Large-scale category recognition and Advanced feature encoding

X

Computer Vision James Hays

Why do good recognition systems go bad?

- E.g. Why isn't our Bag of Words classifier at 90% instead of 70%?
- Training Data
 - Huge issue, but not necessarily a variable you can manipulate.
- Representation
 - Are the local features themselves lossy?
 - What about feature quantization? That's VERY lossy.
- Learning method
 - Probably not such a big issue, unless you're learning the representation (e.g. deep learning).

CalTech 101 - 2004

SUN Database: Large-scale Scene Categorization and Detection

Jianxiong Xiao, James Hays⁺, Krista A. Ehinger, Aude Oliva, Antonio Torralba Massachusetts Institute of Technology ⁺ Brown University

Scene Categorization

Oliva and Torralba, 2001

Coast

Forest Highway

Mountain City

Open Country

Street

Tall Building

Fei Fei and Perona, 2005

Suburb

Lazebnik, Schmid, and Ponce, 2006

Industrial

Store

15 Scene Recognition Rate

How many object categories are there?

Biederman 1987

H

10-1

AA

AH

H

H

1

A

H

II

H

m

D

I

冊

₹1

1

H

AAA

LIN!

n a

RUUGE

IUU

6558

airplane cabin

0

-

n

1

airport terminal

0

M Abfall M

apple orchard

2.00

car factory

100

C N CONDI

construction site

18

 E Did Gerverber

9

- WWW

«DEL

The second s

stadium

June

1

1 Dige

P35

100

ET UN IT RUESTURE CON

0

stream

train station

•

....

and Different Williams Williams Research Streams Streams

397 Well-sampled Categories

Evaluating Human Scene Classification

?

"Good worker" 98% 90% 68% Accuracy

bathroom(100%)

greenhouse outdoor(100%)

tennis court outdoor(100%)

beauty salon(100%)

playground(100%)

wind farm(100%)

bedroom(100%)

podium outdoor(100%)

bullnng(100%)

phone booth(100%)

veterinarians office(100%)

riding arena(100%)

Scene category

Most confusing categories

Inn (0%)

Bayou (0%)

Basilica (0%)

Restaurant patio (44%)

River (67%)

Cathedral(29%)

Chalet (19%)

Coast (8%)

Courthouse (21%)

Conclusion: humans can do it

- The SUN database is reasonably consistent and differentiable -- even with a huge number of very specific categories, humans get it right 2/3rds of the time with no training.
- We also have a good benchmark for computational methods.

How do we classify scenes?

How do we classify scenes?

Different objects, different spatial layout

Which are the important elements?

cabinets ceiling cabinets	cabinets ceiling cabinets	ceiling
window window window seat seat seat seat seat seat seat seat seat seat	window seat seat window seat seat seat seat seat seat seat seat	wall screen seat seat seat seat seat seat seat seat seat seat seat seat seat seat seat seat seat seat seat

Similar objects, and similar spatial layout

Different lighting, different materials, different "stuff"

Scene emergent features

"Recognition via features that are not those of individual objects but "emerge" as objects are brought into relation to each other to form a scene." – Biederman 81

Blobs

Textures

Global Image Descriptors

- Tiny images (Torralba et al, 2008)
- Color histograms
- Self-similarity (Shechtman and Irani, 2007)
- Geometric class layout (Hoiem et al, 2005)
- Geometry-specific histograms (Lalonde et al, 2007)
- Dense and Sparse SIFT histograms
- Berkeley texton histograms (Martin et al, 2001)
- HoG 2x2 spatial pyramids
- Gist scene descriptor (Oliva and Torralba, 2008)

Texture Features

Global Texture Descriptors

Bag of words

Sivic et. al., ICCV 2005 Fei-Fei and Perona, CVPR 2005

Non localized textons

Spatially organized textures

M. Gorkani, R. Picard, ICPR 1994 A. Oliva, A. Torralba, IJCV 2001

R. Datta, D. Joshi, J. Li, and J. Z. Wang, Image Retrieval: Ideas, Influences, and Trends of the New Age, ACM Computing Surveys, vol. 40, no. 2, pp. 5:1-60, 2008.

Gist descriptor

Oliva and Torralba, 2001

- Apply oriented Gabor filters over different scales
- Average filter energy in each bin

- 8 orientations
- 4 scales
- <u>x 16</u> bins
- 512 dimensions

Similar to SIFT (Lowe 1999) applied to the entire image

M. Gorkani, R. Picard, ICPR 1994; Walker, Malik. Vision Research 2004; Vogel et al. 2004; Fei-Fei and Perona, CVPR 2005; S. Lazebnik, et al, CVPR 2006; ...

