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Stereo Matching



Fundamental matrix

Let p be a point in left image, p’ in right image

Epipolar relation

• p maps to epipolar line l’

• p’ maps to epipolar line l

Epipolar mapping described by a 3x3 matrix F

It follows that

l’l

p p’



Fundamental matrix

This matrix F is called

• the “Essential Matrix”

– when image intrinsic parameters are known

• the “Fundamental Matrix”

– more generally (uncalibrated case)

Can solve for F from point correspondences

• Each (p, p’) pair gives one linear equation in entries of F

• F has 9 entries, but really only 7 or 8 degrees of freedom.

• With 8 points it is simple to solve for F, but it is also possible 

with 7. See Marc Pollefey’s notes for a nice tutorial

http://cs.unc.edu/~marc/tutorial/node53.html


Stereo image rectification



Stereo image rectification

• Reproject image planes 
onto a common plane 
parallel to the line 
between camera centers

• Pixel motion is horizontal 
after this transformation

• Two homographies (3x3 
transform), one for each 
input image reprojection

 C. Loop and Z. Zhang. Computing 
Rectifying Homographies for Stereo 
Vision. IEEE Conf. Computer Vision 
and Pattern Recognition, 1999.

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Rectification example



The correspondence problem

• Epipolar geometry constrains our search, but 
we still have a difficult correspondence 
problem.



Fundamental Matrix + Sparse correspondence



Fundamental Matrix + Dense correspondence



SIFT + Fundamental Matrix + RANSAC

Building Rome in a Day

By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, Richard Szeliski

Communications of the ACM, Vol. 54 No. 10, Pages 105-112



Sparse to Dense Correspodence

Building Rome in a Day

By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, Richard Szeliski

Communications of the ACM, Vol. 54 No. 10, Pages 105-112
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Correspondence problem

Multiple match 

hypotheses 

satisfy epipolar 

constraint, but 

which is correct? 

Figure from Gee & Cipolla 1999
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Correspondence problem

• Beyond the hard constraint of epipolar geometry, there 

are “soft” constraints to help identify corresponding points

• Similarity

• Uniqueness

• Ordering

• Disparity gradient

• To find matches in the image pair, we will assume

• Most scene points visible from both views

• Image regions for the matches are similar in appearance
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Dense correspondence search

For each epipolar line

For each pixel / window in the left image

• compare with every pixel / window on same epipolar line 

in right image
• pick position with minimum match cost (e.g., SSD, 

normalized correlation)

Adapted from Li Zhang
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Matching cost

disparity

Left Right

scanline

Correspondence search with similarity constraint

• Slide a window along the right scanline and compare 

contents of that window with the reference window in 

the left image

• Matching cost: SSD or normalized correlation
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Left Right

scanline

Correspondence search with similarity constraint

SSD



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

Left Right

scanline

Correspondence search with similarity constraint

Norm. corr
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Correspondence problem

Source: Andrew Zisserman

Intensity 

profiles
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Correspondence problem

Neighborhoods of corresponding points are  

similar in intensity patterns.

Source: Andrew Zisserman
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Correlation-based window matching
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Correlation-based window matching
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Correlation-based window matching
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Correlation-based window matching
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Correlation-based window matching

???

Textureless regions are 
non-distinct; high 
ambiguity for matches.
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Effect of window size

Source: Andrew Zisserman
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W = 3 W = 20

Figures from Li Zhang

Want window large enough to have sufficient intensity 

variation, yet small enough to contain only pixels with 

about the same disparity.

Effect of window size
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Results with window search

Window-based matching

(best window size)

Ground truth
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Better solutions

• Beyond individual correspondences to estimate 

disparities:

• Optimize correspondence assignments jointly

• Scanline at a time (DP)

• Full 2D grid (graph cuts)
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Scanline stereo

• Try to coherently match pixels on the entire scanline

• Different scanlines are still optimized independently

Left image Right image

in
te

n
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y



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

“Shortest paths” for scan-line stereo
Left image

Right image

Can be implemented with dynamic programming

Ohta & Kanade ’85, Cox et al. ’96, Intille & Bobick, ‘01

leftS

rightS
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Slide credit: Y. Boykov
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Coherent stereo on 2D grid
• Scanline stereo generates streaking artifacts

• Can’t use dynamic programming to find spatially 

coherent disparities/ correspondences on a 2D grid



Motion and Optic FlowCS 4495 Computer Vision – A. Bobick

Stereo as energy minimization

• What defines a good stereo correspondence?

