Attributes

Computer Vision

James Hays

Many slides from Derek Hoiem

Recap: Human Computation

- Active Learning: Let the classifier tell you where more annotation is needed.
- Human-in-the-loop recognition: Have a human and computer cooperate to do recognition.
- Mechanical Turk is powerful but noisy
 - Determine which workers are trustworthy
 - Find consensus over multiple annotators
 - "Gamify" your task to the degree possible

Recap: Recognition Data Sets

- SUN Scene Database
 Not Crowdsourced, 397 (or 720) scene categories
- PASCAL VOC
 - Not Crowdsourced, bounding boxes, 20 categories.
- LabelMe (Overlaps with SUN)

 Sort of Crowdsourced, Segmentations, Open ended
- SUN Attribute database (Overlaps with SUN)
 Crowdsourced, 102 attributes for every scene
- ImageNet
 - Large, Crowdsourced, Hierarchical, *Iconic* objects
- COCO
 - Large, Crowdsourced, 80 segmented object categories in complex scenes

Today – Crowd enabled recognition

- Recognizing Object Attributes
- Recognizing Scene Attributes

Describing Objects by their Attributes

Ali Farhadi, Ian Endres, Derek Hoiem, David Forsyth CVPR 2009

What do we want to know about this object?

What do we want to know about this object?

Object recognition expert: "Dog"

What do we want to know about this object?

Object recognition expert: "Dog"

Person in the Scene: "Big pointy teeth", "Can move fast", "Looks angry"

Our Goal: Infer Object Properties

Can I poke with it? Is it alive? What shape is it? Does it have a tail? Can I put stuff in it? Is it soft? Will it blend?

1. We want detailed information about objects

"Dog" vs. "Large, angry animal with pointy teeth"

2. We want to be able to infer something about unfamiliar objects

New Object

Familiar Objects

2. We want to be able to infer something about unfamiliar objects

If we can infer category names...

Familiar Objects

New Object

???

Horse

Dog

2. We want to be able to infer something about unfamiliar objects

If we can infer properties...

Familiar Objects

Brown Muscular Has Snout

. . . .

New Object

Has Stripes (like cat) Has Mane and Tail (like horse) Has Snout (like horse and dog)

Has Stripes Has Four Legs Has Mane

Has Ears Has Tail Has Eyes

Has Snout

3. We want to make comparisons between objects or categories

What is unusual about this dog?

What is the difference between horses and zebras?

Strategy 1: Category Recognition

Category Recognition: PASCAL 2008 Category \rightarrow Attributes: ??

Strategy 2: Exemplar Matching

Malisiewicz Efros 2008

Hays Efros 2008 Efros et al. 2003

Strategy 3: Infer Properties Directly

Object Image

classifier for each attribute

No Wheels Old Brown Made of Metal

See also Lampert et al. 2009 Gibson's affordances

The Three Strategies

Our attributes

- Visible parts: "has wheels", "has snout", "has eyes"
- Visible materials or material properties: "made of metal", "shiny", "clear", "made of plastic"
- Shape: "3D boxy", "round"

Attribute Examples

Shape: Horizontal Cylinder Part: Wing, Propeller, Window, *Wheel* Material: *Metal*, Glass

Shape: Part: Window, *Wheel*, Door, Headlight, Side Mirror Material: *Metal*, Shiny

Attribute Examples

Shape: Part: Head, Ear, Nose, Mouth, Hair, Face, Torso, Hand, Arm Material: Skin, Cloth

Shape: Part: Head, Ear, Snout, Eye Material: Furry Shape: Part: Head, Ear, Snout, Eye, Torso, Leg Material: Furry

Datasets

- a-Pascal
 - 20 categories from PASCAL 2008 trainval dataset (10K object images)
 - airplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train, tv monitor
 - Ground truth for 64 attributes
 - Annotation via Amazon's Mechanical Turk
- a-Yahoo
 - 12 new categories from Yahoo image search
 - bag, building, carriage, centaur, donkey, goat, jet ski, mug, monkey, statue of person, wolf, zebra
 - Categories chosen to share attributes with those in Pascal
- Attribute labels are somewhat ambiguous
 - Agreement among "experts" 84.3
 - Between experts and Turk labelers 81.4
 - Among Turk labelers 84.1

Annotation on Amazon Turk

Our approach

Strategy: cover our bases

- Spatial pyramid histograms of quantized
 - Color and texture for materials
 - Histograms of gradients (HOG) for parts
 - Canny edges for shape

Our approach

Learning Attributes

- Learn to distinguish between things that have an attribute and things that do not
- Train one classifier (linear SVM) per attribute

Experiments

• Predict attributes for unfamiliar objects

Identify what is unusual about an object

Describing Objects by their Attributes

No examples from these object categories were seen during training

Describing Objects by their Attributes

' is 3D Boxy' 'has Wheel' 'has Window 'is Round' ' 'has Torso'

'has Tail' 'has Snout' 'has Leg' X 'has Text' X'has Plastic'

No examples from these object categories were seen during training

Average ROC Area

Trained on a-PASCAL objects

Test Objects	Parts	Materials	Shape
a-PASCAL	0.794	0.739	0.739
a-Yahoo	0.726	0.645	0.677

Our approach

Category Recognition

- Semantic attributes not enough
 - 74% accuracy even with ground truth attributes
- Introduce discriminative attributes
 - Trained by selecting subset of classes and features
 - Dogs vs. sheep using color
 - Cars and buses vs. motorbikes and bicycles using edges
 - Train 10,000 and select 1,000 most reliable, according to a validation set

Attributes not big help when sufficient data

• Use attribute predictions as features

• Train linear SVM to categorize objects

PASCAL 2008	Base Features	Semantic Attributes	All Attributes
Classification Accuracy	58.5%	54.6%	59.4%
Class-normalized Accuracy	35.5%	28.4%	37.7%

Identifying Unusual Attributes

 Look at predicted attributes that are not expected given class label

Absence of typical attributes

752 reports

68% are correct

Presence of atypical attributes

951 reports47% are correct

Today – Crowd enabled recognition

- Recognizing Object Attributes
- Recognizing Scene Attributes

Genevieve Patterson and James Hays. CVPR 2012

Big Picture

- Scenes don't fit neatly into categories.
 Objects often do!
- Categories aren't expressive enough.

