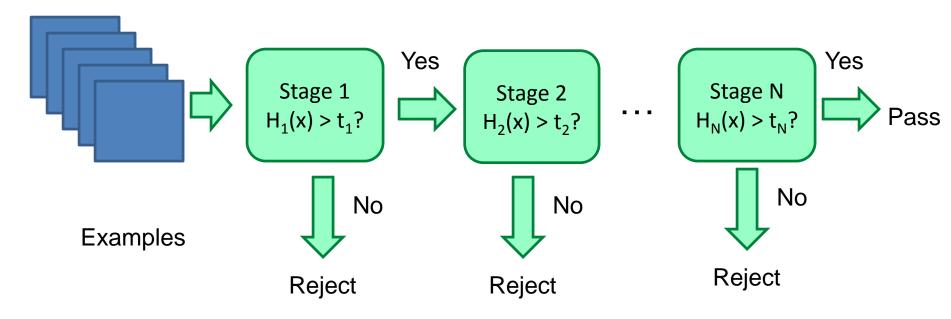
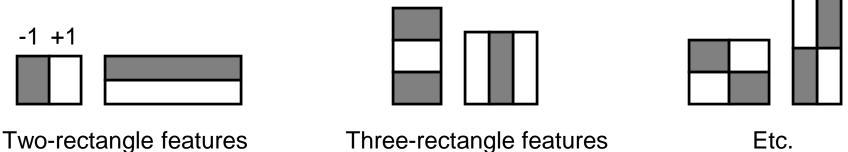
Cascade for Fast Detection



- Choose threshold for low false negative rate
- Fast classifiers early in cascade
- Slow classifiers later, but most examples don't get there

Features that are fast to compute

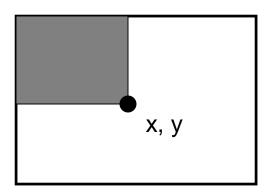
- "Haar-like features"
 - Differences of sums of intensity
 - Thousands, computed at various positions and scales within detection window



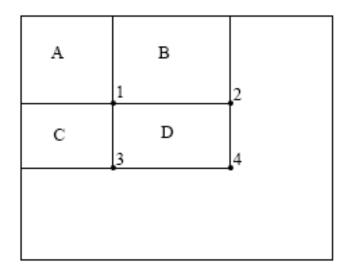
Three-rectangle features

Integral Images

• ii = cumsum(cumsum(im, 1), 2)



ii(x,y) = Sum of the values in the grey region



SUM within Rectangle D is ii(4) - ii(2) - ii(3) + ii(1)

Feature selection with Adaboost

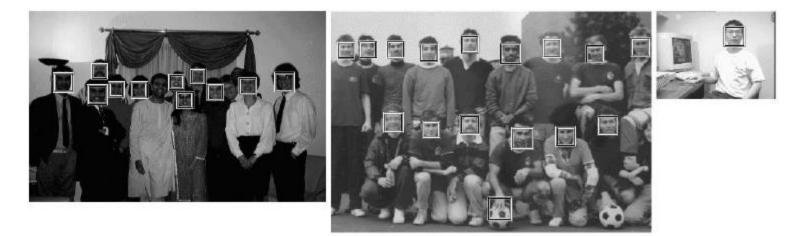
- Create a large pool of features (180K)
- Select features that are discriminative and work well together
 - "Weak learner" = feature + threshold + parity

$$h_j(x) = \begin{cases} 1 & \text{if } p_j f_j(x) < p_j \theta_j \\ 0 & \text{otherwise} \end{cases}$$

- Choose weak learner that minimizes error on the weighted training set
- Reweight

Viola Jones Results

Speed = 15 FPS (in 2001)



False detections							
Detector	10	31	50	65	78	95	167
Viola-Jones	76.1%	88.4%	91.4%	92.0%	92.1%	92.9%	93.9%
Viola-Jones (voting)	81.1%	89.7%	92.1%	93.1%	93.1%	93.2 %	93.7%
Rowley-Baluja-Kanade	83.2%	86.0%	-	-	-	89.2%	90.1%
Schneiderman-Kanade	-	-	-	94.4%	-	-	-
Roth-Yang-Ahuja	-	-	-	-	(94.8%)	-	-

