CS 7643: Deep Learning

Topics:
— Recurrent Neural Networks (RNNs)
— BackProp Through Time (BPTT)
— Vanishing / Exploding Gradients

Dhruv Batra
Georgia Tech
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Administrativia

« HW3 + PS3 out
— Due 10/28
— Last PS and HW
— Focus on projects after that
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Plan for Today

 Model

— Recurrent Neural Networks (RNNSs)

* Learning
— BackProp Through Time (BPTT)
— Vanishing / Exploding Gradients
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New Topic: RNNs

one to one one to many many to one many to many many to many

INFINITE RECURSION

INFINITE RECURSION

INFINITE RECU TRSIC N

INFINITE RECURSION

YOUu GOTTA KNOW WHEN TO QUIT

INFINITE RECURSION

You GOTTA KNOW WHEN TO QUIT

INFINITE RECURSION

(C) Dhruv Batra You GOTTA KNOW WHEN TO QUIT 4




Synonyms

* Recurrent Neural Networks (RNNs)

@Zlisiyeural Networks
= family; think graphs instead of chains

* Types:
— “Vanilla” RNNs
— Long Short Term Memory (LSTMs)
— Gated Recurrent Units (GRUSs)

» Algorithms '
— BackProp Through Time (BPTT)j RQM j

— BackProp Through Structure (BPTS)] W
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What's wrong with MLPs?

Mm 1: Can’t model sequegeﬂ

— Fixed-sized Inputs & Outputs
— No temporal structure

-ZProbIem 2: Pure feed-forward processing/
— No “memory”, no feedback

Output Layer

Hidden Layers

Input Layer
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§ecLuences are everywhere...

m,é/ el FOREIGN MINISTER.

=2 a=0 ay=1 =3 a;=4 Q=2 ;=3
km = bringen sie bitte das auto zurick .

\‘\QW

Igase return  the car .
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Even where you might not expect a sequence...

Vision Language _A of people

Deep CNN Generating Sh.ang at an
RNN outdoor market.

o ~ o
~ Q There are many
vegetables at the

fruit stand.

-~

John has a dog . — S (NP NNP VP VBZ (NP DT NN :
John has a cog (S ( INP ( ( JNP VP - )S
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Even where you might not expect a sequence...

Classify images by taking a
series of “glimpses”

Ba, Mnih, and Kavukcuoglu, “Multiple Object Recognition with Visual Attention”, ICLR 2015.
Gregor et al, “DRAW: A Recurrent Neural Network For Image Generation”, ICML 2015
Figure copyright Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra, 2015. Reproduced with
permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Even where you might not expect a sequence...

« Qutput ordering = sequence

(C) Dhruv Batra Image Credit: Ba et al.; Gregor et al
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Why model sequences?

_—_——

o n Q\\]

Figure Credit: Carlos Guestrin



Why model sequences?

e |
X
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~Sequences in Input or Output?

* |t's a spectrum...

one to one

)

one to many

-

|-
‘v’ 55 ‘—\

L

—

Input: No
Sequence

Output: No

sequence
—_—_

Example:
“standard”
classification /
regression
problems
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Input: No sequence
Output: Sequence
Example:
Im2Caption

—

many to one

Input: Sequence

Output: No
sequence

Example~sentence
classification,
multiple-choice
question answéring

many to many many td many

Input: Sequence

Output: Sequence

Example: machine translation, video captioning, open-
ended question answering, video question answering
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2 Key |ldeas

« Parameter Sharing
— In computation graphs = adding gradients
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Computational Graph
ﬁ
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Gradients add at branches

7

<
e

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



FDuaIity in Fprop and Bprop
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2 Key |ldeas

« Parameter Sharing \)

— In computation graphs = adding gradients

 “Unrolling”
— In computation graphs with parameter sharing
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How do we model sequences?

* No input
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How do we model sequences?

* No input

22




How do we model sequences?

