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Supervised Learning

[(xi, y"),izl...P] training dataset
x' ith Input training example

y'  i-th target label

P number of training examples

X
m——

Goal: predict the target label of unseen inputs.
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Supervised Learning: Examples

Classification

OCR
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Supervised Deep Learning

Classification

Denoising

OCR

“2345”
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Outline

« Supervised Neural Networks
« Convolutional Neural Networks
« Examples

« Tips
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Neural Networks

Assumptions (for the next few slides):
= The input image is vectorized (disregard the spatial layout of pixels)
= The target label is discrete (classification)

Question: what class of functions shall we consider to map the input
into the output?

Answer: composition of simpler functions.

Follow-up questions: Why not a linear combination? What are the
“simpler” functions? What is the interpretation?

Answer: later...
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Neural Networks: example

Input
1-st layer hidden units

h® 2-nd layer hidden units
O output

Example of a 2 hidden layer neural network (or 4 layer network,

counting also input and output).
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Forward Propagation

Def.: Forward propagation is the process of computing the
output of the network given its input.
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Forward Propagation

xeR’ w'er"" p'er™ plep"

h'=max(0,W'x +b")

W' 1-st layer weight matrix or weights
bl 1-st layer biases

The non-linearity #=max (0, v ) is called ReLU in the DL literature.

Each output hidden unit takes as input all the units at the previous

layer: each such layer is called “fully connected”. ’
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Forward Propagation

N

ner" w*er"™™™ peR': pepr™
W=max(0,W°h'+b*)

JW*? 2-nd layer weight matrix or weights
p* 2-nd layer biases
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Forward Propagation

N N
> pPeR™ oe R

Wer" w'er™™
o=max(0,W° W+ b’)

W3 3-rd layer weight matrix or weights
b3 3-rd layer biases
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Alternative Graphical Representation
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Interpretation

Question: Why can't the mapping between layers be linear?

Answer: Because composition of linear functions is a linear function.
Neural network would reduce to (1 layer) logistic regression.

Question: What do ReLU layers accomplish?

Answer: Piece-wise linear tiling: mapping is locally linear.
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Interpretation

Question: Why do we need many layers?

Answer: When input has hierarchical structure, the use of a
hierarchical architecture is potentially more efficient because
Intermediate computations can be re-used. DL architectures are
efficient also because they use distributed representations which
are shared across classes.

[0010000100110010...]truckfeature

Exponentially more efficient than a
1-of-N representation (a la k-means)
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Interpretation

[1100010100001101] motorbike

0010000100110010...] tuck
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Interpretation

prediction of class

high-level
parts

= distributed representations
s feature sharing
= compositionality

mid-level
parts

low level
parts

Input image Fe st

—— e == pE———
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Interpretation

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature detector.

Question: How many layers? How many hidden units?

Answer: Cross-validation or hyper-parameter search methods are
the answer. In general, the wider and the deeper the network the
more complicated the mapping.

Question: How do | set the weight matrices?

Answer: Weight matrices and biases are learned.

First, we need to define a measure of quality of the current mapping.

Then, we need to define a procedure to adjust the parameters. o
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How Good is a Network?

Probability of class k given input (softmax):

o

e
p( Ck — 1 |x ) — C
2.
j=1
(Per-sample) Loss; e.qg., negative log-likelihood (good for classification
of small number of classes):

L(x,y;0)==2, ylogplc|x)

k
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Training

Learning consists of minimizing the loss (plus some
regularization term) w.r.t. parameters over the whole training set.

P
0" =arg mz’n(,Z:M:1 L(x",y",;0)

Question: How to minimize a complicated function of the
parameters?

Answer: Chain rule, a.k.a. Backpropagation! That is the procedure
to compute gradients of the loss w.r.t. parameters in a multi-layer
neural network.
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Key Idea: Wiggle To Decrease Loss

Let's say we want to decrease the loss by adjusting W1 E
We could consider a very small e=1e-6 and compute:

L(x,y;0)

L(x,y;0\W, W, +¢)

I

Then, update:

W:,]'(_W:,]'_I_Esgn([‘(x?y; 9)_L(x? y;e\W:,j’ Wt’,j_l_e)) 20
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Derivative w.r.t. Input of Softmax

O

ple,=1lx)= Z =

1 k C
L(x,y,'e)z—zjyjlogp(cj|x) y=[00..010..0]|

By substituting the fist formula in the second, and taking the
derivative w.r.t. 0 we get:

0L

6—02 p(ch)—y
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Backward Propagation

Given 0 L/00 and assuming we can easily compute the
Jacobian of each module, we have:

0L 9L do 0L 8L do

ow® 0o aw’ o> 00 an
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Backward Propagation

Given 0 L/00 and assuming we can easily compute the

Jacobian of each module, we have:

oL 0L do 0L 0L do
ow® 0o aw’ o> 00 an
oL oL
= (plc|x)—y) 0" =W (ple|x)—y)»

oW’ oh’



Backward Propagation

oL
oh’

oL 0L ol oL 0L ol

ow?* on oW’ oh'  on* on'

Given

we can compute now:
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Backward Propagation

oL
oh'

0L OL Oh'
ow' on' ow'

Given

we can compute now:
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Backward Propagation

Question: Does BPROP work with ReLU layers only?

Answer: Nope, any a.e. differentiable transformation works.

Question: What's the computational cost of BPROP?

Answer: About twice FPROP (need to compute gradients w.r.t. input
and parameters at every layer).

Note: FPROP and BPROP are dual of each other. E.g.,:

FPROP BPROP
= <=7
- | I
w 1
- ==

COPY
A
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Optimization

Stochastic Gradient Descent (on mini-batches):

00 -nSs.ne(0.1)

Stochastic Gradient Descent with Momentum:

6—0—nA
oL

Note: there are many other variants... 2
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Outline

« Convolutional Neural Networks
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