• We should reason about scene *attributes* instead of (or in addition to) scene categories.

Attribute-based Visual Understanding

polar bear		1923	4 1	and the second second
black:	no	-		
white:	yes			
brown:	no	Personal Low		1
stripes:	no	10000		
water:	yes		APProx 1	
eats fish:	yes		TPANOS	
zebra		man	ATE	
black:	yes	SUL DIRA	MINTE MILE	
white:	yes			
brown:	no		FUR	
stripes:	yes		7	And a state of the state of the state
water:	no	1	1 1	La contraction of the second
eats fish:	no		A STATES AND AND AND A	and and the second

Learning To Detect Unseen Object Classes by Between-Class Attribute Transfer. Lampert, Nickisch, and Harmeling. CVPR 2009.

Describing Objects by their Attributes.

Farhadi, Endres, Hoiem, Forsyth. CVPR 2009.

Attribute and Simile Classifiers for Face Verification.

Kumar, Berg, Belhumeur, Nayar. ICCV 2009.

Numerous more recent works on activity, texture, 3d models, etc.

- Spatial layout: large, enclosed
- Affordances / functions: can fly, park, walk
- Materials: shiny, black, hard
- Object presence: has people, ships
- Simile: looks like Star Trek
- Emotion: scary, intimidating

Which Scene Attributes are Relevant?

Inspired by the "splitting" task of Oliva and Torralba and "ESP game" by von Ahn and Blum.

Which attributes distinguish the scenes on the *left* from the scenes on the *right*?

rock, warm, barren, natural

102 Scene Attributes

grass trees sand tiles bikingmarble leaves bathing railroad rock exercise no-horizon glossy competing gaming stressful cluttered cleaning rugged digging vegetationclimbing fencing iccusing-tools pavement symmetricalstill-water studying scary constructing swimming queuingelectric-light medical-activity dry conducting-business congregating vinyl sunbathingnatural-light running-water hiking spectatingshrubbery soothing semi-enclosed sailing direct-sun farming openplaying reading man-made cold drivingpaper wood clouds brick warm sports vertical enclosed clouds brick sports vertical enclosed dirty

Scene Attribute Labeling

Click on the scenes below that contain the following lighting or material:

camping Either an actual camp site, or scene in wilderness suitable enough for humans to make a tent and/or sleep.

Example Scene

When you mouse over one of the images, a larger version of that image will appear in the box below.

These HITs are reviewed before being approved or rejected.

For futher instructions Click Here!

This task can be very subjective. If you are not sure about which images should be selected, please *SKIP THIS HIT* or email us to ask for clarification. There are more HITs with less subjective attributes.

SUN Attributes: A Large-Scale Database of Scene Attributes

http://www.cs.brown.edu/~gen/sunattributes.html

Global, binary attributes describing:

• Affordances / Functions (*e.g. farming, eating*)

- Materials (e.g. carpet, running water)
- Surface Properties (e.g. aged, sterile)

• Spatial Envelope (*e.g. enclosed, symmetrical*)

Statistics of database:

- 14,340 images from 717 scene categories
- 102 attributes
- 4 million+ labels
- good workers ~92% accurate
- pre-trained classifiers for download

102 dimensional attribute space reduced to 2d with t-SNE

Instances of the "15 Scene" Categories

Average Precision of Attribute Classifiers

Average Precision of Attribute Classifiers

Attribute Recognition

Test Scene Images	Highest Confidence Attributes with Confidence Values	Lowest Confidence Attributes with Confidence Values
	 0.74 vegetation 0.63 open area 0.60 sunny 0.57 sports 0.55 natural light 0.52 no horizon 0.51 foliage 0.49 competing 0.46 railing 0.46 natural 	-1.33 studying -1.36 gaming -1.38 fire -1.42 carpet -1.60 tiles -1.60 smoke -1.65 medical -1.67 cleaning -1.71 sterile -1.74 marble
	0.91 eating 0.89 socializing 0.70 waiting in line 0.51 cloth 0.42 shopping 0.42 reading 0.39 stressful 0.39 congregating 0.37 man-made 0.31 plastic	-1.07 gaming -1.11 running water -1.19 tiles -1.27 railroad -1.35 waves/ surf -1.36 building -1.37 fire -1.40 bathing -1.50 ice -1.63 smoke

Most Confident Classifications

Most Confident Classifications

Moist/ Damp

Natural

Stressful

Vacationing

Recap: Attributes and Crowdsourcing

- If you can only get one label per instance, maybe a categorical label is the most informative.
- But now that crowdsourcing exists, we can get enough training data to simultaneously reason about a multitude of object / scene properties (e.g. attributes).
- In general, there is a broadening of interesting recognition tasks.
- Zero-shot learning: model category with an attribute distribution only.