* With inputs

st :ﬁ(St—l, Tt)

N —p®

,St\—l St St+1
fo fo feT
Lt—1 Lt Lt+4+1
. —— —
-
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2 Key |ldeas

—

Jﬁ%rameterﬂ\aring}

— In computation graphs = adding gradients

e

|“Unro||in97
C—in computation graphs with parameter sharing

« Parameter sharing + Unrolling
— Allows modeling arbitrary sequence lengths!
— Keeps numbers of paraﬁeters_ln check

(C) Dhruv Batra 24



Recurrent Neural Network

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

usually want to
predict a vector at
some time steps

-

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

new state old state input vector at
some time step

[he]=fwlheiz) m>

some function
with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

fu("f(




Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step: y

hy = _JfE/ (ht—la 33t)

Notice: the same function and the same set x
of parameters are used at every time step.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

~ \
y = Whyht + by o ||
oy > d ><Cd/—%64\ ﬁm@h@

ht = ht 17$t

—T o N f EQ
E :\tangm ht—l -+ Wx L @

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




RNN: Computational Graph

e
W

al

)

|
> ="

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph

ho—»fW —>h1—>fW —> h,
X1 X2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph

()

ho—»fW—>h1—>fW—>h2—>fW—>h3—> —» h;
I = 1 = 1 :
X1 X2 X3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph

Re-use the same weight matrix at every time-step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph: Many to Many

i

KY2 Y3 YT
ho—»fW—>h1—>fW—>h2—>fW—>h3—> —» h;
/‘ T T " B B
W (’9\ X2 X3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph: Many to Many

Y3

Ls

T

Y1 4@ Y2 L,
fw 1hi =Ty [ he >y
X4 X2 X3

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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RNN: Computational Graph: Many to Many _~

Bl 3 BN

9L
SN

Y1 _%LJ Y2

f i

L

Ly

_’ﬂ,l—z Y3
T
—> fW hy —
!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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RNN: Computational Graph: Many to One

ho—»fW —>h1—>fW —>h2—>fW —> h, —>

_——’ —_— A H B B
X1 X2 X3

W L _ _

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



RNN: Computational Graph: One to Many

Y2 2’3 T |
ho—»fW —>h1—>fW —>h2—>fW —>h3—>-..—>hT

/-A\

) — 4
X

W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Sequence to Sequence: Many-to-one + one-to-
many

_Many to one: Encode input
sequence in a single vector

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Mum | (A,
Sequence to Sequence: Many-to-one + one-to- l/\/c/
many

One to many: Produce output
sequence from single input vector

TR .

-VfW—PIJZ-PfW

Many to one: Encode input
sequence in a single v

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example:
Character-level

/

La Model

Vocabulary:
[h,e,l,0]

Example training 2 0
Sequence: input layer 8 1
“he"ou 0

k/

:’a—xoo

=
]&

input chars: “h”
=B

)&

——————

) ‘_: os oo

0
0
) 12_— Z

—

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example:

hy = tanh(Whphe—1 + Waepat + bp)

Character-level
Language Model

Vocabulary:

[h,e,l,0] -

Example training ha = - 0)/Y

Sequence: input layer 8 (1)

1 99 0 0
hel IO input chars:  “h” ‘e”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W_hh

-0.3

0.9
0.7

W _xh

k7/

= |lo~0o0O



V\) target chars: ‘e’ m
Example: | 05
Character-level output layer 1 10
Language Model 1{

U|ary hidden layer || - ] - (1)g
Le,l,o . 0.1
Example training 1 0
Sequence: input layer 8 (1)
“hello” - .

input chars: “h” ‘e”
:‘ —

\

W_hh| -

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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“e”

Example: Sample 4
Character-level |
- Soft
Language Model i
Sampling o
output layer é%
4.1
Vocabulary:
[h,e,I,O] hidden layer -%?; —
0.9
At test-time sample T
characters one at a input layer | 7
time, feed back to W
model =

X, X

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: Sample 4.
Character-level =
Soft :

Language Model R

Sampling =

output layer 23%

4.1

Vocabulary: I

[h !e ) I ’O] hidden layer .(())?;

0.9

At test-time sample I

characters one at a input layer | 0

time, feed back to W
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



73 YO K 720 %22 W)

Example: Sample j\\ .
Character-level I
Soft . .
Language Model R - | I
Sampling = | B
output layer 23% %%
41 1.2
Vocabulary: T T
[h,e,I,O] hidden layer _(())?; 1 (1)g —
09| | 7] o1
At test-time sample I T
characters one at a input layer | 0 1
time, feed back to W - \'0
model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a
time, feed back to
model