1. Match quality

• Want each pixel to find a good match in the other image

2. Smoothness

• If two pixels are adjacent, they should (usually) move about 

the same amount 
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Stereo matching as energy minimization

I1
I2 D

• Energy functions of this form can be minimized using 

graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate 
Energy Minimization via Graph Cuts,  PAMI 2001
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Source: Steve Seitz

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
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Better results… 

Graph cut method
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, 

International Conference on Computer Vision, September 1999.

Ground truth

For the latest and greatest:  http://www.middlebury.edu/stereo/

http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf
http://www.middlebury.edu/stereo/
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Challenges

• Low-contrast ; textureless image regions

• Occlusions

• Violations of brightness constancy (e.g., specular 

reflections)

• Really large baselines (foreshortening and appearance 

change)

• Camera calibration errors



Active stereo with structured light

• Project “structured” light patterns onto the object

• Simplifies the correspondence problem

• Allows us to use only one camera

camera 

projector

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured 

Light and Multi-pass Dynamic Programming. 3DPVT 2002

http://grail.cs.washington.edu/projects/moscan/


Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/


Summary

• Epipolar geometry
– Epipoles are intersection of baseline with image planes
– Matching point in second image is on a line passing 

through its epipole
– Fundamental matrix maps from a point in one image to a 

line (its epipolar line) in the other
– Can solve for F given corresponding points (e.g., interest 

points)

• Stereo depth estimation
– Estimate disparity by finding corresponding points along 

scanlines
– Depth is inverse to disparity



The scale of algorithm name quality

better

worse

RANSAC

Dynamic Programming

Essential and Fundamental Matrix

SIFT

Deep Learning

Neural Networks

Optical Flow

Hough Transform
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Computer Vision

Motion and Optical Flow

Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman and others…
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Video

• A video is a sequence of frames captured over time

• Now our image data is a function of space 

(x, y) and time (t)
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Motion Applications: Segmentation of video

• Background subtraction

• A static camera is observing a scene

• Goal: separate the static background from the moving foreground
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Motion Applications: Segmentation of video

• Background subtraction

• Shot boundary detection

• Commercial video is usually composed of shots or sequences 

showing the same objects or scene

• Goal: segment video into shots for summarization and browsing 

(each shot can be represented by a single keyframe in a user 

interface)

• Difference from background subtraction: the camera is not 

necessarily stationary
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Motion Applications: Segmentation of video

• Background subtraction

• Shot boundary detection

• Motion segmentation

• Segment the video into multiple coherently moving objects
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Motion Applications: Segmentation of video

• Background subtraction

• Shot boundary detection

• Motion segmentation

• Segment the video into multiple coherently moving objects
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Motion and perceptual organization

Gestalt psychology 

(Max Wertheimer, 

1880-1943)
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Motion and perceptual organization

• Sometimes, motion is the only cue

Gestalt psychology 

(Max Wertheimer, 

1880-1943)
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Motion and perceptual organization

• Sometimes, motion is the only cue
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Motion and perceptual organization

• Sometimes, motion is the only cue
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Motion and perceptual organization

• Sometimes, motion is the only cue
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Motion and perceptual organization

• Even “impoverished” motion data can evoke a strong 

percept
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Motion and perceptual organization

• Even “impoverished” motion data can evoke a strong 

percept
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Motion and perceptual organization

Experimental study of apparent behavior. 

Fritz Heider & Marianne Simmel. 1944 
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More applications of  motion

• Segmentation of objects in space or time

• Estimating 3D structure

• Learning dynamical models – how things move

• Recognizing events and activities

• Improving video quality (motion stabilization)
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Motion estimation techniques

• Feature-based methods

• Extract visual features (corners, textured areas) and track them 

over multiple frames

• Sparse motion fields, but more robust tracking

• Suitable when image motion is large (10s of pixels)

• Direct, dense methods

• Directly recover image motion at each pixel from spatio-temporal 

image brightness variations

• Dense motion fields, but sensitive to appearance variations

• Suitable for video and when image motion is small 
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Motion estimation: Optical flow

Will start by estimating motion of each pixel separately

Then will consider motion of entire image 

Optic flow is the apparent motion of objects or surfaces
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To be continued…


