Deep Learning 3
Visualizing Network Internals &
Fully Convolutional Networks

Computer Vision
James Hays

Many slides from CVPR 2014 Deep Learning Tutorial (Honglak
Lee and Marc’Aurelio especially) and Rob Fergus

https://sites.google.com/site/deeplearningcvpr2014



Project 6 out today



Recap

Lecture 1 Neural Networks
Lecture 2 Convolutional Deep Neural Networks (e.g. AlexNet)



Traditional Recognition Approach

Features are not learned

Inout data feature Learning
pu I EE) |representation| EE) | Algorithm
(pixels) (hand-crafted) (e.g., SVM)

Image ~ Low-level Object detection
vision features / classification

(edges, SIFT, HOG, etc.)



Computer vision features
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and many others:

SURF, MSER, LBP, Color-SIFT, Color histogram, GLOH, .....



Example: Convolutional Neural Networks

LeCun et al. 1989

* Neural network with
specialized connectivity
structure

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

R S2: f. maps
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Slide: R. Fergus



Pixels /
Features

[Optional]

[Optional]

Components of Each Layer

Filter with

Dictionary

(convolutional
or tiled)

Normalization
between
feature
responses

Features

Slide: R. Fergus



Filtering

 Convolutional

— Dependencies are local

— Translation equivariance

— Tied filter weights (few params
— Stride 1,2,... (faster, less me

Feature Map
Slide: R. Fergus




Non-Linearity

* Non-linearity
— Per-element (independer; .
— Tanh

. 1/(1+exp(-x))

— Recitified linear
« Simplifies backprop A
* Makes learning faster .
 Avoids saturation issues

reludx

-> Preferred option

Slide: R. Fergus



e Spatial Pooling
— Non-overlapping / overlapping regions
— Sum or max
— Boureau et al. ICML'10 for theoretical analysis

Sum

Slide: R. Fergus



Normalization

* Contrast normalization (across feature maps)

— Local mean =0, local std. = 1, “Local” = 7x7 Gaussian
— Equalizes the features maps

Feature Maps
Feature Maps After Contrast Normalization

Slide: R. Fergus



Compare: SIFT Descriptor

Image

Pixels 5 | Apply
Gabor filters

Spatial pool <
(Sum) Ea a9

Normalize to Feature
unit length | | Vector

Slide: R. Fergus



Visualizing Deep Networks

See slides here:
http://places.csail.mit.edu/slide iclr2015.pdf



http://places.csail.mit.edu/slide_iclr2015.pdf

Fully Convolutional Networks



CONV NETS: EXAMPLES

- Object detection

Sermanet et al. “OverFeat: Integrated recognition, localization, ...” arxiv 2013
Girshick et al. “Rich feature hierarchies for accurate object detection...” arxiv 2013 o1
Szegedy et al. “DNN for object detection” NIPS 2013 Ranzatol 3




ConvNets: Test

At test time, run only is forward mode (FPROP).

8x18

Fully
100 connected
500 weights)

24 @6Xx6

2@96x96

E
6x6

5x5 v

i . luti 3x3
convolution subsampling C;)g\: " 1;)n b i convolution
' ernels subsamplin
(16 kernels) ( ) (%400 kernels)

Naturally, convnet can process larger images at little cost.

Traditional methods
use inefficient sliding
windows.
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ConvNets: Test

At test time, run only is forward mode (FPROP).

D 8x18

24@6x6 bally

100 connected
500 weights)

2@96x96

5x5 _ ‘-3 : 6x6

convolution subsemphing convolution N s convolution
96 k 1 subsamplin

(16 kernels) ( crnels) (%400 kernels)

Naturally, convnet can process larger images at little cost.

ConvNet: unrolls
convolutions over bigger
Images and produces
outputs at several

80
locations.
Ranzaton




Fully Convolutional Networks
for Semantic Segmentation
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Evan Shelhamer* Trevor Darrell
UC Berkeley 31

Slides from Long, Shelhamer, and Darrell



pixels in, pixels out

monocular depth estimation Eigen & Fergus 2015

semantic =~ BEEs
segmentation
L Y

convolutional
networlk

optical flow Fischer et al. 2015 boundary prediction Xie & Tu 2015 32



convnets perform classification

< 1 millisecond

< end-to-end learning

1000-dim vector

“tabby cat”

33



R-CNN does detection

many seconds

R-CNN

“dog”

“Cat”

34




person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

5

figure: Girshick et al.
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~1/10 second

27707

< end-to-end learning
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a classification network

convolution fully connected

227 x 227 55x55 27 x 27 13 x 183

PP & /// bty ot
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becoming fully convolutional

convolution
227 x 227 55 x 55 27 x 27 13 x13 1 x1
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becoming fully convolutional

convolution
HxW H/4 x W/4 H/8 x W/8 H/16 x W/16 H/32 x W/32
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upsampling output

convolution

HxW H/4 x W/4  H/8 x W/8

DD P

H/16 x W/16 H/32 x W/32
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end-to-end, pixels-to-pixels network

convolution
HxW H/4 x W/4 H/8 x W/8 H/16 x W/16 H/32 x W/32 Hx W
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end-to-end, pixels-to-pixels network

convolution
H/4 x W/4  H/8 x W/8 H/16 x W/16 H/32 x W/32 T Hx W
4 upsampling 1
conv, pool, pixelwise
nonlinearity output + loss

42



spectrum of deep features

combine where (local, shallow) with what (global, deep)

image intermediate layers

fa
Y

!

fuse features into deep jet

(cf. Hariharan et al. CVPR15 “hypercolumn”) 43



skip layers

image convl pooll conv2 pool2 convy pool3 convd pool4 convd poold  conv6-7
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interp + sum

interp + sum

dense output
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skip layer refinement

input image stride 32 stride 16 stride 8 ground truth
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training + testing

- train full image at a time without patch sampling
- reshape network to take input of any size
- forward time is ~100ms for 500 x 500 x 21 output

1.2

1.2

= full images
1.0 = = 50% sampling | 1.0
m— 25% sampling

0.8

loss

0.6}

0.4}

500 1000 1500 10000 20000 30000
iteration number relative time (num. images processed)



Relative to prior state-of-the-

art SDS:
- 30% relative
improvement
for mean loU

- 286x faster

*Simultaneous Detection and Segmentation
Hariharan et al. ECCV14

a7