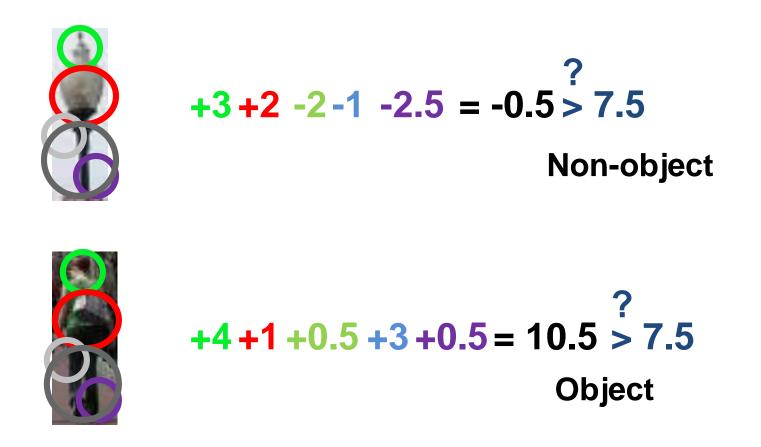
MIT + CMU face dataset

Object Detection

- Overview
- Viola-Jones
- Dalal-Triggs
- Deformable models
- Deep learning

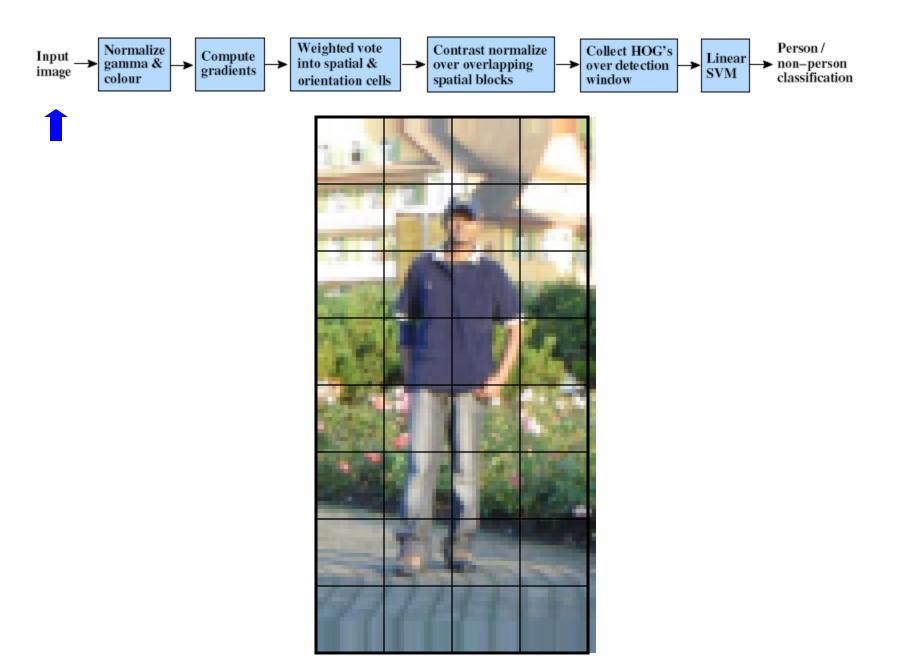
Statistical Template

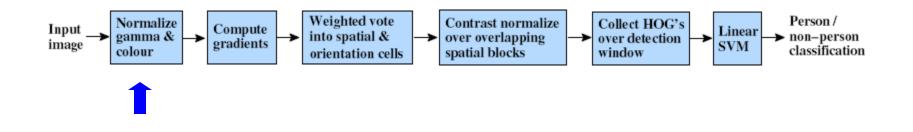
Object model = sum of scores of features at fixed positions