Global scene descriptors

• The "gist" of a scene: Oliva & Torralba (2001)

http://people.csail.mit.edu/torralba/code/spatialenvelope/

Example visual gists

Global features (I) ~ global features (I')

Textons

Vector of filter responses at each pixel

Kmeans over a set of vectors on a collection of images

Filter bank

Malik, Belongie, Shi, Leung, 1999

Textons

Bag of words

65 17 23 36

Bag of words & spatial pyramid matching

Sivic, Zisserman, 2003. Visual words = Kmeans of SIFT descriptors

S. Lazebnik, et al, CVPR 2006

Better Bags of Visual Features

- More advanced quantization / encoding methods that are near the state-of-the-art in image classification and image retrieval.
 - Soft assignment (a.k.a. Kernel Codebook)
 - VLAD
 - Fisher Vector
- Deep learning has taken attention away from these methods.

Standard Kmeans Bag of Words

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf

Bag of Visual Words is only about **counting** the number of local descriptors assigned to each Voronoi region

Why not including **other statistics**?

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf

We already looked at the Spatial Pyramid

But today we're not talking about ways to preserve spatial information.

Motivation

Bag of Visual Words is only about **counting** the number of local descriptors assigned to each Voronoi region

Why not including **other statistics**? For instance:

mean of local descriptors ×

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf

Motivation

Bag of Visual Words is only about **counting** the number of local descriptors assigned to each Voronoi region

Why not including **other statistics**? For instance:

- mean of local descriptors
- (co)variance of local descriptors

http://www.cs.utexas.edu/~grauman/courses/fall2009/papers/bag_of_visual_words.pdf

Simple case: Soft Assignment

 Called "Kernel codebook encoding" by Chatfield et al. 2011. Cast a weighted vote into the most similar clusters.

Simple case: Soft Assignment

- Called "Kernel codebook encoding" by Chatfield et al. 2011. Cast a weighted vote into the most similar clusters.
- This is fast and easy to implement (try it for Project 4!) but it does have some downsides for image retrieval – the inverted file index becomes less sparse.

VLAD

Jégou, Douze, Schmid and Pérez, "Aggregating local descriptors into a compact image representation", CVPR'10.

A first example: the VLAD

A graphical representation of $v_i = \sum_{x_t: NN(x_t) = \mu_i} x_t - \mu_i$

Jégou, Douze, Schmid and Pérez, "Aggregating local descriptors into a compact image representation", CVPR'10.

The Fisher vector Score function

Given a likelihood function u_{λ} with parameters λ , the score function of a given sample X is given by:

$$G_{\lambda}^{X} = \nabla_{\lambda} \log u_{\lambda}(X)$$

 \rightarrow Fixed-length vector whose dimensionality depends only on # parameters.

Intuition: direction in which the parameters λ of the model should we modified to better fit the data.

Aside: Mixture of Gaussians (GMM)

- For Fisher Vector image representations, u_λ is a GMM.
- GMM can be thought of as "soft" kmeans.

 Each component has a mean and a standard deviation along each direction (or full covariance)

What about skipping quantization / summarization completely?

In Defense of Nearest-Neighbor Based Image Classification Boiman, Shechtman, Irani

Summary

- We've looked at methods to better characterize the distribution of visual words in an image:
 - Soft assignment (a.k.a. Kernel Codebook)
 - VLAD
 - Fisher Vector
 - No quantization

Learning Scene Categorization

Humans [68.5]

Feature Accuracy

Classifier: 1-vs-all SVM with histogram intersection, chi squared, or RBF kernel.

limousine interior (95% vs 80%)

riding arena (100% vs 90%)

sauna (96% vs 95%)

skatepark (96% vs 90%)

subway interior (96% vs 80%)

Humans bad Comp. bad

Human good Comp. bad

Human bad Comp. good

Database and source code available at http://groups.csail.mit.edu/vision/SUN/

Additional details available:

SUN Database: Large-scale Scene Recognition from Abbey to Zoo. Jianxiong Xiao, James Hays, Krista A. Ehinger, Aude Oliva, Antonio Torralba. *CVPR 2010.*

How do we do better than 40%?

- Features from deep learning on ImageNet get 42%
- Fisher vector encoding gets up to 47.2%

B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. "Learning Deep Features for Scene Recognition using Places Database." Advances in Neural Information Processing Systems 27 (NIPS), 2014