
Recap

• Segmentation vs Boundary Detection vs 
semantic segmentation / scene parsing

• Why boundaries / Grouping?

• Recap: Canny Edge Detection

• The Berkeley Segmentation Data Set

• pB boundary detector ~2001

• Sketch Tokens 2013



Today: Scene Parsing / Semantic 
Segmentation
• Label every pixel of an image with a category 

label (usually with the help of contextual 
reasoning).

• Well known example: TextonBoost

• Detailed look at the “non parametric” 
approach of Tighe and Lazebnik



Object Recognition and 

Segmentation are Coupled

Images from 

[Leibe et al. 2005]

Approximate Segmentation Good SegmentationNo Segmentation

People Present



The Three Approaches

• Segment  Detect

• Detect  Segment

• Segment  Detect



Segment first and ask questions later.

• Reduces possible locations for objects

• Allows use of shape information and makes 
long-range cues more effective

• But what if segmentation is wrong?

[Duygulu et al ECCV 2002]



Object recognition + data-driven 

smoothing

• Object recognition drives segmentation

• Segmentation gives little back

He et al. 2004

TextonBoost



TextonBoost: Joint Appearance, Shape and 

Context Modeling for Multi-Class Object 

Recognition and Segmentation

J. Shotton ; University of Cambridge

J. Jinn, C. Rother, A. Criminisi ; MSR Cambridge

Slides modified from Derek Hoiem



The Ideas in TextonBoost

• Textons from Universal Visual Dictionary paper 
[Winn Criminisi Minka ICCV 2005]

• Color models and GC from “Foreground 
Extraction using Graph Cuts” [Rother 
Kolmogorov Blake SG 2004]

• Boosting + Integral Image from Viola-Jones

• Joint Boosting from [Torralba Murphy Freeman 
CVPR 2004]



What’s good about this paper

• Provides recognition + segmentation for 

many classes (for the time it was 

published)

• Combines several good ideas

• Very thorough evaluation



TextonBoost Overview

Shape-texture: localized textons

Color: mixture of Gaussians

Location: normalized x-y coordinates

Edges: contrast-sensitive Pott’s model



Texture-Shape

• 17 filters (oriented gaus/lap + dots)

• Cluster responses to form textons 

• Count textons within white box (relative to 

position i)

• Feature = texton + rectangle



Texton Visualization



Results on Boosted Textons

• Boosted shape-textons in isolation

– Training time: 42 hrs for 5000 rounds on 21-

class training set of 276 images



Qualitative (Good) Results



Qualitative (Bad) Results

• But notice good segmentation, even with 

bad labeling



Quantitative Results



Closed-universe recognition
Fixed, pre-defined set of classes

Fixed, static 
training set

Learning

Test image

Output

Inference

(offline)

Models



Closed-universe datasets Open-universe datasets

• Small amount of data

• Static datasets

• Limited variation

• Full annotation

• Large amount of data

• Evolving datasets

• Wide variation

• Incomplete annotation



Evolving training set http://labelme.csail.mit.edu/

Open-universe recognition

http://labelme.csail.mit.edu/
http://labelme.csail.mit.edu/tool.html
http://labelme.csail.mit.edu/tool.html


Very large/open-ended set of classes

…

Open-universe recognition



Very large/open-ended set of classes

…

Open-universe recognition
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Training set

Test image

On-the-fly inference

road

building

car

sky

Potential solution: Lazy learning



LARGE-SCALE  NONPARAMETRIC  IMAGE  PARSING

Joseph Tighe and Svetlana Lazebnik

ECCV 2010
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Step 1: Scene-level matching

Gist
(Oliva & Torralba, 2001)

Spatial Pyramid
(Lazebnik et al., 2006)

Color Histogram



Step 2: Region-level matching

Superpixels
(Felzenszwalb & Huttenlocher, 2004)

Superpixel features



Step 2: Region-level matching

Snow

Road

Tree

Building
Sky

Pixel Area (size)



Road

Sidewalk

Step 2: Region-level matching

Absolute mask
(location)



Step 2: Region-level matching

Road

SkySnowSidewalk

Texture



Step 2: Region-level matching

Building

Sidewalk

Road

Color histogram



Region-level likelihoods

 Nonparametric estimate of class-conditional densities for 

each class c and feature type k:

 Per-feature likelihoods combined via Naïve Bayes:
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Region-level likelihoods