Slide Credit: Fei-Fei Li, Justin Johnson,

Sample

Softmax

output layer

hidden layer

input layer

input chars:

Serena Yeung, CS 231n

“, " € “py “ "
e\\ o
A A A A
.03 .25 A1 A1
A3 .20 A7 .02
.00 .05 .68 .08
.84 .50 .03 .79
A A A A
1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
-3.0 -1.0 1.9 -0.1
4.1 12 -1.1 2.2
[ R I
03 1.0 0.1 |w|hn|-0:3
-0.1 0.3 > -05 —F—{ 0.9
0.9 0.1 -0.3 0.7
[ A R B
1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0

“hl, “e’l “I” “l“
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Neural Image Captioning

Image Embeeza=—r 4 N lct)

4096-dim

[ | J [ | J [ | J J [ | J
T T T T T
Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP
+ Non-Linearity + Non-Linearity
—~

(C) Dhruv Batra 48



Neural Image Captioning

Image Embedding (VGGNet)

4096-dim

Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP
+ Non-Linearity + Non-Linearity

(C) Dhruv Batra 49



Neural Image Captioning

[

next) /P(next) P(next) P(next) P(next) P(next)7<§&f?’

Z

Z
4

D

Z Z
¥ 4

<start> TWO people and wo horses<gtq>

mage Embedding (VGGNet)

(C) Dhruv Batra
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- 0000000000
Neural Image Captioning

P(next) P(next) P(next) P(next) P(next) P(next)

4096-dim
___.0
SR
cb-O

<start> Two people and two horses.

T

mage Embedding (VGGNet)
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- _________________0___0000__]
Sequence Model Factor Graph
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-
Beam Search Demo

 http://dbs.cloudcv.org/captioning&mode=interactive
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Typical VQA Models

Image Embedding (VGGNet) Neural Network

Softmax
4096-dm  over top K answers

s«:r} P(y=0|x)
—> P(y=1]x)

T T T T T @
Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP ‘
. . . . ——> P(y=2]x)
+ Non-Linearity + Non-Linearity @
Input Softmax
(Features Il)  classifier

Question Embedding (LSTM)

_How many horses are in this image?’

(C) Dhruv Batra 54



Eackpropagation through tim&

Loss T~

-

Forward through entire sequence to
compute loss, then backward through
entire sequence to compute gradient

7,%7/
|

141

(3 X S Sl e e e [
> > > D —— > > > ]
N N S N N 1 N N Y
: /Il — ﬁ

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Bac<prcppagation through time

N —

Loss

/ /] ﬂ A \\ Run forward and backward }
| (N , through chunks of the _

sequence instead of whole
sequence

£ £ £ 2 % f %

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time

‘ Loss
STTIAN
f £+ % % f £/f f f % & %
> > — Zry - p
f1f £ % % f £/f f % % & %
B ——

— %" zm

X7

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time

—_—

Loss

SRR

/ [ [ |

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



~ min-char-rnn.py gist: 112 lines of Python

minimal character-level vanilla RNN model. written by Andrej Karpathy (@karpathy)

8SD License

import numpy as np

data = open('input.txt', 'r').read()
chars = list(set(data))
data_size, vocab_size = len(data),
print 'data has %d characters, %d unigue.' % (data_size, vocab_size)
char_to_ix = { ch:i for i,ch in enumerate(chars) }

ix_to_char = { i:ch for i,ch in enumerate(chars) }

len(chars)

hidden_size = 100
seq_length = 25
learning_rate = le-1

= np.random. randn(hidden_size, vocab_size)*
np.randon. randn(hidden_size,

1
hidden_size)*e.01
np.randon. randn(vocab_size, hidden_size)*e.e1
bh = np.zeros((hidden_size, 1))
by = np.zeros((vocab_size, 1))

def 1

(inputs, targets, hprev):

inputs, targets are both list of integers.

