
CS 7643: Deep Learning

Dhruv Batra
Georgia Tech

Topics:
– Recurrent Neural Networks (RNNs)
– BackProp Through Time (BPTT)
– Vanishing / Exploding Gradients

Administrativia
• HW3 + PS3 out

– Due 10/28
– Last PS and HW
– Focus on projects after that

(C) Dhruv Batra 2

Plan for Today
• Model

– Recurrent Neural Networks (RNNs)

• Learning
– BackProp Through Time (BPTT)
– Vanishing / Exploding Gradients

(C) Dhruv Batra 3

New Topic: RNNs

(C) Dhruv Batra 4Image Credit: Andrej Karpathy

Synonyms
• Recurrent Neural Networks (RNNs)

• Recursive Neural Networks
– General family; think graphs instead of chains

• Types:
– “Vanilla” RNNs
– Long Short Term Memory (LSTMs)
– Gated Recurrent Units (GRUs)
– …

• Algorithms
– BackProp Through Time (BPTT)
– BackProp Through Structure (BPTS)

(C) Dhruv Batra 5

What’s wrong with MLPs?
• Problem 1: Can’t model sequences

– Fixed-sized Inputs & Outputs
– No temporal structure

• Problem 2: Pure feed-forward processing
– No “memory”, no feedback

(C) Dhruv Batra 6Image Credit: Alex Graves, book

Sequences are everywhere…

(C) Dhruv Batra 7Image Credit: Alex Graves and Kevin Gimpel

(C) Dhruv Batra 8

Even where you might not expect a sequence…

Image Credit: Vinyals et al.

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with
permission.

Classify images by taking a
series of “glimpses”

Even where you might not expect a sequence…

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Even where you might not expect a sequence…

10Image Credit: Ba et al.; Gregor et al

• Output ordering = sequence

(C) Dhruv Batra

(C) Dhruv Batra 11Image Credit: [Pinheiro and Collobert, ICML14]

Why model sequences?

Figure Credit: Carlos Guestrin

Why model sequences?

(C) Dhruv Batra 13Image Credit: Alex Graves

Sequences in Input or Output?
• It’s a spectrum…

(C) Dhruv Batra 14

Input: No
sequence

Output: No
sequence

Example:
“standard”

classification /
regression
problems

Input: No sequence

Output: Sequence

Example:
Im2Caption

Input: Sequence

Output: No
sequence

Example: sentence
classification,

multiple-choice
question answering

Input: Sequence

Output: Sequence

Example: machine translation, video captioning, open-
ended question answering, video question answering

Image Credit: Andrej Karpathy

2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients

(C) Dhruv Batra 15

Slide Credit: Marc'Aurelio Ranzato(C) Dhruv Batra 16

Computational Graph

(C) Dhruv Batra 17

+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Duality in Fprop and Bprop

(C) Dhruv Batra 19

+

+

FPROP BPROP
SU
M

C
O
PY

2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients

• “Unrolling”
– in computation graphs with parameter sharing

(C) Dhruv Batra 20

How do we model sequences?
• No input

(C) Dhruv Batra 21Image Credit: Bengio, Goodfellow, Courville

How do we model sequences?
• No input

(C) Dhruv Batra 22Image Credit: Bengio, Goodfellow, Courville

How do we model sequences?
• With inputs

(C) Dhruv Batra 23Image Credit: Bengio, Goodfellow, Courville

2 Key Ideas
• Parameter Sharing

– in computation graphs = adding gradients

• “Unrolling”
– in computation graphs with parameter sharing

• Parameter sharing + Unrolling
– Allows modeling arbitrary sequence lengths!
– Keeps numbers of parameters in check

(C) Dhruv Batra 24

Recurrent Neural Network

x

RNN

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recurrent Neural Network

x

RNN

y
usually want to
predict a vector at
some time steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

new state old state input vector at
some time step

some function
with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

Notice: the same function and the same set
of parameters are used at every time step.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h

t

= tanh(W
hh

h

t�1 +W

xh

x

t

+ b

h

)

yt = Whyht + by

h0 fW h1

x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2

x2x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

…
x2x1

RNN: Computational Graph

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

…
x2x1W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

yT

…
x2x1W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1 L2 L3 LT

L

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

y

…
x2x1W

RNN: Computational Graph: Many to One

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

yT

…
x

W

RNN: Computational Graph: One to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Sequence to Sequence: Many-to-one + one-to-
many

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Many to one: Encode input
sequence in a single vector

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Sequence to Sequence: Many-to-one + one-to-
many

y1 y2

…

Many to one: Encode input
sequence in a single vector

One to many: Produce output
sequence from single input vector

fW h1 fW h2 fW

W2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

…

x2x1W1

hT

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

h

t

= tanh(W
hh

h

t�1 +W

xh

x

t

+ b

h

)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a
time, feed back to
model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
Sample

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample:

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a
time, feed back to
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample:

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a
time, feed back to
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample:

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a
time, feed back to
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural Image Captioning

(C) Dhruv Batra 48

Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

Image Embedding (VGGNet)
4096-dim

Neural Image Captioning

(C) Dhruv Batra 49

Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Image Embedding (VGGNet)

Neural Image Captioning

(C) Dhruv Batra 50

C
on

vo
lu

tio
n

La
ye

r
+

N
on

-L
in

ea
rit

y
P

oo
lin

g
La

ye
r

C
on

vo
lu

tio
n

La
ye

r
+

N
on

-L
in

ea
rit

y
P

oo
lin

g
La

ye
r

Fu
lly

-C
on

ne
ct

ed
 M

LP

40
96

-d
im

Im
ag

e
E

m
be

dd
in

g
(V

G
G

N
et

)

Li
ne

ar

<start> Two people and two horses.

