Deep Learning 3 Visualizing Network Internals & Fully Convolutional Networks

Computer Vision James Hays

Many slides from CVPR 2014 Deep Learning Tutorial (Honglak Lee and Marc'Aurelio especially) and Rob Fergus

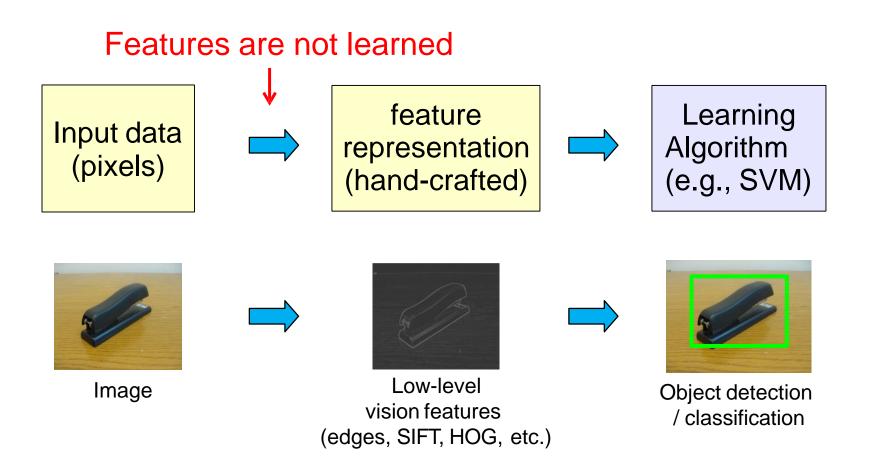
https://sites.google.com/site/deeplearningcvpr2014

Project 6 out today

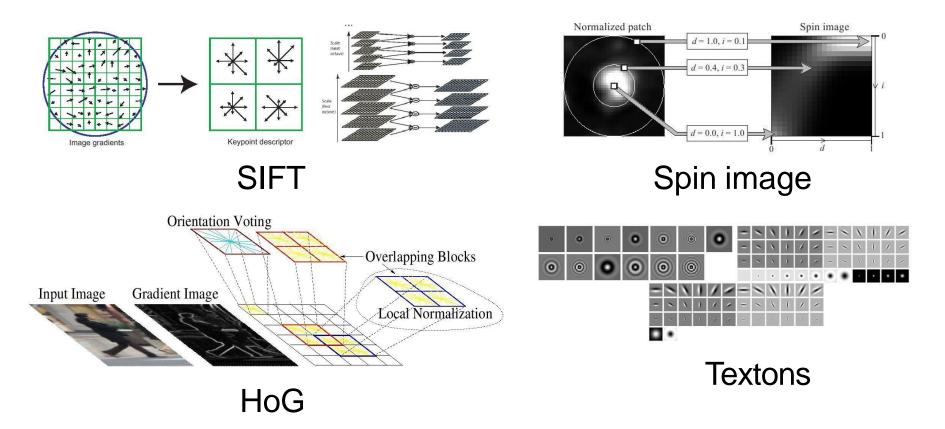
Recap

Lecture 1 Neural Networks Lecture 2 Convolutional Deep Neural Networks (e.g. AlexNet)

Traditional Recognition Approach



Computer vision features

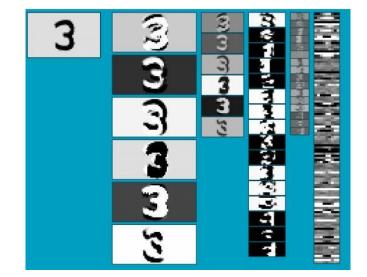


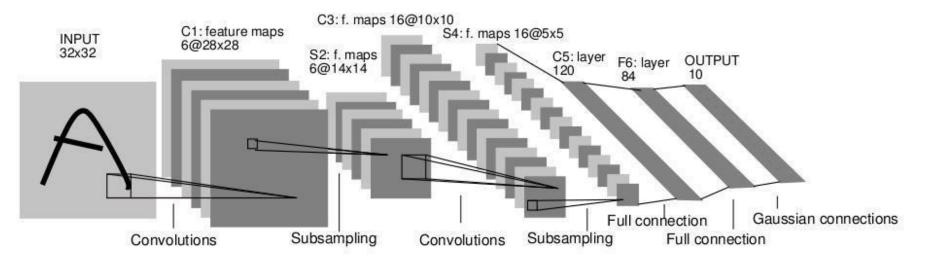
and many others:

SURF, MSER, LBP, Color-SIFT, Color histogram, GLOH,

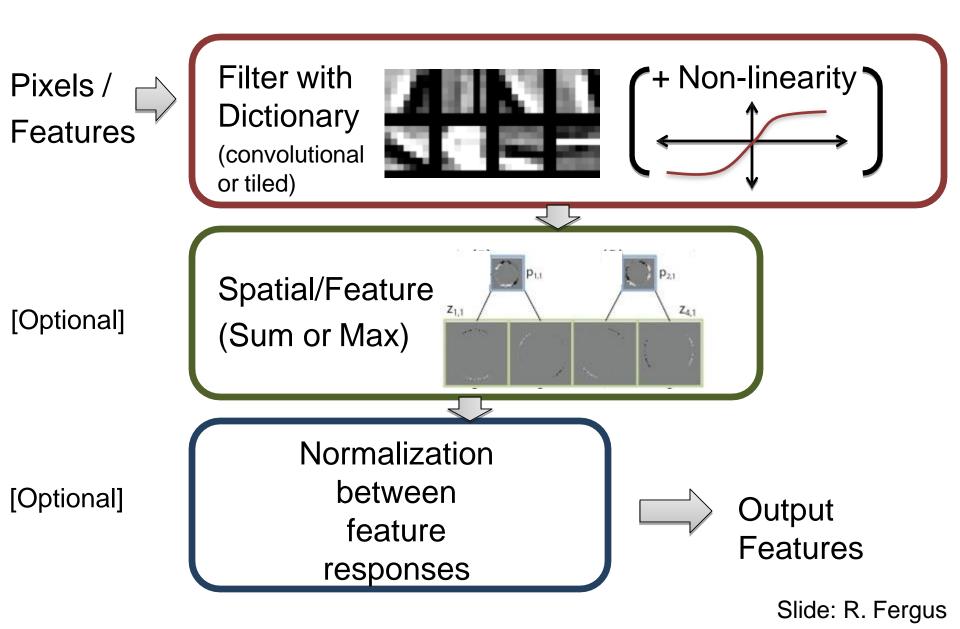
Example: Convolutional Neural Networks

- LeCun et al. 1989
- Neural network with specialized connectivity structure





Components of Each Layer



Filtering

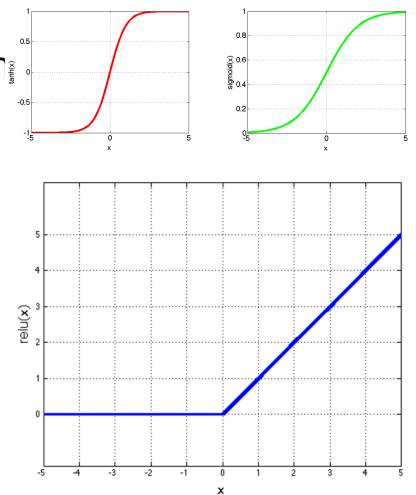
- Convolutional
 - Dependencies are local
 - Translation equivariance
 - Tied filter weights (few params)
 - Stride 1,2,... (faster, less mem.)

Input

Feature Map Slide: R. Fergus

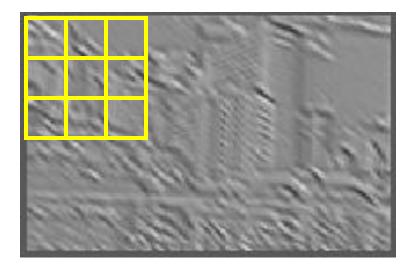
Non-Linearity

- Non-linearity
 - Per-element (independer
 - Tanh
 - Sigmoid: 1/(1+exp(-x))
 - Rectified linear
 - Simplifies backprop
 - Makes learning faster
 - Avoids saturation issues
 - → Preferred option



Pooling

- Spatial Pooling
 - Non-overlapping / overlapping regions
 - Sum or max
 - Boureau et al. ICML'10 for theoretical analysis





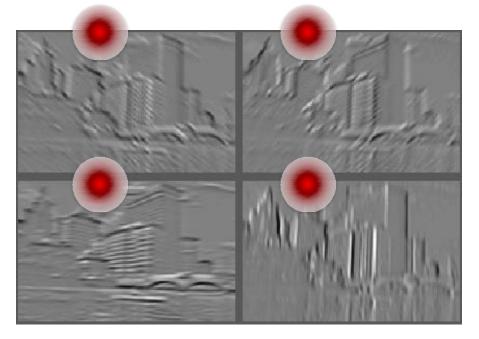
Normalization

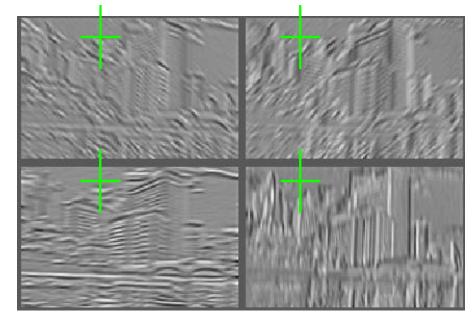
- Contrast normalization (across feature maps)
 - Local mean = 0, local std. = 1, "Local" \rightarrow 7x7 Gaussian

