
Machine Learning Crash Course

Computer Vision
James Hays

Slides: Isabelle Guyon,

Erik Sudderth,

Mark Johnson,

Derek Hoiem

Photo: CMU Machine Learning

Department protests G20

Robert Borowicz

Bao Vu

Creston Bunch

Pranathi Tupakula

Murali Raghu Babu Balusu

Sandhya Sridhar

M S Suraj

Machine Learning Crash Course

Computer Vision
James Hays

Slides: Isabelle Guyon,

Erik Sudderth,

Mark Johnson,

Derek Hoiem

Photo: CMU Machine Learning

Department protests G20

Dimensionality Reduction

• PCA, ICA, LLE, Isomap

• PCA is the most important technique to
know. It takes advantage of correlations in
data dimensions to produce the best possible
lower dimensional representation based on
linear projections (minimizes reconstruction
error).

• PCA should be used for dimensionality
reduction, not for discovering patterns or
making predictions. Don't try to assign
semantic meaning to the bases.

How do we cluster?

• K-means
– Iteratively re-assign points to the nearest cluster

center

• Agglomerative clustering
– Start with each point as its own cluster and iteratively

merge the closest clusters

• Mean-shift clustering
– Estimate modes of pdf

• Spectral clustering
– Split the nodes in a graph based on assigned links with

similarity weights

Clustering for Summarization

Goal: cluster to minimize variance in data
given clusters

– Preserve information

  
N

j

K

i

jiN ij

21

,

** argmin, xcδc
δc



Whether xj is assigned to ci

Cluster center Data

Slide: Derek Hoiem

K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly

select K centers

2. Assign each

point to nearest

center

3. Compute new

center (mean)

for each cluster

http://en.wikipedia.org/wiki/K-means_clustering

K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly

select K centers

2. Assign each

point to nearest

center

3. Compute new

center (mean)

for each cluster

Back to 2

http://en.wikipedia.org/wiki/K-means_clustering

The machine learning

framework

• Apply a prediction function to a feature representation of

the image to get the desired output:

f() = “apple”

f() = “tomato”

f() = “cow”
Slide credit: L. Lazebnik

The machine learning

framework

y = f(x)

• Training: given a training set of labeled examples {(x1,y1),

…, (xN,yN)}, estimate the prediction function f by minimizing

the prediction error on the training set

• Testing: apply f to a never before seen test example x and

output the predicted value y = f(x)

output prediction

function

Image

feature

Slide credit: L. Lazebnik

Learning a classifier

Given some set of features with corresponding
labels, learn a function to predict the labels
from the features

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

Prediction

Steps

Training

Labels
Training

Images

Training

Training

Image

Features

Image

Features

Testing

Test Image

Learned

model

Learned

model

Slide credit: D. Hoiem and L. Lazebnik

Features

• Raw pixels

• Histograms

• GIST descriptors

• …
Slide credit: L. Lazebnik

One way to think about it…

• Training labels dictate that two examples are
the same or different, in some sense

• Features and distance measures define visual
similarity

• Classifiers try to learn weights or parameters
for features and distance measures so that
visual similarity predicts label similarity

Many classifiers to choose from

• SVM

• Neural networks

• Naïve Bayes

• Bayesian network

• Logistic regression

• Randomized Forests

• Boosted Decision Trees

• K-nearest neighbor

• RBMs

• Deep Convolutional Network

• Etc.

Which is the best one?

Claim:

The decision to use machine learning
is more important than the choice of
a particular learning method.

*Deep learning seems to be an exception to this, at
the moment, probably because it is learning the
feature representation.

Classifiers: Nearest neighbor

f(x) = label of the training example nearest to x

• All we need is a distance function for our inputs

• No training required!

Test

example
Training

examples

from class 1

Training

examples

from class 2

Slide credit: L. Lazebnik

Classifiers: Linear

• Find a linear function to separate the classes:

f(x) = sgn(w  x + b)

Slide credit: L. Lazebnik

• Images in the training set must be annotated with the

“correct answer” that the model is expected to produce

Contains a motorbike

Recognition task and supervision

Slide credit: L. Lazebnik

Unsupervised “Weakly” supervised Fully supervised

Definition depends on task

Slide credit: L. Lazebnik

Generalization

• How well does a learned model generalize from

the data it was trained on to a new test set?

Training set (labels known) Test set (labels

unknown)

Slide credit: L. Lazebnik

Generalization
• Components of generalization error

– Bias: how much the average model over all training sets differ

from the true model?

• Error due to inaccurate assumptions/simplifications made by

the model.

– Variance: how much models estimated from different training

sets differ from each other.

• Underfitting: model is too “simple” to represent all the

relevant class characteristics

– High bias (few degrees of freedom) and low variance

– High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant

characteristics (noise) in the data

– Low bias (many degrees of freedom) and high variance

– Low training error and high test error

Slide credit: L. Lazebnik

Bias-Variance Trade-off

• Models with too few
parameters are
inaccurate because of a
large bias (not enough
flexibility).