Building Car Crosswalk

SkyWindowRoad



Step 3: Global image labeling

 Compute a global image labeling by optimizing a Markov 

random field (MRF) energy function:

  
i ji

jijiii cccccrLE
,

),(][),(log)( c

Likelihood score for 
region ri and label ci

Co-occurrence 
penalty

Vector of 
region 
labels

Regions Neighboring 
regions

Smoothing 
penalty

ri rj

Efficient approximate 
minimization using -expansion 
(Boykov et al., 2002)
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Step 3: Global image labeling

 Compute a global image labeling by optimizing a Markov 

random field (MRF) energy function:

  
i ji

jijiii cccccrLE
,

),(][),(log)( c

Likelihood score for 
region ri and label ci

Co-occurrence 
penalty

Vector of 
region 
labels

Regions Neighboring 
regions

Smoothing 
penalty
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Datasets
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SIFT Flow (Liu et al., 2009) 2,488 200 33

Barcelona 14,871 279 170

LabelMe+SUN 50,424 300 232



Overall performance



Per-class classification rates
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Results on SIFT Flow dataset



Results on LM+SUN dataset



Summary so far

 A lazy learning method for image parsing:

 Global scene matching

 Superpixel-level matching

 MRF optimization

 Challenges

 Indoor images are hard!

 We do well on “stuff” but not on “things”



We get the “stuff” but not the “things”
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FINDING THINGS: IMAGE PARSING WITH REGIONS 

AND PER-EXEMPLAR DETECTORS

Joseph Tighe and Svetlana Lazebnik

CVPR 2013

Superparsing Result Detector Based Parsing Result

Bus
Sign

Wheel



Per-exemplar detectors

 For each instance of a class: train SVM based on 

HOG features

 Negative examples are taken from all images that 

do not contain the class

Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. Ensemble of 
Exemplar-SVMs for Object Detection and Beyond. In ICCV, 2011



Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. Ensemble of Exemplar-SVMs 
for Object Detection and Beyond . In ICCV, 2011



Per-exemplar detectors for parsing

 Retrieve a set of similar images using global image 

descriptors

 Train per-exemplar detectors for “things” in 

retrieval set

 Run trained detectors on query and transfer 

weighted masked for all positive detections



Retrieval set for



Retrieval set for



Per-exemplar detectors for parsing

 Retrieve a set of similar images using global image 

descriptors

 Train per-exemplar detectors for each object in 

retrieval set

 Run trained detectors on query and transfer 

weighted masked for all positive detections



Per-exemplar detectors for parsing



Per-exemplar detectors for parsing







Per-exemplar detectors for parsing

 Retrieve a set of similar images using global image 

descriptors

 Train per-exemplar detectors for “things” in 

retrieval set

 Run trained detectors on query and transfer 

weighted masks for all positive detections



Per-exemplar detectors for parsing



Superparsing Result Detector-based Parsing Result

55% (23%) 45% (26%)

Bus

Sign

Wheel
Building

Car

Some bus



How do we combine these?

 Learn which labels to trust. If there are c classes, 

there are 2c predictions at each pixel (one from 

super-parsing, one from the object detectors). 

 Learn an SVM to predict the best category from 

those 2c confidences.

 Then smooth with an MRF



Superparsing Result Detector Based Parsing Result

55% (23%) 45% (26%)

61% (31%)
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Superparsing Result Detector Based Parsing Result

52% (31%) 19% (25%)

Boat
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Ceiling Statue

Building
Church



Superparsing Result Detector Based Parsing Result

52% (31%) 19% (25%)

62% (46%)

Boat

Sea

Sky



Superparsing Result Detector Based Parsing Result

12% (7%) 20% (9%)

Washing Machine
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Window
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Wall

Ceiling

Dishwasher



Superparsing Result Detector Based Parsing Result

12% (7%) 20% (9%)

24% (10%)
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Window
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SuperParsing Conclusion

 Image parsing with superpixels

 Scene-level matching

 Superpixel-level matching

 MRF optimization

 Getting “things” with detectors

 Use per-exemplar detectors of Malisiewicz et al.



Summary

 There are several ways to generate semantic 

segmentations.

 Segment then classify

 Detect then segment

 Various things in between

 Not clear what is correct.

 Expect to see more research in this area as PASCAL 

VOC fades and MS COCO gets more attention.