- Equalizes the features maps

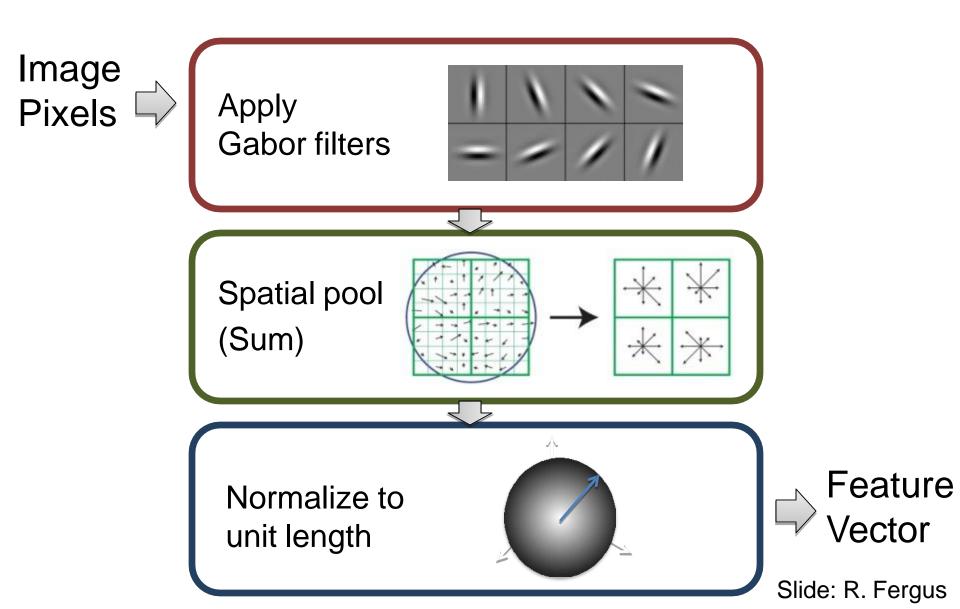
Feature Maps

Feature Maps After Contrast Normalization





Compare: SIFT Descriptor



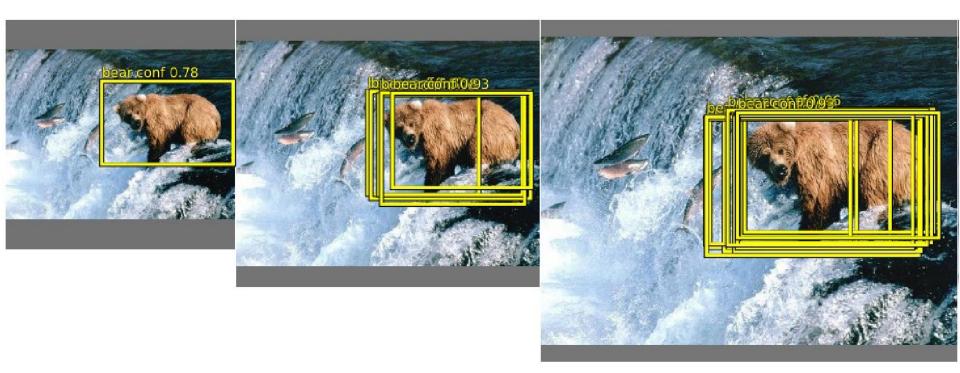
Visualizing Deep Networks

See slides here: <u>http://places.csail.mit.edu/slide_iclr2015.pdf</u>

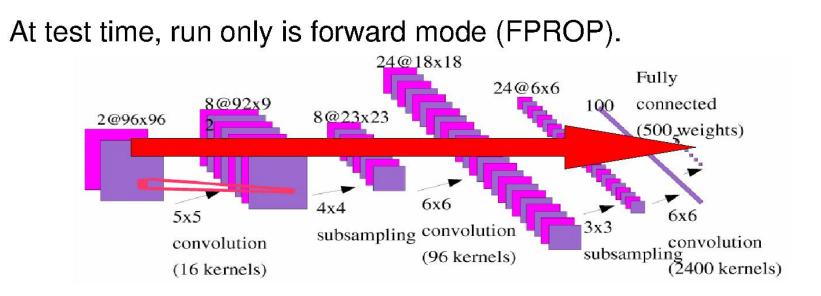
Fully Convolutional Networks

CONV NETS: EXAMPLES

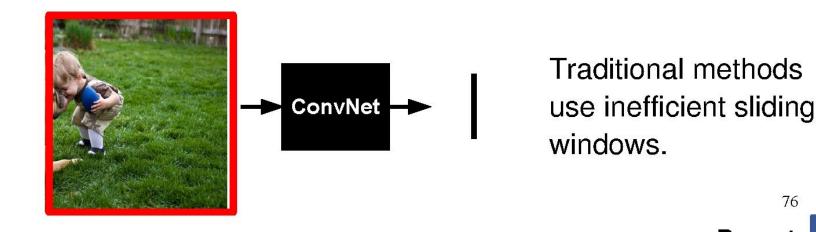
- Object detection

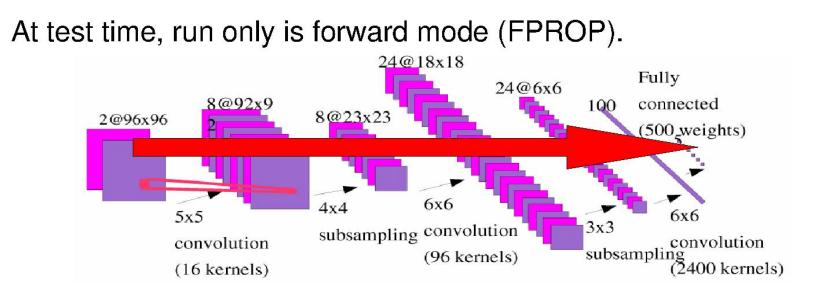