hprev is Hx1 array of initial hidden state

returns the loss, gradients on model parameters, and last hidden state
xs, hs, ys, ps = {}, {}, {1, OO

hs[-1] = np.copy(hprev)

loss

for t in xrange(len(inputs)):
xs[t] = np.zeros((vocab_size, 1))
xs[t][inputs[t]] = 1
hs[t] = np.tanh(np.dot(wxh, xs[t]) + np.dot(whh, hs[t-1]) + bh)
ys[t] = np.dot(why, hs[t]) + by
ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t]))
loss += -np.log(ps[t][targets[t],e])

dwxh, dwhh, dwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(wWhy)
dbh, dby = np.zeros_like(bh), np.zeros_like(by)

dhnext = np.zeros_like(hs[6])

for t in reve

d(xrange(len(inputs))):
dy = np.copy(ps[t])
dy[targets[t]] -= 1
dwhy += np.dot(dy, hs[t].T)
dby += dy
dh = np.dot(why.T, dy) + dhnext
dhraw = (1 - hs[t] * hs[t]) * dh
dbh += dhraw
dwxh += np.dot(dhraw, xs[t].T)
dwhh += np.dot(dhraw, hs[t-1].T)
dhnext = np.dot(whh.T, dhraw)
for dparam in [dwxh, dwhh, dwhy, dbh, dby]:
np.clip(dparam, -5, 5, out=dparam)
return loss, dwxh, dwhh, dwhy, dbh, dby,

hs[len(inputs)-1]

def sample(h, seed_ix, n):

sample a sequence of integers from the model
h

X = np.zeros((vocab_size, 1))
x[seed_ix] = 1

ixes = []

for t in xrange(n):

h = np.tanh(np.dot(wxh, x) + np.dot(whh, h) + bh)

y = np.dot(why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
ix = np.random.choice(range(vocab_size),
x = np.zeros((vocab_size, 1))
x[ix] = 1
ixes.append(ix)
return ixes

n p=9 0

mixh, mwhh, mwhy = np.zeros_like(wxh),

mbh, mby = np.zeros_like(bh), np.zeros_like(by)

smooth_loss = -np.log(1.6/vocab_size)*seq_length
while True:

for param, dparam, mem in zip([wxh, whh, why, bh,

if p+seq_length+1 >= len(data) or n =
hprev = np.zeros((hidden_size, 1))
p=0

p=p.ravel())

np.zeros_like(whh),

inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

if n % 10 :
sample_ix = sample(hprev, inputs[e], 26e)
txt = ''.join(ix_to_char[ix] for ix in sample_ix)
print '----\n %s \n----

' % (txe, )

loss, dwxh, dwhh, dwhy, dbh, dby,
smooth_loss = smooth_loss * ©.999 + loss

* 0.001
if n % 1

: print 'iter %d, loss: %f' % (n,

hprev = lossFun(inputs,

is memory state, seed_ix is seed letter for first time step

np.zeros_like(why)

targets,

smooth_loss)

byl,

[dwxh, dwhh, dwhy, dbh,
[mwxh, mwhh, mwhy, mbh,

mem += dparam * dparam
param += -learning_rate *

p += seq_length

n

=1

(https://qgist.github.com/karpathy/d4dee

dparam / np.sqrt(mem + le-

dby],

mby])

8)

hprev)

566867f8291f086)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




THE SONNETS

by William Shakespeare

!rom fairest creatures we desire increase,

That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thyself thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



at first:
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Q—train_mane

1 1 i " fomesscerliund
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sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

¢ train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

¢ train more
’\

"Why do what that day," replied Natasha,, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

- —

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




PANDARUS : <
Alas, I think he shall be come approached and the day

When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
I should not sleep.

gecond Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and

my fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

VIOLA:

Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire,
To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,

That Caesar and my goodly father's world;

When I was heaven of presence and our fleets,

We spare with hours, but cut thy council I am great,
Murdered and by thy master's ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:

0, if you were a feeble sight, the courtesy of your law,
Your sight and several breath, will wear the gods

With his heads, and my hands are wonder'd at the deeds,
So drop upon your lordship's head, and your opinion
Shall be against your honour.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



The Stacks Project: open source algebraic geometry textbook

[ The Stacks Project

home about tagsexplained taglookup browse search bibliography recentcomments blog add slogans
Browse chapters Parts

. Preliminaries
. Schemes

. Topics in Scheme Theory

. Algebraic Spaces
. Topics in Geometry

. Deformation Theory
. Algebraic Stacks
. Miscellany

Statistics

Part Chapter online TeX source view pdf
Preliminaries
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1. Introduction
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. Sheaves on Spaces

