Deep Geolocalization
and Siamese Nets

Computer Vision

James Hays
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Figure 2. Transforming fully connected layers into convolution
layers enables a classification net to output a heatmap. Adding

layers and a spatial loss (as in Figure 1) produces an efficient ma-
chine for end-to-end dense learning.

Long, Shelhamer, and Darrell 2014
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PlaNet - Photo Geolocation with
Convolutional Neural Networks

Tobias Weyand, llya Kostrikov, James Philbin

ECCV 2016



Discretization of Globe
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Figure 2. Left: Adaptive partitioning of the world into 26,263 S2 cells. Right: Detail views of Great Britain and Ireland and the San




Network and Training

* Network Architecture: Inception with 97M
parameters

¢ 26,263 “categories”

* 126 Million Web photos
* 2.5 months of training on 200 CPU cores
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PlaNet vs im2gps (2008, 2009)

Street City Region Country Continent

Method 1km 25km 200km 750 km 2500 km
Im2GPS (orig) [17] 120% 15.0%  23.0% 47.0%
Im2GPS (new) [18] 2.5% 21.9% 32.1%  35.4% 51.9%
PlaNet 84% 24.5% 37.6%  53.6% 71.3%

Manmade Natural City Natural
Method Landmark Landmark Scene Scene Animal

Im2GPS (new) 61.1 374 33753 5701.3 6528.0
PlaNet 74.5 61.0 212.6 1803.3 1400.0




Spatial support for decision




PlaNet vs Humans




PlaNet vs Humans
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PlaNet summary

* Very fast Geolocalization method. Geolocalization
by categorization.

e Uses far more training data than previous work
(im2gps)
* There’s definitely still room for improvement



Learning Deep Representations For
Ground-to-Aerial Geolocalization

Tsung-Yi Lin, Yin Cui, Serge Belongie, James Hays
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CVPR 2015



View From Your Window Contest Where was
June 9, 2010 — Feb. 4, 2015

the photo
taken?




Ans:
Milano, Italy




To Geolocalize a Photo

; * One can capture every corner on
the earth




To Geolocalize a Photo







Explore




How To Match Ground-to-Aerial?

Shan et al., Accurate Geo-registration by Ground-to-Aerial Image Matching, 3DV’'14
Bansal et al., Ultra-wide baseline fagade matching for geo-localization, ECCV workshop’12



Are these the same location?
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Are these the same location?
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Why Don’t You Just...

e Sparse Keypoint Matching + RANSAC




Cross-view Pairs

Aerial



Heading Direction
GPS location

Street-view car
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7 Cities: 78k Corresponding Pairs

San Francisco San Diego Chicago Charleston

------—-_w4

I I I #
i [
- s I
|
»

"

11



Place Verification

OR
Different




Face Verification

Same

OR
Different




Face Verification

* Chopra and Hadsell and LeCun, Learning a
Similarity Metric Discriminatively, with
Application to Face Verification (CVPR 2005)

 Taigman, Yang, Ranzato, Wolf, DeepFace:
Closing the Gap to Human-Level Performance
in Face Verification (CVPR 2014)

* Schroff, Kalenichenko, Philbin, FaceNet: A
Unified Embedding for Face Recognition and
Clustering (CVPR 2015)

Huang et al. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments






“Siamese” ConvNet for Ground-to-Aerial Matching




“Siamese” ConvNet for Ground-to-Aerial Matching




Contrastive Loss

LOSS Function- red: similar pairs

blue: dissimilar pairs

e For similar pairs: o —
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Contrastive Loss (L)
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Euclidean Distance (D)
Hadsell, Chopra, Yann LeCun,

Dimensionality Reduction by Learning an Invariant Mapping,
CVPRO6




number of pairs (log)

Pair Distance Distribution

Green: positive pairs

Margin Red: negative pairs
ImageNet-CNN Model Where-CNN Model
12 10 : : : : - -
or |50k iterationss ®
8t 1 ol
e
2t gl

]
40 0 100 120 140 %0 40 50 ] 70 80 90 100 110
e of cross-view pair distance of cross-view pair



Quantitative Evaluation (AP)

Random: 5% (1:20 pos. to neg. pairs)
HoG2x2 (BoW): 7.9%

Places-CNN: 10.2%

ImageNet-CNN: 11.3%

Where-CNN (ours): 41.9%



Share The Same Parameters?

 For face verification A and
B share parameters

* For ground-aerial image
pairs, should A, B share
parameters?




Quantitative Evaluation
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Strongest Activations of Particular Units




Geolocalization

San Francisco San Diego Chicago Charleston
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Conclusions

* Localize images without corresponding
ground-level images

* Create a large-scale training dataset from
public data sources

e Learning feature representations for matching
Cross-view images