Sermanet et al. "OverFeat: Integrated recognition, localization, ..." arxiv 2013 Girshick et al. "Rich feature hierarchies for accurate object detection..." arxiv 2013 91 Szegedy et al. "DNN for object detection" NIPS 2013 Ranzato

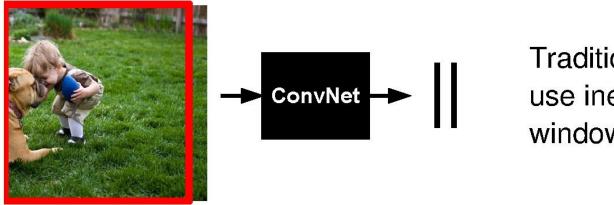


Naturally, convnet can process larger images at little cost.

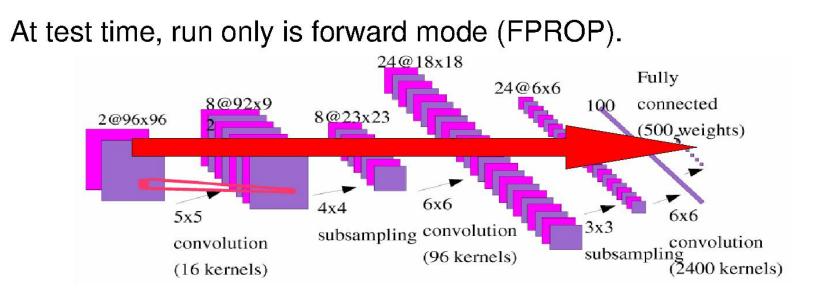




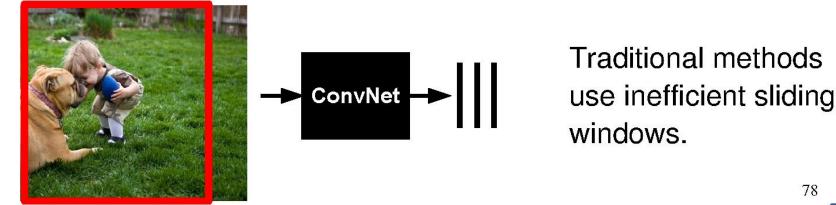
Naturally, convnet can process larger images at little cost.

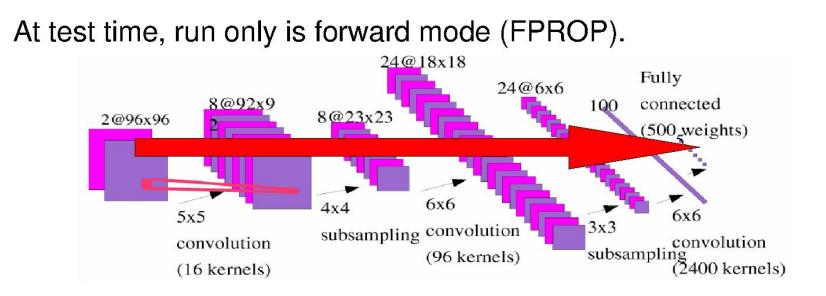


Traditional methods use inefficient sliding windows.