. Sites and Sheaves

. Stacks

. Fields

0. Commutative Algebra
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The Stacks project now consists of

o 455910 lines of code
o 14221 tags (56 inactive tags)
o 2366 sections
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Latex SO u rce http://stacks.math.columbia.edu/

The stacks project is licensed under the GNU Free Documentation License
v

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



N :
A For @,_, . where L,,, =0, hence we can find a closed subset H in H and
S =\
any sets F on X, U is a closed immersion of S, then U — T'is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Spec(R)=Uxx U xx U
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schypps and U — U is the fibre category of S in U in Section, 77 and the fact that
any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U= U U, i XS; U,‘
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where z, 2, s” € S’ such that Ox .+ — O, . is

separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(2'/S")
and we win.

To prove study we see that F|y is a covering of X’, and 7T; is an object of Fx,g for

i > 0 and F,, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

H’ =I° ®Spcc(k) OSs = I,—\’l]:)
is a unique morphism of algebraic stacks. Note that
Arrows = (Sch/S)‘}f,’;f. (Sch/S) fpps
and
V =T(S,0) — (U, Spec(A))

is an open subset of X. Thus U is affine. This is a continuous map of X is the

inverse, the groupoid scheme S.
—

Proof. See discussion of sheaves of sets. 0

The result for prove any open covering follows from the less of Example ??. It may
replace S by X paces,étale Which gives an open subspace of X and T equal to Sz,
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

L Lemma 0.1, Assume (3) and (3) by the construction in the description.

Suppose X = lim |X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex

Set(A) =T'(X, Ox,0y)-

When in this case of to show that Q — Cz;x ts stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 7?7
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T' is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU = [],_, _, U; be the scheme X over
S at the schemes X; — X and U = lim; Xj. O

The following lemma surjective restrocomposes of this implies that F,, = F,, =

Fx.....0-

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fxs. Set T =
J1 CTZ),. Since I™ C I™ are nonzero over iy < p is a subset of T, 00 Ay works.

Lemma 0.3. In Situation ??7. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma ?? we see that

D(Ox+) = Ox(D)
where K is an F-algebra where 4,1, is a scheme over S. (]
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Proof. Omitted. O

Lemma 0.1. Let C be a set of the construction.
Let C be a gerber covering. Let F be a quasi-coherent sheaves of O-modules. We
have to show that

Oo, = O0x(L)

Proof. This is an algebraic space with the composition of sheaves F on Xy 4. we
have

Ox (F) = {morphy xo, (G,F)}
where G defines an isomorphism F — F of O-modules. a
Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma 77, O

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let U C X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
b: X=>Y 2Y Y oY xxY = X.

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let F be a
quasi-coherent sheaf of Ox-modules. The following are equivalent

(1) F is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor Ox(U) which is locally of
finite type. 0

This since F € F and z € G the diagram

f——Ox

— I\

gor,
= (l’ —

=a —a X

l

Spec(Ky) Morgets d(O,\"\,/A_ .G)

is a limit. Then G is a finite type and assume S is a flat and F and G is a finite
type f.. This is of finite type diagrams, and

e the composition of G is a regular sequence,

e Oy is a sheaf of rings.

(]

Proof. We have see that X = Spec(R) and F is a finite type representable by
algebraic space. The property F is a finite morphism of algebraic stacks. Then the
cohomology of X is an open neighbourhood of U. ]

Proof. This is clear that G is a finite presentation, see Lemmas ?7.
A reduced above we conclude that U is an open covering of C. The functor F is a
“field

Ox: —Fz -1(Ox,u) — 0;-,10.\‘;\(0.?{',,)
is an isomorphism of covering of Oy;,. If F is the unique element of F such that X
is an isomorphism.
The property F is a disjoint union of Proposition ?? and we can filtered set of
presentations of a scheme Ox-algebra with F are opens of finite type over S.
If F is a scheme theoretic image points. (]

If F is a finite direct sum Oy, is a closed immersion, see Lemma ??. This is a
sequence of F is a similar morphism.
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O This repository

