Classical Reinforcement Learning
– Value-based Deep RL
– Policy-based Deep RL

Types of Learning
• Supervised learning

– Learning from a “teacher”
– Training data includes desired outputs

• Unsupervised learning
– Training data does not include desired outputs

• Reinforcement learning
– Learning to act under evaluative feedback (rewards)

(C) Dhruv Batra 2

Supervised Learning

Data: (x, y)
x is data, y is label

Goal: Learn a function to map x -> y

Examples: Classification,
regression, object detection,
semantic segmentation, image
captioning, etc.

Cat

Classification

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Unsupervised Learning

Data: x
Just data, no labels!

Goal: Learn some underlying
hidden structure of the data

Examples: Clustering,
dimensionality reduction, feature
learning, density estimation, etc. 2-d density estimation

2-d density images left and right
are CC0 public domain

1-d density estimation
Figure	copyright	Ian	Goodfellow,	2016.	Reproduced	with	permission.	

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

What is Reinforcement Learning?

Agent-oriented learning—learning by interacting with an
environment to achieve a goal

• more realistic and ambitious than other kinds of machine
learning

Learning by trial and error, with only delayed evaluative feedback
(reward)

• the kind of machine learning most like natural learning

• learning that can tell for itself when it is right or wrong

Slide Credit: Rich Sutton

David Silver 2015

Example: Hajime Kimura’s RL Robots

Before After

Backward New Robot, Same algorithmSlide Credit: Rich Sutton

Signature challenges of RL

Evaluative feedback (reward)

Sequentiality, delayed consequences

Need for trial and error, to explore as well as exploit

Non-stationarity

The fleeting nature of time and online data

Slide Credit: Rich Sutton

RL API

(C) Dhruv Batra 9Slide Credit: David Silver

State

(C) Dhruv Batra 10

Robot Locomotion

Objective: Make the robot move forward

State: Angle and position of the joints
Action: Torques applied on joints
Reward: 1 at each time step upright +
forward movement

Figures	copyright	John	Schulman	et	al.,	2016.	Reproduced	with	permission.	

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures	copyright	Volodymyr	Mnih	et	al.,	2013.	Reproduced	with	permission.	

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Go

Objective: Win the game!

State: Position of all pieces
Action: Where to put the next piece down
Reward: 1 if win at the end of the game, 0 otherwise

This image is CC0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Demo

(C) Dhruv Batra 14

Markov Decision Process
- Mathematical formulation of the RL problem

Defined by:

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Markov Decision Process
- Mathematical formulation of the RL problem

- Life is trajectory:

Defined by:

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Markov Decision Process
- Mathematical formulation of the RL problem

- Life is trajectory:

- Markov property: Current state completely characterizes the state of the
world

Defined by:

: set of possible states
: set of possible actions
: distribution of reward given (state, action) pair
: transition probability i.e. distribution over next state given (state, action) pair
: discount factor

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Components of an RL Agent
• Policy

– How does an agent behave?

• Value function
– How good is each state and/or state-action pair?

• Model
– Agent’s representation of the environment

(C) Dhruv Batra 18

Policy
• A policy is how the agent acts

• Formally, map from states to actions

(C) Dhruv Batra 19

What’s a good policy?

The optimal policy 𝝿*

What’s a good policy?

Maximizes current reward? Sum of all future reward?

The optimal policy 𝝿*

What’s a good policy?

Maximizes current reward? Sum of all future reward?

Discounted future rewards!

The optimal policy 𝝿*

What’s a good policy?

Maximizes current reward? Sum of all future reward?

Discounted future rewards!

Formally:

with

The optimal policy 𝝿*

Value Function
• A value function is a prediction of future reward

• “State Value Function” or simply “Value Function”
– How good is a state?
– Am I screwed? Am I winning this game?

• “Action Value Function” or Q-function
– How good is a state action-pair?
– Should I do this now?