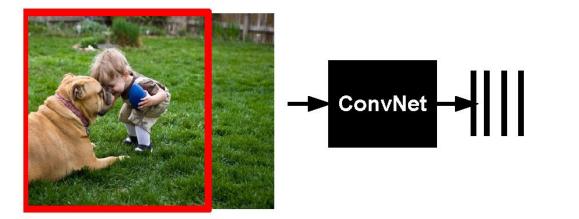


Naturally, convnet can process larger images at little cost.

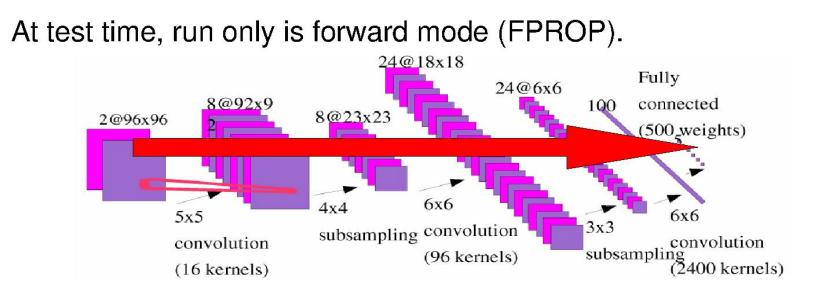




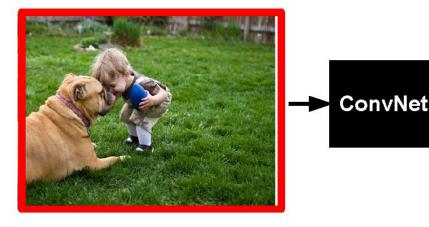
Naturally, convnet can process larger images at little cost.



Traditional methods use inefficient sliding windows.

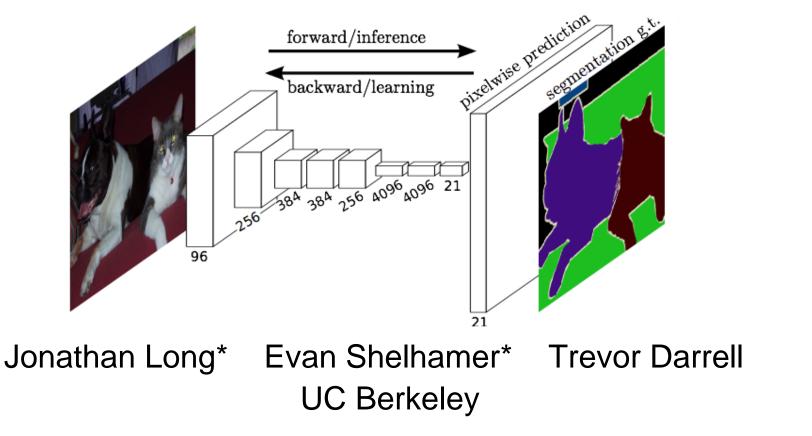


Naturally, convnet can process larger images at little cost.



ConvNet: unrolls convolutions over bigger images and produces outputs at several locations.