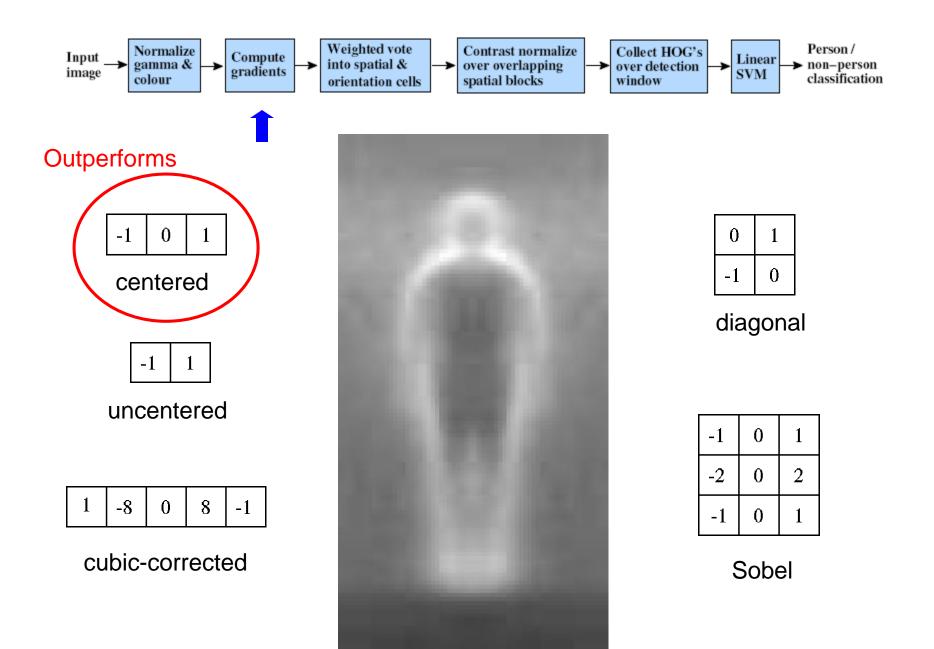
Example: Dalal-Triggs pedestrian detector

- 1. Extract fixed-sized (64x128 pixel) window at each position and scale
- 2. Compute HOG (histogram of gradient) features within each window
- 3. Score the window with a linear SVM classifier
- 4. Perform non-maxima suppression to remove overlapping detections with lower scores



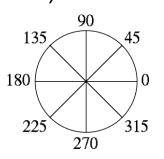


- Tested with
 - RGB
 Slightly better performance vs. grayscale
 LAB
 - Grayscale
- Gamma Normalization and Compression
 - Square root Very slightly better performance vs. no adjustment
 - Log

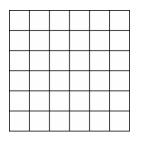


Histogram of gradient orientations

Orientation: 9 bins (for unsigned angles 0 -180)