Explore Gist Blog Help

Lorvalds / linux 2

Linux kemel source tree

520,037 commits

1 branch 420 releases

@ Watch- 3,711

Srapaty +. F & P

8,039 contributors

m P branch: master~  linux / +

Merge branch 'drm-fixes' of git:/pecople.freedesktop.org/~airiedlinux «-

' torvalds authored 9 hours ago

M Documentation

M arch

M block

M crypto
M drivers
M firmware
M, fs

M include

M init

LR

Merge git/igit kemel.org/publscmAinux/kemel/git/nabiarget-pending
Merge branch 'x86-urgent-for-linus’ of git//git kemel.org/pub/scm/
block: discard bdi_unregister() in favour of bdi_destroy()

Merge gitJ/igit kemel.org/pub/scmiAinuxd/kemel/githerbert/crypto-2.6
Merge branch 'drm-fixes’ of git//people.freedeskiop.org/~airledNinux
firmwara/ihex2fw.c: restore missing default in switch statement

vis: read file_handie only once in handle_to_path

Merge branch ‘perf-urgent-for-linus’ of git/igit. kemel.org/pub/scm/
nit: fix regression by supporting devices with major:minor:offset fo

Llnrnna hennnaih Yar linoe' af sl lisl barmal aesbeu b icoens e ou e aenal

latest commit 4b1786927d -

6 days ago

a day ago

9 days ago
10 days ago
8 hours ago
2 months ago
4 days ago

a day ago

a month ago

n ranth A

* Star 23,054 Y Fork 9,141

(94
Code

y 74
Pull requests

A~
Pulse

W
Graphs

HTTPS clone URL
https://github.c &

You can clone with HTTPS,
SSH, or Subversion. ®

i@ Clone in Desktop

<> Download ZIP
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static void do_command(struct seq file *m, void *v)

{\ —_— o
< int column = 32 << (cmd[2] & 0x80); G t d
if (state) enera e

cmd = (int)(int state * (in 8(&ch->ch flags) & Cmd) ? 2 : 1); =
o C code

or (i =0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in_use & UMXTHREAD UNCCA) +
((count & 0x00000000f£f£f£f£f£f£f8) & 0x000000f) << 8;
if (count == 0)
Sub(pid, ppc md.kexec handle, 0x20000000);
pipe _set bytes(i, 0);

* Freo oy nser naces nointer +o nlace camera if all Jach *
L LA - L O A Maycoco [ @ L4 LIILCU O MALalC € O allic a A a Uaoil

subsystem info = &of changes[PAGE_SIZE];
rek_controls(offset, idx, &soffset);

) e wall ae cO aevice

control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)
seq _puts(s, "policy ");
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/pgproto.h>
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$include <asm/io.h>

$include <asm/prom.h>
$include <asm/e820.h>
$include <asm/system info.h>
$include <asm/setew.h>

$include <asm/pgproto.h>

#define REG PG vesa slot addr pack

f$define PFM NOCOMP AFSR(O0, load)

fdefine STACK DDR(type) (func)

$define SWAP ALLOCATE (nr) (e)

fdefine emulate sigs() arch get unaligned child()

$define access rw(TST) asm volatile("movd %%esp, %0, %3 : : "r (0));

if (_type & DO READ)

static void stat_PC_SEC _ read mostly offsetof(struct seq_argsqueue, \
pC>[11]);

static void
os_prefix(unsigned long sys)

{
$§ifdef CONFIG PREEMPT
PUT_PARAM RAID(2, sel) = get state_state();
set_pid sum((unsigned long)state, current_state_str(),
(unsigned long)=-1->1lr full; low;
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Searching for interpretable cells

O >
O >
o >
O >
O >
o >
O >
O >
o >
O >
O >
O >
O >
o >
O >
O >
O >

O —»

O P

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
R
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Searching for interpretable cells

lter fleld"sWstring reépres@ntation firom WSer-space
Csiize_t MrEmENn, s@ize_t Wen)

nted §itring filelds, PHRTHINAX
st lid th

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells
Emilec’| 1 meant merely to say what I saja.n oo coeelerpemerraTing

guote detection cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

Cell sensitive to position in line:

The sole importance of the crossing of the Berezina lies in the fact
that it plainly and indubitably proved the fallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
line of action--the one Kutuzov and the general mass of the army
demanded--namely, simply to follow the enemy up. The French crowd fled
at a continually increasing speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and it was impossible
to block its path This was shown not so much by the arrangements it
made for crossing as by what took place at the bridges. wWhen the bridges
broke down, unarmed soldiers, people from Moscow and women with children
who were with the French transport, all--carried on by vis inertiae- -
pressed forward into boats and into the ice-covered water and did not,

surrender.

line length tracking cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

if statement cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

Cell that turns on inside comments and quotes:

quote/comment cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Searching for interpretable cells

#wifdef CONFIG_AUDITSYSCALL
static inline int audit_match_class_bits(int class, u32
{

for (1 = ©; 1 < AUDIT_BITMASK_SIZE; i++)

if (..8ki ] & classes[class][i])

code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission
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Multilayer RNNs 4 |
|
hl_mﬂ (= (@ S N S S S

h € R™ Wt [n x 2n] Q/ _f _f _f _f _f _f
_ | = 4 ~» —PH — ’] ‘_\

FEEEHRE S
—b—b—b-b‘_]{—b—b
S S S S S S|
depth
\
M‘;Ume —%
X, 1, - X
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- . Bengio et al, “Learning long-term dependencies with gradient descent
Va n I I I a R N N G ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

ht = tanh(Whhht_l + thﬂft)

- )
= tanh | (W, Wi
ks (i (")
Xq !

— \
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Backpropagation from h,
to h,_; multiplies by W
(actually W,,,T)

Vanilla RNN Gradient Flow
D

[

\_

» stack

T

o=

/
hy,
Ot

5)

y
/

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

ht = tanh(Whhht_l + thﬂft)

— tanh ((Whh W) (h;—tl>>
= tanh (W (h;:»
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- . Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994

<—
h0 ——> stack I L—»

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

< J ——
—> stack “\—> h3 ——> stack ‘ L—» h4

h1 —— stack > h2

Tt

Computing gradient
of hy involves many
factors of W

(and repeated tanh)

<
<%

|
ohy _|ohd |0
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Bengio et al, “Learning long-term dependencies with gradient descent

| ] [ ]
Va n I I I a R N N G ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
4 ) 4 . ™\ ' 0
W—> - tanh W—> - tanh W—'O—’. tanh W—> - tanh

ho<—> itack “\—> h) —*= itack TL_’ h, T——* iJCk TL_’ hy T—*= itack &Z hy

< <

Tt JL J P 1

| | | |
X1 Xy X3

_ _ Largest singular value > 1:
Computing gradient | Exploding gradients
of hy involves many = T

factors of W Largest singular value < 1:
(and repeated tanh)  vanishing gradients
_Vanishing grz
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Vanilla RNN Gradient Flow

4 N

W—>C><—_> tanh

—T—> stack

W—'QZ tanh

L

— > stack

4 TL_» .

ho =
!

X1

Computing gradient
of hy involves many
factors of W

(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
e 0 4 )
W—>©—> tanh W—(_ )= tanh

4

! )

Xy

— stack TL—> h3 PN —— itiICk &Z h4
1 1
X3 X4

Largest singular value > 1:
Exploding gradients

_, Gradient clipping: Scale
gradient if its norm is too big

Largest singular value < 1:
Vanishing gradients

grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
grad *= (threshold / grad_norm)
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- . Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
4 ) 4 . ™\ ' 0
W—> - tanh W—> - tanh W—'O—’. tanh W—> - tanh

e — itack H\_. hy s—> itack “\» h, o—* itlck H\—» hy =—* itack &* h,

h0<— < < < —

X4 Xo X3 X4

Largest singular value > 1:
Computing gradient  Exploding gradients
of h, involves many
factors of W Largest singular value < 1:
(and repeated tanh) | vanishing gradients

—» Change RNN architecture
—
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Long Short Term Memory (LSTM)

Vanilla RNN

LSTM

1 o
h }Ij -1 - |V (h;;_1>
_ t—1 '
o=t (3 (")) IS

ct=fOc_1+10g
hy = o ® tanh(c;)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation
1997
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lllustration [Pascanu et al]