Fully Convolutional Networks for Semantic Segmentation

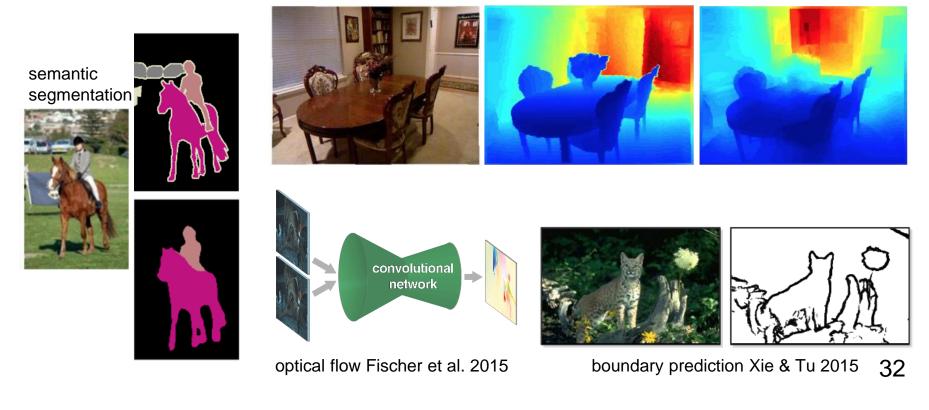


Slides from Long, Shelhamer, and Darrell

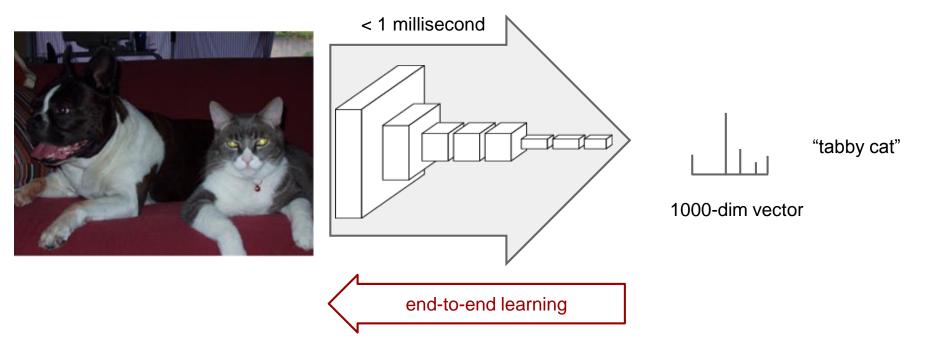
31

pixels in, pixels out

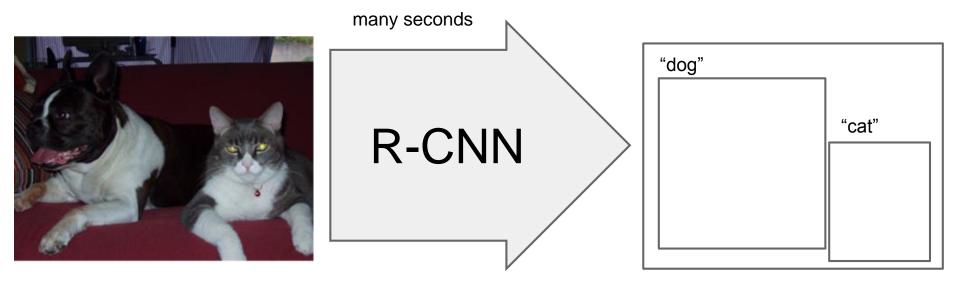
monocular depth estimation Eigen & Fergus 2015



convnets perform classification



R-CNN does detection



R-CNN

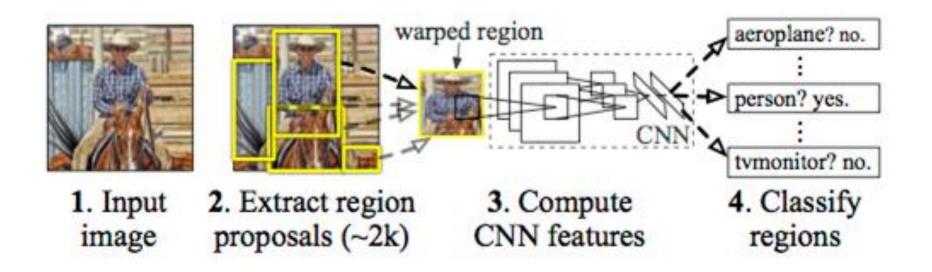
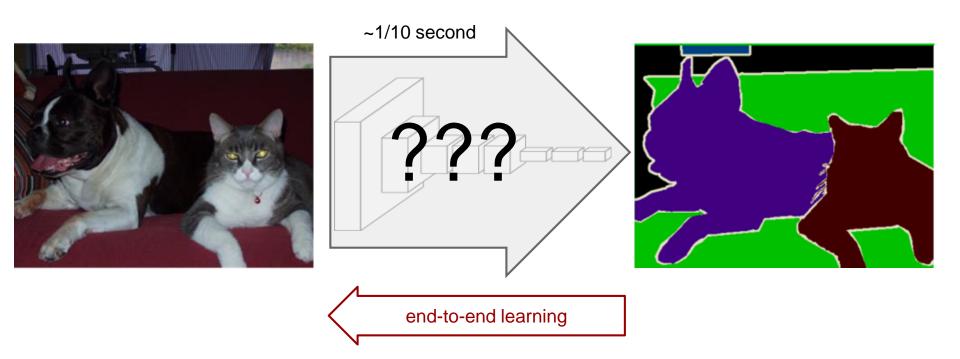
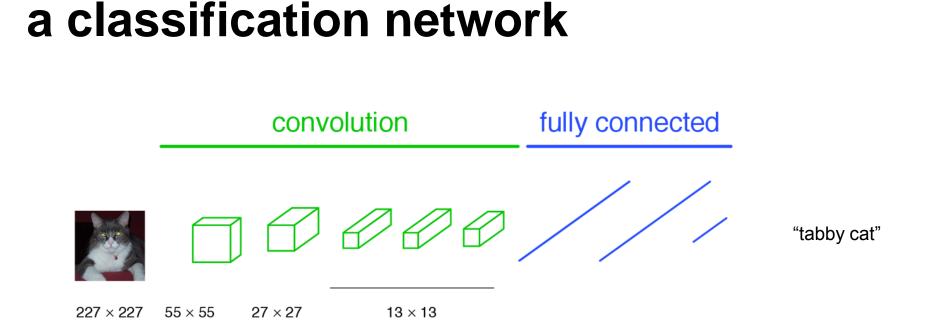