(C) Dhruv Batra 24

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?
The value function at state s, is the expected cumulative reward from state s
(and following the policy thereafter):

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Definitions: Value function and Q-value function

Following a policy produces sample trajectories (or paths) s0, a0, r0, s1, a1, r1, …

How good is a state?
The value function at state s, is the expected cumulative reward from state s
(and following the policy thereafter):

How good is a state-action pair?
The Q-value function at state s and action a, is the expected cumulative reward from
taking action a in state s (and following the policy thereafter):

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Model

(C) Dhruv Batra 28Slide Credit: David Silver

Model

(C) Dhruv Batra 29

• Model predicts what the world will do next

Slide Credit: David Silver

Maze Example

(C) Dhruv Batra 30Slide Credit: David Silver

Maze Example: Policy

(C) Dhruv Batra 31Slide Credit: David Silver

Maze Example: Value

(C) Dhruv Batra 32Slide Credit: David Silver

Maze Example: Model

(C) Dhruv Batra 33Slide Credit: David Silver

Components of an RL Agent
• Value function

– How good is each state and/or state-action pair?

• Policy
– How does an agent behave?

• Model
– Agent’s representation of the environment

(C) Dhruv Batra 34

Approaches to RL
• Value-based RL

– Estimate the optimal action-value function

• Policy-based RL
– Search directly for the optimal policy

• Model
– Build a model of the world

• State transition, reward probabilities

– Plan (e.g. by look-ahead) using model

(C) Dhruv Batra 35

Deep RL
• Value-based RL

– Use neural nets to represent Q function

• Policy-based RL
– Use neural nets to represent policy

• Model
– Use neural nets to represent and learn the model

(C) Dhruv Batra 36

Q(s, a; ✓⇤) ⇡ Q⇤(s, a)

Q(s, a; ✓)

⇡✓

⇡✓⇤ ⇡ ⇡⇤

Approaches to RL
• Value-based RL

– Estimate the optimal action-value function

(C) Dhruv Batra 37

Optimal Value Function
• Optimal Q-function is the maximum achievable value

(C) Dhruv Batra 38Slide Credit: David Silver

Optimal Value Function
• Optimal Q-function is the maximum achievable value

• Once we have it, we can act optimally

(C) Dhruv Batra 39Slide Credit: David Silver

Optimal Value Function

• Optimal value maximizes over all future decisions

(C) Dhruv Batra 40Slide Credit: David Silver

Optimal Value Function

• Optimal value maximizes over all future decisions

• Formally, Q* satisfies Bellman Equations

(C) Dhruv Batra 41Slide Credit: David Silver

Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

What’s the problem with this?

Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

What’s the problem with this?
Not scalable. Must compute Q(s,a) for every state-action pair. If state is e.g. current game state
pixels, computationally infeasible to compute for entire state space!

Solution: use a function approximator to estimate Q(s,a). E.g. a neural network!

Solving for the optimal policy

Qi will converge to Q* as i -> infinity

Value iteration algorithm: Use Bellman equation as an iterative update

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Demo
• http://cs.stanford.edu/people/karpathy/reinforcejs/grid

world_td.html

(C) Dhruv Batra 46

Deep RL
• Value-based RL

– Use neural nets to represent Q function

• Policy-based RL
– Use neural nets to represent policy

• Model
– Use neural nets to represent and learn the model

(C) Dhruv Batra 47

Q(s, a; ✓⇤) ⇡ Q⇤(s, a)

Q(s, a; ✓)

⇡✓

⇡✓⇤ ⇡ ⇡⇤

Q-Networks

Slide Credit: David Silver

Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state
Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

Figures	copyright	Volodymyr	Mnih	et	al.,	2013.	Reproduced	with	permission.	

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

:
neural network
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

:
neural network
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

Input: state st

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

:
neural network
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

Familiar conv layers,
FC layer

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

:
neural network
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d
output (if 4 actions),
corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

:
neural network
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d
output (if 4 actions),
corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

Number of actions between 4-18
depending on Atari game

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

:
neural network
with weights

Q-network Architecture

Current state st: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values) Last FC layer has 4-d
output (if 4 actions),
corresponding to Q(st,
a1), Q(st, a2), Q(st, a3),
Q(st,a4)

Number of actions between 4-18
depending on Atari game

A single feedforward pass
to compute Q-values for all
actions from the current
state => efficient!

