
CS 7643: Deep Learning

Dhruv Batra 
Georgia Tech

Topics: 
– Recurrent Neural Networks (RNNs)
– BackProp Through Time (BPTT)
– Vanishing / Exploding Gradients



Administrativia
• HW3 + PS3 out

– Due 10/28
– Last PS and HW
– Focus on projects after that
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Plan for Today
• Model

– Recurrent Neural Networks (RNNs)

• Learning 
– BackProp Through Time (BPTT)
– Vanishing / Exploding Gradients
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New Topic: RNNs

(C) Dhruv Batra 4Image Credit: Andrej Karpathy



Synonyms
• Recurrent Neural Networks (RNNs)

• Recursive Neural Networks
– General family; think graphs instead of chains

• Types:
– “Vanilla” RNNs
– Long Short Term Memory (LSTMs)
– Gated Recurrent Units (GRUs)
– …

• Algorithms
– BackProp Through Time (BPTT)
– BackProp Through Structure (BPTS)
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What’s wrong with MLPs?
• Problem 1: Can’t model sequences

– Fixed-sized Inputs & Outputs
– No temporal structure

• Problem 2: Pure feed-forward processing
– No “memory”, no feedback
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Sequences are everywhere…
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Even where you might not expect a sequence… 

Image Credit: Vinyals et al.



Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with 
permission.

Classify images by taking a 
series of “glimpses”

Even where you might not expect a sequence… 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Even where you might not expect a sequence… 

10Image Credit: Ba et al.; Gregor et al

• Output ordering = sequence
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Why model sequences?

Figure Credit: Carlos Guestrin



Why model sequences?
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Sequences in Input or Output?
• It’s a spectrum… 
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Input: No 
sequence

Output: No 
sequence

Example: 
“standard” 

classification / 
regression 
problems

Input: No sequence

Output: Sequence

Example: 
Im2Caption

Input: Sequence

Output: No 
sequence

Example: sentence 
classification, 

multiple-choice 
question answering

Input: Sequence

Output: Sequence

Example: machine translation, video captioning, open-
ended question answering, video question answering

Image Credit: Andrej Karpathy



2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients
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Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 16

Computational Graph
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+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Duality in Fprop and Bprop
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2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients

• “Unrolling”
– in computation graphs with parameter sharing
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How do we model sequences?
• No input

(C) Dhruv Batra 21Image Credit: Bengio, Goodfellow, Courville



How do we model sequences?
• No input
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How do we model sequences?
• With inputs
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2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients

• “Unrolling”
– in computation graphs with parameter sharing

• Parameter sharing + Unrolling
– Allows modeling arbitrary sequence lengths!
– Keeps numbers of parameters in check
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Recurrent Neural Network

x

RNN

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
usually want to 
predict a vector at 
some time steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

new state old state input vector at 
some time step

some function
with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 
applying a recurrence formula at every time step:

Notice: the same function and the same set 
of parameters are used at every time step.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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h0 fW h1

x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2

x2x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

…
x2x1

RNN: Computational Graph

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

…
x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

L

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

y

…
x2x1W

RNN: Computational Graph: Many to One

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

yT

…
x

W

RNN: Computational Graph: One to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-
many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT

Many to one: Encode input 
sequence in a single vector

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-
many

y1 y2

… 

Many to one: Encode input 
sequence in a single vector

One to many: Produce output 
sequence from single input vector

fW h1 fW h2 fW

W2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

… 

x2x1W1

hT



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

h

t

= tanh(W
hh

h

t�1 +W

xh

x

t

+ b

h

)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample 
characters one at a 
time, feed back to 
model
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Neural Image Captioning
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Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

Image Embedding (VGGNet)
4096-dim



Neural Image Captioning
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Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Image Embedding (VGGNet)



Neural Image Captioning
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Neural Image Captioning
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Sequence Model Factor Graph
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y1 y2 y3 y4 y5

. . .

P (yt | y1, . . . , yt�1)



Beam Search Demo
• http://dbs.cloudcv.org/captioning&mode=interactive
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Typical VQA Models
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Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Embedding (VGGNet)

Embedding (LSTM)

Image

Question
“How   many   horses    are      in       this     image?”

Neural Network 
Softmax

over top K answers



Backpropagation through time
Loss

Forward through entire sequence to 
compute loss, then backward through 
entire sequence to compute gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time
Loss

Run forward and backward 
through chunks of the 
sequence instead of whole 
sequence

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time
Loss

Carry hidden states 
forward in time forever, 
but only backpropagate 
for some smaller 
number of steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time
Loss

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



min-char-rnn.py gist: 112 lines of Python

(https://gist.github.com/karpathy/d4dee
566867f8291f086)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



x

RNN

y

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



train more

train more

train more

at first:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



The Stacks Project: open source algebraic geometry textbook

Latex source http://stacks.math.columbia.edu/
The stacks project is licensed under the GNU Free Documentation License

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generated 
C code

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote detection cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

line length tracking cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

if statement cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote/comment cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

code depth cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



time

depth

Multilayer RNNs

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht
to ht-1 multiplies by W 
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale 
gradient if its norm is too bigComputing gradient 

of h0 involves many 
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 
of h0 involves many 
factors of W
(and repeated tanh)

Largest singular value > 1: 
Exploding gradients

Largest singular value < 1:
Vanishing gradients Change RNN architecture

Bengio et al, “Learning long-term dependencies with gradient descent 
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”, 
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 
1997

Vanilla RNN LSTM

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Illustration [Pascanu et al]
• Intuition

• Error surface of a single hidden unit RNN; High curvature walls
• Solid lines: standard gradient descent trajectories
• Dashed lines: gradient rescaled to fix problem
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Fix #1
• Pseudocode

(C) Dhruv Batra 86Image Credit: Richard Socher



Fix #2
• Smart Initialization and ReLus

– [Socher et al 2013]
– A Simple Way to Initialize Recurrent Networks of Rectified 

Linear Units, Le et al. 2015
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Meet LSTMs

(C) Dhruv Batra 88Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Memory
• Cell State / Memory

(C) Dhruv Batra 89Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Forget Gate
• Should we continue to remember this “bit” of 

information or not?

(C) Dhruv Batra 90Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Input Gate
• Should we update this “bit” of information or not?

– If so, with what?

(C) Dhruv Batra 91Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Memory Update
• Forget that + memorize this

(C) Dhruv Batra 92Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Output Gate
• Should we output this “bit” of information to “deeper” 

layers?

(C) Dhruv Batra 93Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 94Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Backpropagation from 
ct to ct-1 only 
elementwise 

multiplication by f, no 
matrix multiply by W



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 95Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Uninterrupted gradient flow!



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 96Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Uninterrupted gradient flow!

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

Similar to ResNet!



LSTMs
• A pretty sophisticated cell

(C) Dhruv Batra 97Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTM Variants #1: Peephole Connections
• Let gates see the cell state / memory

(C) Dhruv Batra 98Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTM Variants #2: Coupled Gates
• Only memorize new if forgetting old

(C) Dhruv Batra 99Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTM Variants #3: Gated Recurrent Units
• Changes: 

– No explicit memory; memory = hidden output
– Z = memorize new and forget old

(C) Dhruv Batra 100Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)