figure: Girshick et al.





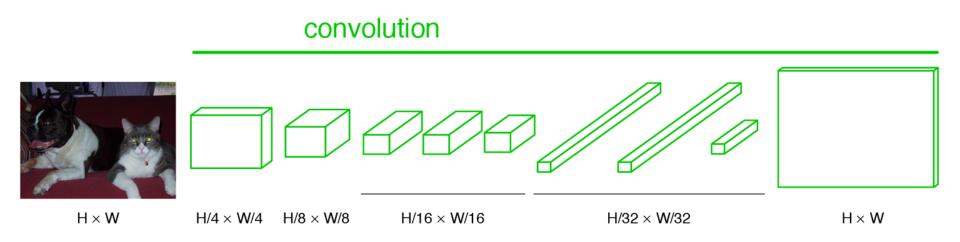
becoming fully convolutional

 $227 \times 227 \quad 55 \times 55 \quad 27 \times 27 \quad 13 \times 13 \quad 1 \times 1$

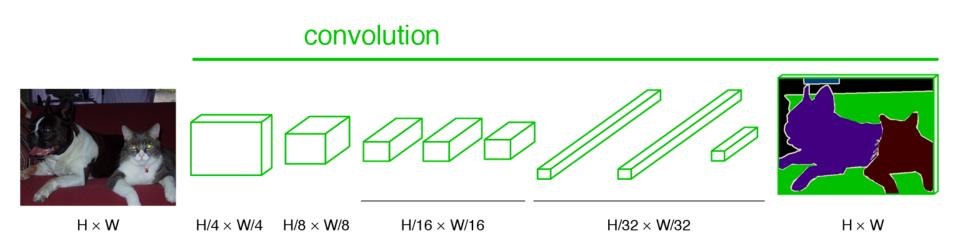
becoming fully convolutional

 $\overrightarrow{\text{H}} \times W \qquad H/4 \times W/4 \qquad H/8 \times W/8 \qquad H/16 \times W/16 \qquad H/32 \times W/32$

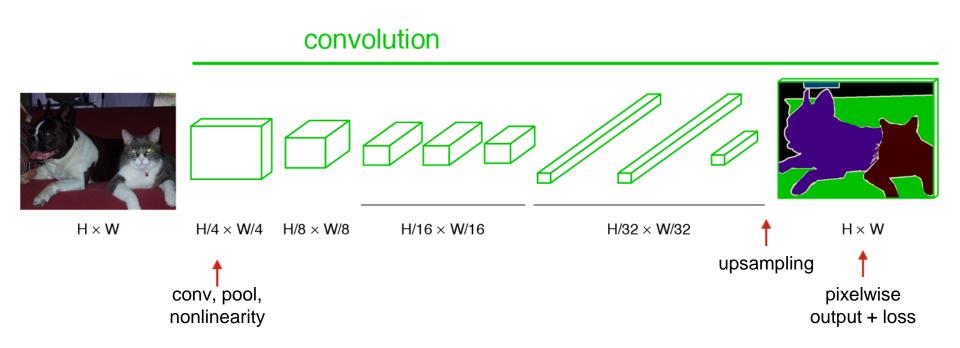
upsampling output



end-to-end, pixels-to-pixels network



end-to-end, pixels-to-pixels network



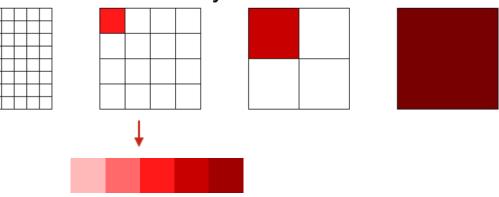
spectrum of deep features

combine where (local, shallow) with what (global, deep)

