
CS7643: Deep Learning
Fall 2017

Problem Set 1

Instructor: Dhruv Batra
TAs: Michael Cogswell, Abhishek Das, Zhaoyang Lv

Discussions: http://piazza.com/gatech/fall2017/cs7643

Due: Friday, Sep 8, 11:55pm

Instructions

1. Please upload your answer sheet on Canvas with the following format:
FirstName_LastName_PSx.pdf.
LATEX’d solutions are preferred (solution template available at
cc.gatech.edu/classes/AY2018/cs7643_fall/assets/sol0.tex), but scanned handwritten copies
are acceptable. Hard copies are not accepted.

2. We generally encourage you to collaborate with other students. You may talk to a friend,
discuss the questions and potential directions for solving them. However, your discussions
should not involve one person doing all the thinking and simply telling others the solution.
We expect you to be mature enough to make that judgement call yourself. Finally, you need
to write your own solutions separately, and not as a group activity. Please list the students
you collaborated with.

1 Gradient Descent

1. (3 points) We often use iterative optimization algorithms such as Gradient Descent to find w
that minimizes a loss function f(w). Recall that in gradient descent, we start with an initial
value of w (say w(1)) and iteratively take a step in the direction of the negative of the gradient
of the objective function i.e.

w(t+1) = w(t) − η∇f(w(t)) (1)

for learning rate η > 0.

In this question, we will develop a slightly deeper understanding of this update rule. Recall
the first-order Taylor approximation of f at w(t):

f(w) ≈ f(w(t)) + 〈w −w(t),∇f(w(t))〉 (2)

When f is convex, this approximation forms a lower bound of f . Since this approximation
is a ‘simpler’ function than f(·), we could consider minimizing the approximation instead of

1

http://piazza.com/gatech/fall2017/cs7643
https://www.cc.gatech.edu/classes/AY2018/cs7643_fall/assets/sol0.tex

f(·). Two immediate problems: (1) the approximation is affine (thus unbounded from below)
and (2) the approximation is faithful for w close to w(t). To solve both problems, we add a
squared `2 proximity term to the approximation minimization:

argmin
w

f(w(t)) + 〈w −w(t),∇f(w(t))〉︸ ︷︷ ︸
affine lower bound to f(·)

+
λ

2︸︷︷︸
trade-off

∣∣∣∣∣∣w −w(t)
∣∣∣∣∣∣2︸ ︷︷ ︸

proximity term

(3)

Notice that the optimization problem above is an unconstrained quadratic programming prob-
lem, meaning that it can be solved in closed form.

What is the solution w∗ of the above optimization? What does that tell you about the gradient
descent update rule? What is the relationship between λ and η?

2. (3 points) Show that for a sequence of vectors v1,v2, ...,vT and w? that minimizes f(w), an
update equation of the form w(t+1) = w(t) − ηvt with w(1) = 0 satisfies

T∑
t=1

〈w(t) −w?,vt〉 ≤
||w?||2

2η
+
η

2

T∑
t=1

||vt||2 (4)

3. (3 points) Let’s now analyze the convergence rate of gradient descent i.e. how fast it converges
to w?. Show that for w̄ = 1

T

∑T
t=1 w(t)

f(w̄)− f(w?) ≤ 1

T

T∑
t=1

〈w(t) −w?,∇f(w(t))〉 (5)

Further, use the result from part 2, with upper bounds B and ρ for ||w?|| and
∣∣∣∣∇f(w(t))

∣∣∣∣
respectively and show that for fixed η =

√
B2

ρ2T
, the convergence rate of gradient descent is

O(1/
√
T) i.e. the upper bound for f(w̄)− f(w?) ∝ 1√

T
.

4. (2 points) Consider a objective function comprised of N = 2 terms:

f(w) =
1

2
(w − 2)2 +

1

2
(w + 1)2 (6)

Now consider using SGD (with a batch-size B = 1) to minimize this objective. Specifically,
in each iteration, we will pick one of the two terms (uniformly at random), and take a step
in the direction of the negative gradient, with a constant step-size of η. You can assume η
is small enough that every update does result in improvement (aka descent) on the sampled
term.

Is SGD guaranteed to decrease the overall loss function in every iteration? If yes, provide a
proof. If no, provide a counter-example.

2 Automatic Differentiation

5. (4 points) In practice, writing the closed-form expression of the derivative of a loss function f
w.r.t. the parameters of a deep neural network is hard (and mostly unnecessary) as f becomes

2

complex. Instead, we define computation graphs and use the automatic differentiation algo-
rithms (typically backpropagation) to compute gradients using the chain rule. For example,
consider the expression

f(x, y) = (x+ y)(y + 1) (7)

Let’s define intermediate variables a and b such that

a = x+ y (8)

b = y + 1 (9)

f = a× b (10)

A computation graph for the “forward pass” through f looks like the following

We can then work backwards and compute the derivative of f w.r.t. each intermediate vari-
able (∂f∂a ,

∂f
∂b) and chain them together to get ∂f

∂x and ∂f
∂y .

Let σ(·) denote the standard sigmoid function. Now, for the following vector function:

f1(w1, w2) = ee
w1+e2w2

+ sin(ew1 + e2w2) (11)
f2(w1, w2) = w1w2 + σ(w1) (12)

(a) Draw the computation graph. Compute the value of f at ~w = (1, 2).

(b) At this ~w, compute the Jacobian ∂ ~f
∂ ~w using numerical differentiation (using ∆w = 0.01).

(c) At this ~w, compute the Jacobian using forward mode auto-differentiation.

(d) At this ~w, compute the Jacobian using backward mode auto-differentiation.

(e) Don’t you love that software exists to do this for us?

3

	Gradient Descent
	Automatic Differentiation

