Recap

Segmentation vs Boundary Detection vs
semantic segmentation / scene parsing

Why boundaries / Grouping?

Recap: Canny Edge Detection

The Berkeley Segmentation Data Set
pB boundary detector ~2001

Sketch Tokens 2013



Today: Scene Parsing / Semantic

Segmentation

* Label every pixel of an image with a category
label (usually with the help of contextual
reasoning).

* Well known example: TextonBoost

* Detailed look at the “non parametric”
approach of Tighe and Lazebnik



Object Recognition and
Segmentation are Coupled

A

People Present

No Segmentation Approximate Segmentation Good Segmentation

Images from
[Leibe et al. 2005]



The Three Approaches

 Segment - Detect

* Detect > Segment

« Segment <> Detect



Segment first and ask guestions later.
* Reduces possible locations for objects

* Allows use of shape information and makes
long-range cues more effective

« But what if segmentation is wrong?




Object recognition + data-driven
smoothing

* ODbject recognition drives segmentation
« Segmentation gives little back

Origzinal Hand-labeling E |1 |l| T MRF mCREF mCRE conhidence
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TextonBoost: Joint Appearance, Shape and
Context Modeling for Multi-Class Object
Recognition and Segmentation

J. Shotton ; University of Cambridge
J. Jinn, C. Rother, A. Criminisi ; MSR Cambridge
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The Ideas In TextonBoost

Textons from Universal Visual Dictionary paper
[Winn Criminisi Minka ICCV 2005]

Color models and GC from “Foreground
Extraction using Graph Cuts” [Rother
Kolmogorov Blake SG 2004]

Boosting + Integral Image from Viola-Jones

Joint Boosting from [Torralba Murphy Freeman
CVPR 2004]



What's good about this paper

* Provides recognition + segmentation for
many classes (for the time it was
pubhshed)

Object uilding Grass
classes

Bike Flower s

 Combines several good ideas

* Very thorough evaluation



TextonBoost Overview
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Texture-Shape

(a) Input image (b) Texton map (c) Feature pair = (r,t) (d) Superimposed rectangles

17 filters (oriented gaus/lap + dots)
Cluster responses to form textons

Count textons within white box (relative to
position 1)

Feature = texton + rectangle



Texton Visualization

clustering and
assignment  /f

input image filter bank texton map
(colors < texton indices)




Results on Boosted Textons

* Boosted shape-textons in isolation

— Training time: 42 hrs for 5000 rounds on 21-
class training set of 276 images
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error on training set
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‘a) Number of weak classifiers (rounds of boosting) (1 )) Number of weak classifiers (rounds of boosting)



Qualitative (Good) Results
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Qualitative (Bad) Results

* But notice good segmentation, even with
bad labeling

building

sign
road




Quantitative Results
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Closed-universe recognition

Fixed, pre-defined set of classes

.sky .tree .road .grass .water .bldg .mntn .fgobj.

Fixed, static
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Closed-universe datasets Open-universe datasets
s A “.\ “’(

flickr YouTTD)

* Small amount of data * Large amount of data
* Static datasets * Evolving datasets
* Limited variation * Wide variation

* Full annotation * Incomplete annotation



Open-universe recognition

There are 754152 Iabelled objects

Polygons in this image
(MG, XML)
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http://labelme.csail.mit.edu/
http://labelme.csail.mit.edu/tool.html
http://labelme.csail.mit.edu/tool.html

Open-universe recognition

Very large/open-ended set of classes
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Millions of Pixels
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Open-universe recognition

Very Iqrge/open-ended set of clqsses

Unbalanced data distribution
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Potential solution: Lazy learning
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LARGE-SCALE NONPARAMETRIC IMAGE PARSING

Joseph Tighe and Svetlana Lazebnik

ECCV 2010
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Step 1: Scene-level matching

Color Histogram Spatial Pyramid Gist
g (Lazebnik et al.,, 2006) (Oliva & Torralba, 2001)
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Step 2: Region-level matching

Superpixels
(Felzenszwalb & Huttenlocher, 2004)

Superpixel features

Mask of superpixel shape over its bounding box (8 x 8)

64

Shape Bounding box width/height relative to image width /height|2
Superpixel area relative to the area of the image 1
Location Mask of superpixel shape over the image 64
Top height of bounding box relative to image height 1
Texton histogram, dilated texton histogram 100 x 2
Texture/SIFT|SIFT histogram, dilated SIFT histogram 100 x 2
Left/right /top/bottom boundary SIFT histogram 100 x 4
Color RGB color mean and std. dev. 3 x2
Color histogram (RGDB, 11 bins per channel), dilated hist. |33 x 2
Color thumbnail (8 x 8) 192
Appearance |Masked color thumbnail 192
Grayscale gist over superpixel bounding box 320




Step 2: Region-level matching
—
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Step 2: Region-level matching
—

Absolute mask
(location)