image

	And a
1	5 2
	8
1	

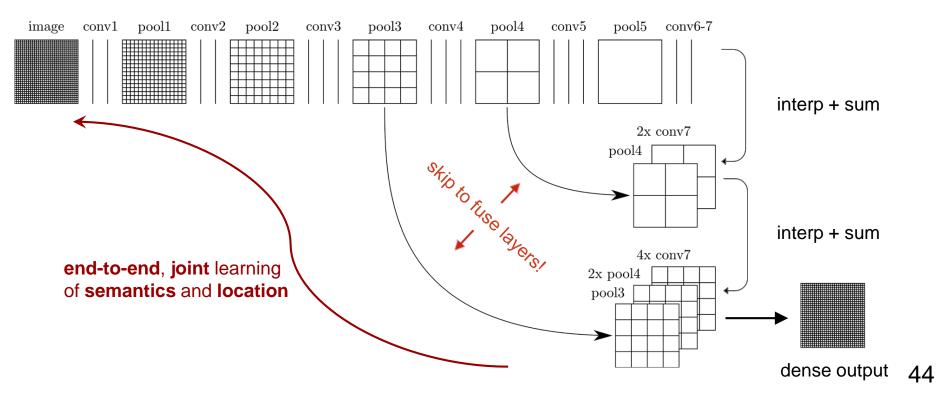
intermediate layers



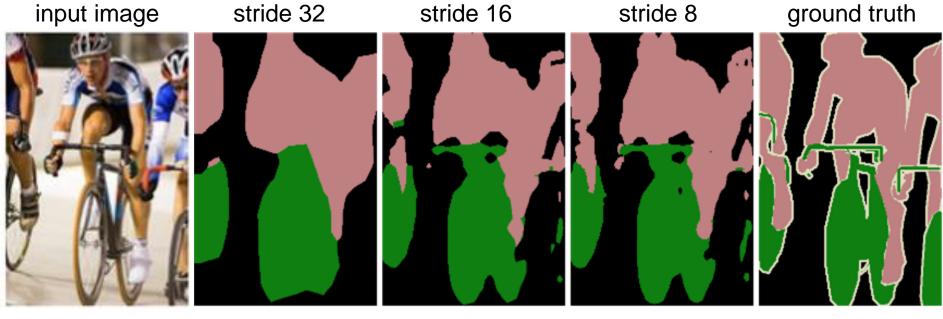
fuse features into **deep jet**

(cf. Hariharan et al. CVPR15 "hypercolumn")

skip layers



skip layer refinement



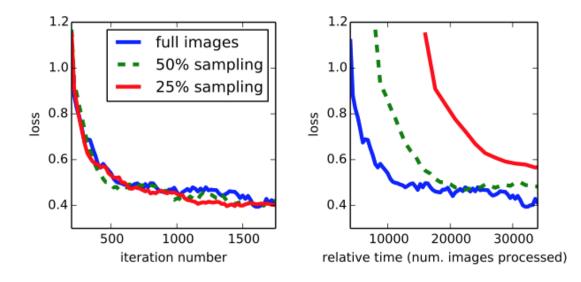
no skips

1 skip

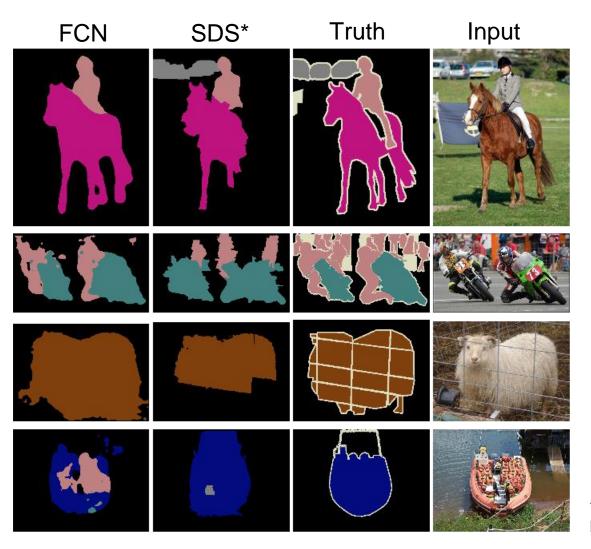
2 skips

training + testing

- train full image at a time without patch sampling
- reshape network to take input of any size
- forward time is ~100ms for 500 x 500 x 21 output



results



Relative to prior state-of-theart SDS:

- 30% relative
 improvement
 for mean IoU
- 286× faster

*Simultaneous Detection and Segmentation Hariharan et al. ECCV14 47