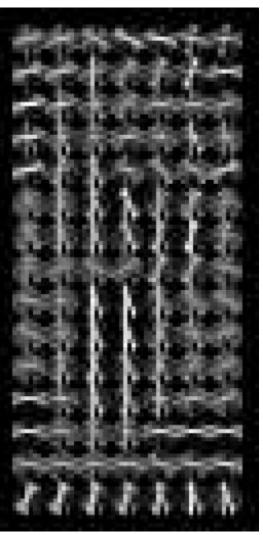


Histograms in k x k pixel cells

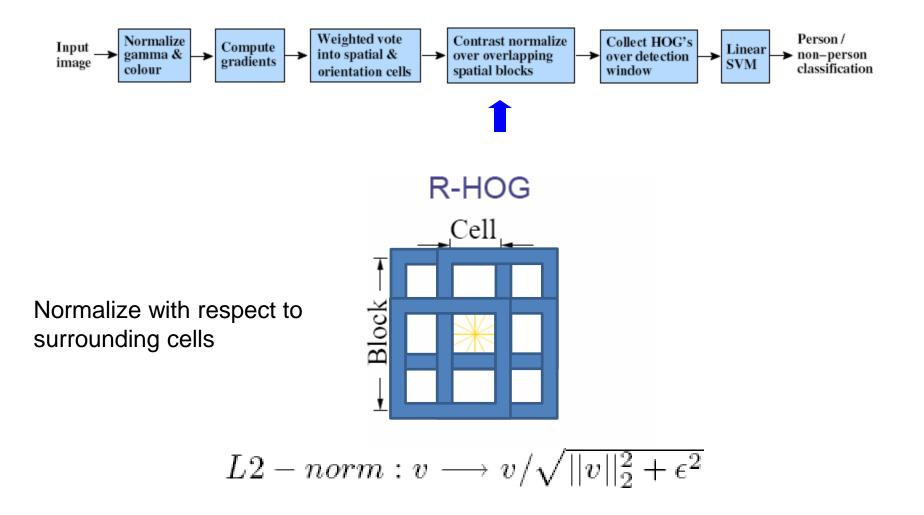


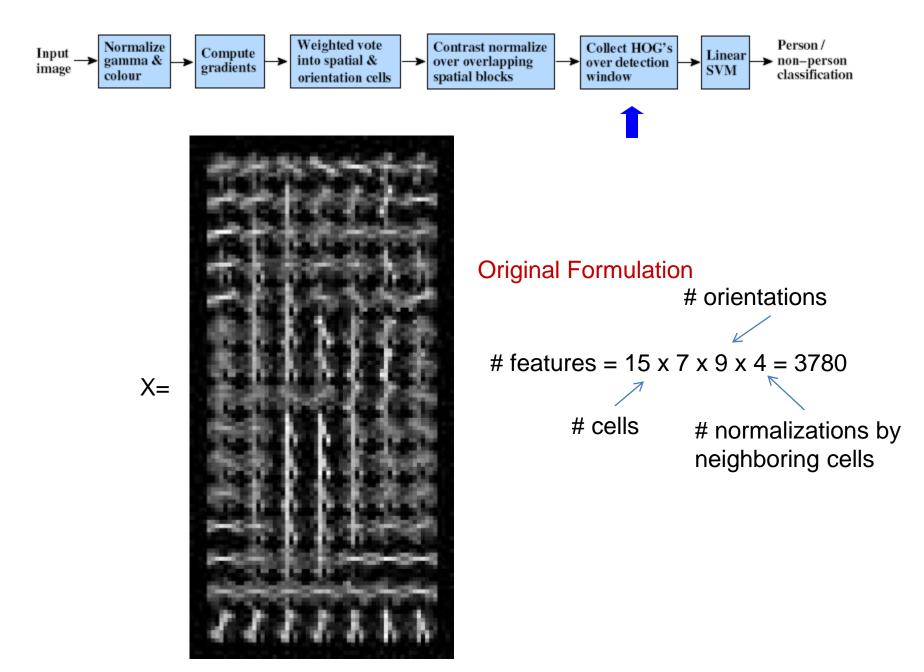
- Votes weighted by magnitude

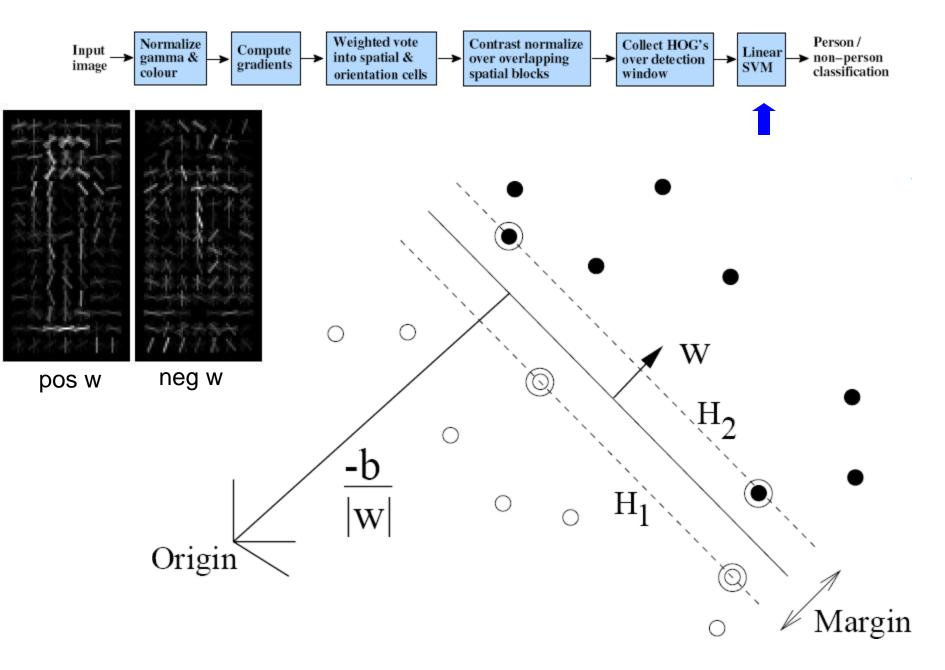
Bilinear interpolation between cells

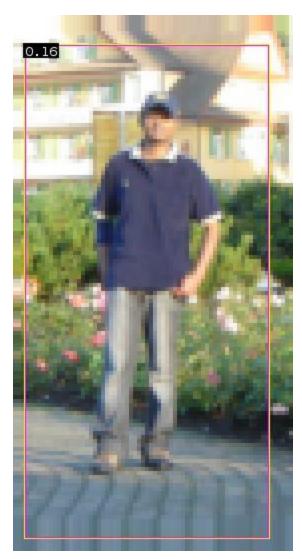


Slides by Pete Barnum









 $0.16 = w^T x - b$

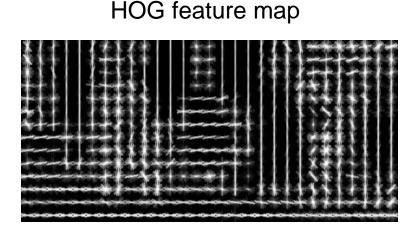
sign(0.16) = 1

=> pedestrian

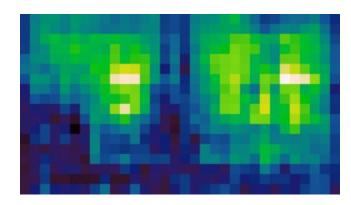
Slides by Pete Barnum

Pedestrian detection with HOG

- Train a pedestrian template using a linear support vector machine
- At test time, convolve feature map with template
- Find local maxima of response
- For multi-scale detection, repeat over multiple levels of a HOG *pyramid*



Detector response map



N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005 Something to think about...

- Sliding window detectors work
 - *very well* for faces
 - fairly well for cars and pedestrians
 - badly for cats and dogs
- Why are some classes easier than others?

Strengths and Weaknesses of Statistical Template Approach

Strengths

- Works very well for non-deformable objects with canonical orientations: faces, cars, pedestrians
- Fast detection

Weaknesses

- Not so well for highly deformable objects or "stuff"
- Not robust to occlusion
- Requires lots of training data

Tricks of the trade

- Details in feature computation really matter
 - E.g., normalization in Dalal-Triggs improves detection rate by 27% at fixed false positive rate
- Template size
 - Typical choice is size of smallest detectable object
- "Jittering" to create synthetic positive examples
 - Create slightly rotated, translated, scaled, mirrored versions as extra positive examples
- Bootstrapping to get hard negative examples
 - 1. Randomly sample negative examples
 - 2. Train detector
 - 3. Sample negative examples that score > -1
 - 4. Repeat until all high-scoring negative examples fit in memory

Things to remember

- Sliding window for search
- Features based on differences of intensity (gradient, wavelet, etc.)
 - Excellent results require careful feature design
- Boosting for feature selection
- Integral images, cascade for speed
- Bootstrapping to deal with many, many negative examples

