Deep Geolocalization and Siamese Nets

Computer Vision

James Hays

Figure 2. Transforming fully connected layers into convolution layers enables a classification net to output a heatmap. Adding layers and a spatial loss (as in Figure 1) produces an efficient machine for end-to-end dense learning.

Long, Shelhamer, and Darrell 2014

PlaNet - Photo Geolocation with Convolutional Neural Networks

Tobias Weyand, Ilya Kostrikov, James Philbin

ECCV 2016

Discretization of Globe

Figure 2. Left: Adaptive partitioning of the world into 26,263 S2 cells. Right: Detail views of Great Britain and Ireland and the San

Network and Training

- Network Architecture: Inception with 97M parameters
- 26,263 "categories"

- 126 Million Web photos
- 2.5 months of training on 200 CPU cores

Photo CC-BY-NC by stevekc

(a)

Photo CC-BY-NC by edwin.11

(b)

Photo CC-BY-NC by jonathanfh

Namibia / Botswana

nie.lovelock / CC BY NC Photo by MongoosePhotography / CC BY NC

Photo by Mister-E / CC BY NC Photo by dalangalma / CC BY NC Photo by siamjack / CC BY NC

Kauai, Hawaii

Photo by stuartichambers / CC BY NC

hoto by steve-stevens / CC B

Galapagos Islands

Paris

Photo by Turansa Tours / CC BY NC

PlaNet vs im2gps (2008, 2009)

	Street	City	Region	Country	Continent
Method	1 km	25 km	200 km	750 km	2500 km
Im2GPS (orig) [17]		12.0%	15.0%	23.0%	47.0%
Im2GPS (new) [18]	2.5%	21.9%	32.1%	35.4%	51.9%
PlaNet	8.4%	24.5%	37.6%	53.6%	71.3%

Method	Manmade Landmark	Natural Landmark	City Scene	Natural Scene	Animal
Im2GPS (new)	61.1	37.4	3375.3	5701.3	6528.0
PlaNet	74.5	61.0	212.6	1803.3	1400.0

Spatial support for decision

PlaNet vs Humans

PlaNet vs Humans

PlaNet summary

- Very fast Geolocalization method. Geolocalization by categorization.
- Uses far more training data than previous work (im2gps)
- There's definitely still room for improvement

Learning Deep Representations For Ground-to-Aerial Geolocalization

Tsung-Yi Lin, Yin Cui, Serge Belongie, James Hays

CORNELL NYC**TECH**

CVPR 2015

View From Your Window Contest

June 9, 2010 – Feb. 4, 2015

Where was the photo taken?

Ans: Milano, Italy

To Geolocalize a Photo

One can capture every corner on the earth

To Geolocalize a Photo

How To Match Ground-to-Aerial?

Shan et al., Accurate Geo-registration by Ground-to-Aerial Image Matching, 3DV'14 Bansal et al., Ultra-wide baseline façade matching for geo-localization, ECCV workshop'12

Are these the same location?

Ground

Aerial

Are these the same location?

Why Don't You Just...

• Sparse Keypoint Matching + RANSAC

Cross-view Pairs

7 Cities: 78k Corresponding Pairs

Tokyo

San Diego

Charleston

Rome

Place Verification

Same OR Different

Face Verification

Same OR Different

Face Verification

- Chopra and Hadsell and LeCun, Learning a
 Similarity Metric Discriminatively, with
 Application to Face Verification (CVPR 2005)
- Taigman, Yang, Ranzato, Wolf, **DeepFace: Closing the Gap to Human-Level Performance in Face Verification** (CVPR 2014)
- Schroff, Kalenichenko, Philbin, FaceNet: A Unified Embedding for Face Recognition and Clustering (CVPR 2015)

Huang et al. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments

"Siamese" ConvNet for Ground-to-Aerial Matching 4096 Mean-Variance Normalization 4096 Fully Connected 4096 Fully Connected 6x6x256 Loss Layer Max Pooling 13x13x25 f_B(y) f_≜(x Convolution 13x13x25 Convolution 13x13x25 Convolution 13x13x25 Local Normalization A (CNN) B (CNN) 13x13x25 Max Pooling 27x27x25 Convolution **▲** 27x27x96 Local Normalization 27x27x96 у Max Pooling Labels **Data Pairs** 55x55x96 Convolution A 227x227

Image

"Siamese" ConvNet for Ground-to-Aerial Matching

"Siamese" ConvNet for Ground-to-Aerial Matching

Contrastive Loss

Pair Distance Distribution

Quantitative Evaluation (AP)

- Random: 5% (1:20 pos. to neg. pairs)
- HoG2x2 (BoW): 7.9%
- Places-CNN: 10.2%
- ImageNet-CNN: 11.3%
- Where-CNN (ours): 41.9%

Share The Same Parameters?

- For face verification A and B share parameters
- For ground-aerial image pairs, should A, B share parameters?

Quantitative Evaluation

(b) Hard negative pairs.

Strongest Activations of Particular Units

Geolocalization

Street-view Query

Bird's Eye Matches

Conclusions

- Localize images without corresponding ground-level images
- Create a large-scale training dataset from public data sources
- Learning feature representations for matching cross-view images