* Intuition
« Error surface of a single hidden unit RNN; High curvature walls

» Solid lines: standard gradient descent trajectories
» Dashed lines: gradient rescaled to fix problem

'0.35
'0.30
'0.25
L o
0.20 =
L Q
0.15
'0.10
'0.05

85

(C) Dhruv Batra



Fix #1

« Pseudocode

Algorithm 1 Pseudo-code for norm clipping the gra-

dients whenever they explode
g < %5
if ||g|| > threshold then

threshold x
el 8

g <
end if

(C) Dhruv Batra 86



-]
Fix #2

« Smart Initialization and RelLus

— [Socher et al 2013]
— A Simple Way to Initialize Recurrent Networks of Rectified

Linear Units, Le et al. 2015

Pixel-by—pixel permuted MNIST
1 T T T T

Ll I

LSTM
90 {{ wemmmmm RNN + Tanh
RNN + RelUs

IRNN

Test Accuracy
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Meet LSTMs

" N\ N N
—»>—® ® > —>
Ganh>
A | g A
I?Ilclflltalnhlljl
—> —> —>
_ V4N UE4N )

Neural Network Pointwise  Vector - otenate  Copy
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LSTMs Intuition: Memory

« Cell State / Memory

(C) Dhruv Batra 89



LSTMs Intuition: Forget Gate

 Should we continue to remember this “bit” of
information or not?

fi :U(Wf'[ht—lyflft] ~+ bf)

(C) Dhruv Batra 90



LSTMs Intuition: Input Gate

« Should we update this “bit” of information or not?
— |If so, with what?

it =0 (Wi-lhi—1,2¢ + b;)
ét :tanh(WC'[ht_l,iEt] + bc)

(C) Dhruv Batra 91



LSTMs Intuition: Memory Update

* Forget that + memorize this

ftT %tr'%§ Cy = fy* Coo1 + ¢+ Cy

(C) Dhruv Batra 92



LSTMs Intuition: Output Gate

» Should we output this “bit” of information to “deeper”
layers?

Ot — O(Wo [ht—17xt] + bo)
ht = Ot * tanh (Ct)
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LSTMs Intuition: Additive Updates

Backpropagation from
c; to ¢, 4 only
elementwise
< “— < C multiplication by f, no

(R Q) Mattrix multiply by W
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LSTMs Intuition: Additive Updates

> ), 63

TUninterrupted radient flow!
(< l ~

— —®) @ > —»
Ganh>
A | 8 =2 A
I?IIclflltarhlljl
—> —> —>
_ V4N UE4N )
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LSTMs Intuition: Additive Updates

> ), 63

TUninterrupted radient flow!
(< l ~
—>—® @ > -

imi | SISMEISNE S & ol ko o
Similar to ResNet! E{ BV ERRLYELELVELE L 8
5] o klel BIEl RIRLL B P
Sl BB IRIvEIBleBIEloT o lo B e ot HE Bl 1o]
= = EIE EIE ElE ] &
Skl Pl Rl Bl B RS N
SME FIE BIF el B e e iN
Nl
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LSTMs

* A pretty sophisticated cell

> ), ®

1 ! 1

4 N RENE R
—> —® @ > —»
Ganh>
A 1 8 2 A
I?Ilclflltalnhlljl
—> —>
_ /_’U UE4N )

Neural Network Pointwise  Vector . ionote
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-
LSTM Variants #1: Peephole Connections

» Let gates see the cell state / memory

ft =0 (Wg-|Ceo1,hi—1, 2] + by)
it =0 (W;-|Ce—1,hi—1,2¢] + b;)
-

Ot = U(Wo'[Ctaht—laxt] + bo)

(C) Dhruv Batra 98



LSTM Variants #2: Coupled Gates

* Only memorize new if forgetting old

?‘®" Ct:ft*ct—1+(1_ft)*ét

(C) Dhruv Batra 99



-
LSTM Variants #3: Gated Recurrent Units

« Changes:
— No explicit memory; memory = hidden output
— Z = memorize new and forget old

it = O (Wz ' :ht—laxt:)

.
|
Q

S

' :ht—lamt:>

iLt — tanh (W ¥ [Tt * ht_l, ZCtD

ht:(l—zt)*ht_l—l—zt*/}t
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