Step 2: Region-level matching

Texture



Step 2: Region-level matching
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Region-level likelihoods

Nonparametric estimate of class-conditional densities for
each class ¢ and feature type k:

Features of class ¢ within
#(N ( fk (rl))’ C) some radius of r;
# D Total features of class ¢
y C in the dataset

FA)(fk(ri)‘C):

kth feature type
of ith region

Per-feature likelihoods combined via Naive Bayes:

P(r.lc)= [[P(f.(r)|c)

features k



Region-level likelihoods

Crosswalk




Step 3: Global image labeling

Compute a global image labeling by optimizing a Markov
random field (MRF) energy function:

E(c):Z—Iog\L(ri,ci)} + 12\5[@7&0,—]}50(%0;)}

Y

Vector of Regions Likelihood score for Neighboring Smoothing Co-occurrence
region region r; and label c; regions penalty penalty
labels

Efficient approximate
minimization using oL-expansion
(Boykov et al., 2002)




Step 3: Global image labeling

Compute a global image labeling by optimizing a Markov
random field (MRF) energy function:

E(c):Z—Iog\L(ri,ci)} + AZ§[0i¢Cj]§o(ci,0j)}

Y

Vector of Regions Likelihood score for Neighboring Smoothing Co-occurrence
region region r; and label c; regions penalty penalty

labels




Step 3: Global image labeling
—

1 Compute a global image labeling by optimizing a Markov
random field (MRF) energy function:

E(c):Z—Iog\L(ri,ci)} + ZZ§[0i¢Cj]§o(ci,Cj)}

Y

Vector of Regions Likelihood score for Neighboring Smoothing Co-occurrence
region region r; and label c; regions penalty penalty
labels

Maximum likelihood
Original image labeling Edge penalties MRF labeling

sky
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g
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Datasets
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Overall performance

SIFT Flow
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Per-class classification rates
—
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Results on SIFT Flow dataset

Query Ground Initial Edge Final
Truth Labels Labeling Penalties Labeling

M Building ® Car ™ Road M Sidewalk W Sky B Tree
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Results on LM+SUN dataset

Query Ground Initial Final
Truth Labels Labeling Labeling
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Summary so far

A lazy learning method for image parsing:
Global scene matching
Superpixel-level matching

MRF optimization
Challenges

Indoor images are hard!

We do well on “stuff” but not on “things”



We get the “stuff” but not the “things”
—

sky
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FINDING THINGS: IMAGE PARSING WITH REGIONS
AND PER-EXEMPLAR DETECTORS

Joseph Tighe and Svetlana Lazebnik
CVPR 2013

Superparsing Result Detector Based Parsing Result

i contiorer




Per-exemplar detectors
—

1 For each instance of a class: train SVM based on
HOG features

7 Negative examples are taken from all images that
do not contain the class

Category-SVM Exemplar-SVM 1 Exemplar-SVM 2 Exemplar-SVM N

- | V"., e !'\ -
¥ T e «
x B

i
.
{

Tomasz Malisiewicz, Abhinav Gupta, Alexei A. Efros. Ensemble of
Exemplar-SVMs for Object Detection and Beyond. In ICCV, 2011
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Per-exemplar detectors for parsing
N

71 Retrieve a set of similar images using global image
descriptors

O Train per-exemplar detectors for “things” in
retrieval set

O Run trained detectors on query and transfer
weighted masked for all positive detections



Retrieval set for
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Per-exemplar detectors for parsing
N

O Retrieve a set of similar images using global image
descriptors

1 Train per-exemplar detectors for each object in
retrieval set

O Run trained detectors on query and transfer
weighted masked for all positive detections



Per-exemplar detectors for parsing
]




Per-exemplar detectors for parsing










Per-exemplar detectors for parsing
|

O Retrieve a set of similar images using global image
descriptors

O Train per-exemplar detectors for “things” in
retrieval set

71 Run trained detectors on query and transfer
weighted masks for all positive detections



Per-exemplar detectors for parsing
]




Superparsing Result

Some bus;_

N fer,, Bruilding:;

55% (23%

Detector-based Parsing Result

45% (26%




How do we combine these?

Learn which labels to trust. If there are c classes,
there are 2c predictions at each pixel (one from
super-parsing, one from the object detectors).

Learn an SVM to predict the best category from
those 2c¢ confidences.

Then smooth with an MRF
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Superparsing Result Detector Based Parsing Result
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Superparsing Result
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SuperParsing Conclusion

Image parsing with superpixels
Scene-level matching
Superpixel-level matching
MRF optimization

Getting “things” with detectors

Use per-exemplar detectors of Malisiewicz et al.



Summary

There are several ways to generate semantic
segmentations.

Segment then classify
Detect then segment

Various things in between
Not clear what is correct.

Expect to see more research in this area as PASCAL
VOC fades and MS COCO gets more attention.