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Remember: want to find a Q-function that satisfies the Bellman Equation:

Deep Q-learning

Q⇤
(s, a) = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Remember: want to find a Q-function that satisfies the Bellman Equation:

Deep Q-learning

Loss function:
Forward Pass

Li(✓i) = E
⇥
(yi �Q(s, a; ✓i)

2
⇤

Q⇤
(s, a) = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Remember: want to find a Q-function that satisfies the Bellman Equation:

Deep Q-learning

Loss function:

where

Forward Pass
Li(✓i) = E

⇥
(yi �Q(s, a; ✓i)

2
⇤

Q⇤
(s, a) = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

yi = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Remember: want to find a Q-function that satisfies the Bellman Equation:

Deep Q-learning

Loss function:

where

Forward Pass

Backward Pass
Gradient update (with respect to Q-function parameters θ):

Li(✓i) = E
⇥
(yi �Q(s, a; ✓i)

2
⇤

Q⇤
(s, a) = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

yi = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Remember: want to find a Q-function that satisfies the Bellman Equation:

Deep Q-learning

Loss function:

where

Iteratively try to make the Q-value
close to the target value (yi) it
should have, if Q-function
corresponds to optimal Q* (and
optimal policy 𝝿*)

Forward Pass

Backward Pass
Gradient update (with respect to Q-function parameters θ):

Li(✓i) = E
⇥
(yi �Q(s, a; ✓i)

2
⇤

Q⇤
(s, a) = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

yi = E[r + �max

a0
Q⇤

(s0, a0) | s, a]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training the Q-network: Experience Replay

61

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Training the Q-network: Experience Replay

62

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing

action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (st, at, rt, st+1) as game

(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Experience Replay

(C) Dhruv Batra 63Slide Credit: David Silver

Video by Károly Zsolnai-Fehér. Reproduced with permission.
https://www.youtube.com/watch?v=V1eYniJ0Rnk

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Deep RL
• Value-based RL

– Use neural nets to represent Q function

• Policy-based RL
– Use neural nets to represent policy

• Model
– Use neural nets to represent and learn the model

(C) Dhruv Batra 65

Q(s, a; ✓⇤) ⇡ Q⇤(s, a)

Q(s, a; ✓)

⇡✓

⇡✓⇤ ⇡ ⇡⇤

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

Policy Gradients

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Policy Gradients

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Formally, let’s define a class of parameterized policies:

For each policy, define its value:

We want to find the optimal policy

How can we do this?

Policy Gradients

Gradient ascent on policy parameters!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm
Mathematically, we can write:

Where r(𝜏) is the reward of a trajectory

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm
Expected reward:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm

Now let’s differentiate this:

Expected reward:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm

Intractable! Expectation of gradient
is problematic when p depends on
θ

Now let’s differentiate this:

Expected reward:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm

Intractable! Expectation of gradient
is problematic when p depends on
θ

Now let’s differentiate this:

However, we can use a nice trick:

Expected reward:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm

Intractable! Expectation of gradient
is problematic when p depends on
θ

Can estimate with
Monte Carlo sampling

Now let’s differentiate this:

However, we can use a nice trick:
If we inject this back:

Expected reward:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE algorithm

75

Can we compute those quantities without knowing the transition probabilities?

We have:

REINFORCE algorithm

76

Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:

REINFORCE algorithm

77

Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:

And when differentiating:
Doesn’t depend on

transition probabilities!

REINFORCE algorithm

78

Can we compute those quantities without knowing the transition probabilities?

We have:

Thus:

And when differentiating:

Therefore when sampling a trajectory 𝜏, we can estimate J(𝜃) with

Doesn’t depend on
transition probabilities!

Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Intuition

(C) Dhruv Batra 81

Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is
really hard. Can we help the estimator?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE in action: Recurrent Attention Model (RAM)

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the
image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

glimpse

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE in action: Recurrent Attention Model (RAM)

Objective: Image Classification

Take a sequence of “glimpses” selectively focusing on regions of the
image, to predict class

- Inspiration from human perception and eye movements
- Saves computational resources => scalability
- Able to ignore clutter / irrelevant parts of image

State: Glimpses seen so far
Action: (x,y) coordinates (center of glimpse) of where to look next in image
Reward: 1 at the final timestep if image correctly classified, 0 otherwise

Glimpsing is a non-differentiable operation => learn policy for how to take glimpse actions using REINFORCE
Given state of glimpses seen so far, use RNN to model the state and output next action

glimpse

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE in action: Recurrent Attention Model (RAM)

NN

(x1, y1)

Input
image

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE in action: Recurrent Attention Model (RAM)

NN

(x1, y1)

NN

(x2, y2)

Input
image

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE in action: Recurrent Attention Model (RAM)

NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

Input
image

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE in action: Recurrent Attention Model (RAM)

NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

NN

(x4, y4)

Input
image

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE in action: Recurrent Attention Model (RAM)

NN

(x1, y1)

NN

(x2, y2)

NN

(x3, y3)

NN

(x4, y4)

NN

(x5, y5)

Softmax

Input
image

y=2

[Mnih et al. 2014]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

REINFORCE in action: Recurrent Attention Model (RAM)

[Mnih et al. 2014]Figures	copyright	Daniel	Levy,	2017.	Reproduced	with	permission.	

Has also been used in many other tasks including fine-grained image recognition,
image captioning, and visual question-answering!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Intuition
Gradient estimator:

Interpretation:
- If r(𝜏) is high, push up the probabilities of the actions seen
- If r(𝜏) is low, push down the probabilities of the actions seen

Might seem simplistic to say that if a trajectory is good then all its actions were
good. But in expectation, it averages out!

However, this also suffers from high variance because credit assignment is
really hard. Can we help the estimator?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Variance reduction
Gradient estimator:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Variance reduction
Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Variance reduction
Gradient estimator:

First idea: Push up probabilities of an action seen, only by the cumulative
future reward from that state

Second idea: Use discount factor 𝛾 to ignore delayed effects

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Variance reduction: Baseline
Problem: The raw value of a trajectory isn’t necessarily meaningful.

For example, if rewards are all positive, you keep pushing up
probabilities of actions.

What is important then? Whether a reward is better or worse than
what you expect to get

Idea: Introduce a baseline function dependent on the state.
Concretely, estimator is now:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How to choose the baseline?

A simple baseline: constant moving average of rewards experienced so far
from all trajectories

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How to choose the baseline?

A simple baseline: constant moving average of rewards experienced so far
from all trajectories

Variance reduction techniques seen so far are typically used in “Vanilla
REINFORCE”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!
Intuitively, we are happy with an action at in a state st if
is large. On the contrary, we are unhappy with an action if it’s small.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How to choose the baseline?
A better baseline: Want to push up the probability of an action from a state, if
this action was better than the expected value of what we should get from
that state.

Q: What does this remind you of?

A: Q-function and value function!
Intuitively, we are happy with an action at in a state st if
is large. On the contrary, we are unhappy with an action if it’s small.

Using this, we get the estimator:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Actor-Critic Algorithm
Initialize policy parameters 𝜃, critic parameters 𝜙
For iteration=1, 2 … do

Sample m trajectories under the current policy

For i=1, …, m do
For t=1, ... , T do

End for

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Summary
- Policy gradients: very general but suffer from high variance so

requires a lot of samples. Challenge: sample-efficiency
- Q-learning: does not always work but when it works, usually more

sample-efficient. Challenge: exploration

- Guarantees:
- Policy Gradients: Converges to a local minima of J(𝜃), often good

enough!
- Q-learning: Zero guarantees since you are approximating Bellman

equation with a complicated function approximator

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

