
Outline

• Recap camera calibration

• Epipolar Geometry
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Degrees of freedom
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How to calibrate the camera?





















































1
****

****

****

Z

Y

X

s

sv

su

 XtRKx 



How do we calibrate a camera?
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Method 1 – homogeneous linear system

• Solve for m’s entries using linear least squares

Ax=0 form
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[U, S, V] = svd(A);

M = V(:,end);

M = reshape(M,[],3)';



For project 3, we want the camera center



Estimate of camera center
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Oriented and Translated Camera

Ow

iw

kw

jw

t

R



Recovering the camera center
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This is not the camera 

center C. It is –RC

(because a point will 

be rotated before tx, ty, 

and tz are added)

This is t * K

Q

So  K-1 m4 is t

So we need 

-R-1 K-1 m4 to get C

Q is K * R. So we just 

need -Q-1 m4



Estimate of camera center
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Epipolar Geometry and 
Stereo Vision

Many slides adapted from Derek Hoiem, Lana Lazebnik, Silvio Saverese, Steve Seitz, many figures from  Hartley & Zisserman



• Epipolar geometry

– Relates cameras from two positions



Depth from Stereo

• Goal: recover depth by finding image coordinate x’ 
that corresponds to x
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Depth from Stereo

• Goal: recover depth by finding image coordinate x’ that 
corresponds to x

• Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if 
not already known)?

2. Correspondence: How do we search for the matching point x’?

X

x

x'



Correspondence Problem

• We have two images taken from cameras with different 
intrinsic and extrinsic parameters

• How do we match a point in the first image to a point in the 
second?  How can we constrain our search?

x ?



Where do we need to search?



Key idea: Epipolar constraint



Potential matches for x have to lie on the corresponding line l’.

Potential matches for x’ have to lie on the corresponding line l.

Key idea: Epipolar constraint

x x’

X

x’

X

x’

X



Wouldn’t it be nice to know where 
matches can live? To constrain our 2d 
search to 1d.



VLFeat’s 800 most confident matches 
among 10,000+ local features.



• Epipolar Plane – plane containing baseline (1D family)

• Epipoles

= intersections of baseline with image planes 

= projections of the other camera center

• Baseline – line connecting the two camera centers

Epipolar geometry: notation
X

x x’



• Epipolar Lines - intersections of epipolar plane with image

planes (always come in corresponding pairs)

Epipolar geometry: notation
X

x x’

• Epipolar Plane – plane containing baseline (1D family)

• Epipoles

= intersections of baseline with image planes 

= projections of the other camera center

• Baseline – line connecting the two camera centers



Example: Converging cameras



Example: Motion parallel to image plane



Example: Forward motion

What would the epipolar lines look like if the 
camera moves directly forward?



e

e’

Example: Forward motion

Epipole has same coordinates in both 

images.

Points move along lines radiating from e: 

“Focus of expansion”



Epipolar constraint: Calibrated case

x x’
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XxKx 1  ˆ XxKx 1  ˆ

0)]ˆ([ˆ  xRtx

(because  𝑥, 𝑅  𝑥′, and 𝑡 are co-planar)

 𝑥′
 𝑥



Essential Matrix

(Longuet-Higgins, 1981)

Essential matrix

0)]ˆ([ˆ  xRtx   RtExExT

 with0ˆˆ
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The Fundamental Matrix

Fundamental Matrix

(Faugeras and Luong, 1992)

0ˆˆ xExT

1with0   KEKFxFx TT

Without knowing K and K’, we can define a similar 

relation using unknown normalized coordinates

xKx 1ˆ

xKx 1  ˆ



Properties of the Fundamental matrix

1with0   KEKFxFx TT

• F x’ = 0 is the epipolar line associated with x’ 

• FTx = 0 is the epipolar line associated with x 

• F e’ = 0   and   FTe = 0

• F is singular (rank two): det(F)=0

• F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0

X

x x’



Estimating the Fundamental Matrix

• 8-point algorithm
– Least squares solution using SVD on equations from 8 pairs of 

correspondences
– Enforce det(F)=0 constraint using SVD on F

• 7-point algorithm
– Use least squares to solve for null space (two vectors) using SVD 

and 7 pairs of correspondences
– Solve for linear combination of null space vectors that satisfies 

det(F)=0

• Minimize reprojection error
– Non-linear least squares

Note: estimation of F (or E) is degenerate for a planar scene.



8-point algorithm

1. Solve a system of homogeneous linear 
equations

a. Write down the system of equations

0xx FT

𝑢𝑢′𝑓11 + 𝑢𝑣′𝑓12 + 𝑢𝑓13 + 𝑣𝑢′𝑓21 + 𝑣𝑣′𝑓22 + 𝑣𝑓23 + 𝑢′𝑓31 + 𝑣′𝑓32 + 𝑓33 = 0

A𝒇 =
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8-point algorithm

1. Solve a system of homogeneous linear 
equations

a. Write down the system of equations

b. Solve f from  Af=0 using SVD

Matlab: 
[U, S, V] = svd(A);

f = V(:, end);

F = reshape(f, [3 3])’;



Need to enforce singularity constraint



8-point algorithm

1. Solve a system of homogeneous linear 
equations

a. Write down the system of equations

b. Solve f from  Af=0 using SVD

2. Resolve det(F) = 0 constraint using SVD

Matlab: 
[U, S, V] = svd(A);

f = V(:, end);

F = reshape(f, [3 3])’;

Matlab: 
[U, S, V] = svd(F);

S(3,3) = 0;

F = U*S*V’;



8-point algorithm

1. Solve a system of homogeneous linear 
equations

a. Write down the system of equations

b. Solve f from  Af=0 using SVD

2. Resolve det(F) = 0 constraint by SVD

Notes:

• Use RANSAC to deal with outliers (sample 8 
points)

– How to test for outliers?



Problem with eight-point algorithm
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Problem with eight-point algorithm

Poor numerical conditioning

Can be fixed by rescaling the data



The normalized eight-point algorithm

• Center the image data at the origin, and scale it so 

the mean squared distance between the origin and 

the data points is 2 pixels

• Use the eight-point algorithm to compute F from the 

normalized points

• Enforce the rank-2 constraint (for example, take SVD 

of F and throw out the smallest singular value)

• Transform fundamental matrix back to original units: 

if T and T’ are the normalizing transformations in the 

two images, than the fundamental matrix in original 

coordinates is T’T F T

(Hartley, 1995)



VLFeat’s 800 most confident matches 
among 10,000+ local features.



Epipolar lines



Keep only the matches at are “inliers” with 
respect to the “best” fundamental matrix