R
N

N

R
N

N

R
N

N

R
N

N

R
N

N

R
N

N

P(next) P(next) P(next) P(next) P(next)P(next)

Neural Image Captioning

(C) Dhruv Batra 51

C
on

vo
lu

tio
n

La
ye

r
+

N
on

-L
in

ea
rit

y
P

oo
lin

g
La

ye
r

C
on

vo
lu

tio
n

La
ye

r
+

N
on

-L
in

ea
rit

y
P

oo
lin

g
La

ye
r

Fu
lly

-C
on

ne
ct

ed
 M

LP

40
96

-d
im

Im
ag

e
E

m
be

dd
in

g
(V

G
G

N
et

)

Li
ne

ar

<start> Two people and two horses.

R
N

N

R
N

N

R
N

N

R
N

N

R
N

N

R
N

N

P(next) P(next) P(next) P(next) P(next)

y1 y2 y3 y4 y5

P(next)

Sequence Model Factor Graph

(C) Dhruv Batra 52

y1 y2 y3 y4 y5

. . .

P (yt | y1, . . . , yt�1)

Beam Search Demo
• http://dbs.cloudcv.org/captioning&mode=interactive

(C) Dhruv Batra 53

Typical VQA Models

(C) Dhruv Batra 54

Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Embedding (VGGNet)

Embedding (LSTM)

Image

Question
“How many horses are in this image?”

Neural Network
Softmax

over top K answers

Backpropagation through time
Loss

Forward through entire sequence to
compute loss, then backward through
entire sequence to compute gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Truncated Backpropagation through time
Loss

Run forward and backward
through chunks of the
sequence instead of whole
sequence

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Truncated Backpropagation through time
Loss

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Truncated Backpropagation through time
Loss

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

min-char-rnn.py gist: 112 lines of Python

(https://gist.github.com/karpathy/d4dee
566867f8291f086)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

x

RNN

y

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

train more

train more

train more

at first:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

The Stacks Project: open source algebraic geometry textbook

Latex source http://stacks.math.columbia.edu/
The stacks project is licensed under the GNU Free Documentation License

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generated
C code

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote detection cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

line length tracking cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

if statement cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote/comment cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

code depth cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

time

depth

Multilayer RNNs

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Backpropagation from ht
to ht-1 multiplies by W
(actually Whh

T)

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale
gradient if its norm is too bigComputing gradient

of h0 involves many
factors of W
(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient
of h0 involves many
factors of W
(and repeated tanh)

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients Change RNN architecture

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation
1997

Vanilla RNN LSTM

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Illustration [Pascanu et al]
• Intuition

• Error surface of a single hidden unit RNN; High curvature walls
• Solid lines: standard gradient descent trajectories
• Dashed lines: gradient rescaled to fix problem

(C) Dhruv Batra 85

Fix #1
• Pseudocode

(C) Dhruv Batra 86Image Credit: Richard Socher

Fix #2
• Smart Initialization and ReLus

– [Socher et al 2013]
– A Simple Way to Initialize Recurrent Networks of Rectified

Linear Units, Le et al. 2015

(C) Dhruv Batra 87

Meet LSTMs

(C) Dhruv Batra 88Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

LSTMs Intuition: Memory
• Cell State / Memory

(C) Dhruv Batra 89Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

LSTMs Intuition: Forget Gate
• Should we continue to remember this “bit” of

information or not?

(C) Dhruv Batra 90Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

LSTMs Intuition: Input Gate
• Should we update this “bit” of information or not?

– If so, with what?

(C) Dhruv Batra 91Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

LSTMs Intuition: Memory Update
• Forget that + memorize this

(C) Dhruv Batra 92Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

LSTMs Intuition: Output Gate
• Should we output this “bit” of information to “deeper”

layers?

(C) Dhruv Batra 93Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

LSTMs Intuition: Additive Updates

(C) Dhruv Batra 94Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Backpropagation from
ct to ct-1 only
elementwise

multiplication by f, no
matrix multiply by W

LSTMs Intuition: Additive Updates

(C) Dhruv Batra 95Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Uninterrupted gradient flow!

LSTMs Intuition: Additive Updates

(C) Dhruv Batra 96Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Uninterrupted gradient flow!

Input

Softm
ax

3x3 conv, 64

7x7 conv, 64 / 2

FC 1000

Pool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128 / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

Pool

Similar to ResNet!

LSTMs
• A pretty sophisticated cell

(C) Dhruv Batra 97Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

LSTM Variants #1: Peephole Connections
• Let gates see the cell state / memory

(C) Dhruv Batra 98Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

LSTM Variants #2: Coupled Gates
• Only memorize new if forgetting old

(C) Dhruv Batra 99Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

LSTM Variants #3: Gated Recurrent Units
• Changes:

– No explicit memory; memory = hidden output
– Z = memorize new and forget old

(C) Dhruv Batra 100Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