• Models with too many
parameters are
inaccurate because of a
large variance (too much
sensitivity to the sample).

Slide credit: D. Hoiem

Bias-Variance Trade-off

E(MSE) = noise2 + bias2 + variance

See the following for explanations of bias-variance (also Bishop’s “Neural

Networks” book):

•http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Unavoidable

error

Error due to

incorrect

assumptions

Error due to

variance of training

samples

Slide credit: D. Hoiem

http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Bias-variance tradeoff

Training error

Test error

Underfitting Overfitting

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem

Bias-variance tradeoff

Many training examples

Few training examples

Complexity Low Bias

High Variance

High Bias

Low Variance

T
e
s
t
E

rr
o
r

Slide credit: D. Hoiem

Effect of Training Size

Testing

Training

Generalization Error

Number of Training Examples

E
rr

o
r

Fixed prediction model

Slide credit: D. Hoiem

Remember…

• No classifier is inherently
better than any other: you
need to make assumptions to
generalize

• Three kinds of error
– Inherent: unavoidable

– Bias: due to over-simplifications

– Variance: due to inability to
perfectly estimate parameters
from limited data

Slide credit: D. Hoiem

How to reduce variance?

• Choose a simpler classifier

• Regularize the parameters

• Get more training data

Slide credit: D. Hoiem

Very brief tour of some classifiers

• K-nearest neighbor

• SVM

• Boosted Decision Trees

• Neural networks

• Naïve Bayes

• Bayesian network

• Logistic regression

• Randomized Forests

• RBMs

• Etc.

Generative vs. Discriminative Classifiers

Generative Models

• Represent both the data and
the labels

• Often, makes use of
conditional independence
and priors

• Examples
– Naïve Bayes classifier

– Bayesian network

• Models of data may apply to
future prediction problems

Discriminative Models

• Learn to directly predict the
labels from the data

• Often, assume a simple
boundary (e.g., linear)

• Examples
– Logistic regression

– SVM

– Boosted decision trees

• Often easier to predict a
label from the data than to
model the data

Slide credit: D. Hoiem

Classification

• Assign input vector to one of two or more

classes

• Any decision rule divides input space into

decision regions separated by decision

boundaries

Slide credit: L. Lazebnik

Nearest Neighbor Classifier

• Assign label of nearest training data point to each test data

point

Voronoi partitioning of feature space
for two-category 2D and 3D data

from Duda et al.

Source: D. Lowe

K-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

1-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

3-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

5-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

Using K-NN

• Simple, a good one to try first

• With infinite examples, 1-NN provably has
error that is at most twice Bayes optimal error

Classifiers: Linear SVM

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

• Find a linear function to separate the classes:

f(x) = sgn(w  x + b)

Classifiers: Linear SVM

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

• Find a linear function to separate the classes:

f(x) = sgn(w  x + b)

Classifiers: Linear SVM

x x

x
x

x

x

x

x

o

o
o

o

o

o

x2

x1

• Find a linear function to separate the classes:

f(x) = sgn(w  x + b)

What about multi-class SVMs?

• Unfortunately, there is no “definitive” multi-

class SVM formulation

• In practice, we have to obtain a multi-class

SVM by combining multiple two-class SVMs

• One vs. others
• Traning: learn an SVM for each class vs. the others

• Testing: apply each SVM to test example and assign to it the

class of the SVM that returns the highest decision value

• One vs. one
• Training: learn an SVM for each pair of classes

• Testing: each learned SVM “votes” for a class to assign to

the test example

Slide credit: L. Lazebnik

SVMs: Pros and cons

• Pros
• Many publicly available SVM packages:

http://www.kernel-machines.org/software

• Kernel-based framework is very powerful, flexible

• SVMs work very well in practice, even with very small

training sample sizes

• Cons
• No “direct” multi-class SVM, must combine two-class SVMs

• Computation, memory

– During training time, must compute matrix of kernel values for

every pair of examples

– Learning can take a very long time for large-scale problems

http://www.kernel-machines.org/software

What to remember about classifiers

• No free lunch: machine learning algorithms are tools,
not dogmas

• Try simple classifiers first

• Better to have smart features and simple classifiers
than simple features and smart classifiers

• Use increasingly powerful classifiers with more
training data (bias-variance tradeoff)

Slide credit: D. Hoiem

Making decisions about data

• 3 important design decisions:
1) What data do I use?

2) How do I represent my data (what feature)?

3) What classifier / regressor / machine learning tool
do I use?

• These are in decreasing order of importance

• Deep learning addresses 2 and 3
simultaneously (and blurs the boundary
between them).

• You can take the representation from deep
learning and use it with any classifier.

