
Outline

• Recap camera calibration

• Epipolar Geometry

Oriented and Translated Camera

Ow

iw

kw

jw

t

R

Degrees of freedom

 XtRKx 





































































1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

v

us

v

u

w

z

y

x





5 6

How to calibrate the camera?





















































1

Z

Y

X

s

sv

su

 XtRKx 

How do we calibrate a camera?

312.747 309.140 30.086

305.796 311.649 30.356

307.694 312.358 30.418

310.149 307.186 29.298

311.937 310.105 29.216

311.202 307.572 30.682

307.106 306.876 28.660

309.317 312.490 30.230

307.435 310.151 29.318

308.253 306.300 28.881

306.650 309.301 28.905

308.069 306.831 29.189

309.671 308.834 29.029

308.255 309.955 29.267

307.546 308.613 28.963

311.036 309.206 28.913

307.518 308.175 29.069

309.950 311.262 29.990

312.160 310.772 29.080

311.988 312.709 30.514

880 214

43 203

270 197

886 347

745 302

943 128

476 590

419 214

317 335

783 521

235 427

665 429

655 362

427 333

412 415

746 351

434 415

525 234

716 308

602 187





















































1

Z

Y

X

s

sv

su



































































































0

0

0

0

10000

00001

10000

00001

34

33

32

31

24

23

22

21

14

13

12

11

1111111111

1111111111



m

m

m

m

m

m

m

m

m

m

m

m

vZvYvXvZYX

uZuYuXuZYX

vZvYvXvZYX

uZuYuXuZYX

nnnnnnnnnn

nnnnnnnnnn

Method 1 – homogeneous linear system

• Solve for m’s entries using linear least squares

Ax=0 form





















































1
34333231

24232221

14131211

Z

Y

X

mmmm

mmmm

mmmm

s

sv

su

[U, S, V] = svd(A);

M = V(:,end);

M = reshape(M,[],3)';

For project 3, we want the camera center

Estimate of camera center

1.5706 -0.1490 0.2598

-1.5282 0.9695 0.3802

-0.6821 1.2856 0.4078

0.4124 -1.0201 -0.0915

1.2095 0.2812 -0.1280

0.8819 -0.8481 0.5255

-0.9442 -1.1583 -0.3759

0.0415 1.3445 0.3240

-0.7975 0.3017 -0.0826

-0.4329 -1.4151 -0.2774

-1.1475 -0.0772 -0.2667

-0.5149 -1.1784 -0.1401

0.1993 -0.2854 -0.2114

-0.4320 0.2143 -0.1053

-0.7481 -0.3840 -0.2408

0.8078 -0.1196 -0.2631

-0.7605 -0.5792 -0.1936

0.3237 0.7970 0.2170

1.3089 0.5786 -0.1887

1.2323 1.4421 0.4506

1.0486 -0.3645

-1.6851 -0.4004

-0.9437 -0.4200

1.0682 0.0699

0.6077 -0.0771

1.2543 -0.6454

-0.2709 0.8635

-0.4571 -0.3645

-0.7902 0.0307

0.7318 0.6382

-1.0580 0.3312

0.3464 0.3377

0.3137 0.1189

-0.4310 0.0242

-0.4799 0.2920

0.6109 0.0830

-0.4081 0.2920

-0.1109 -0.2992

0.5129 -0.0575

0.1406 -0.4527

Oriented and Translated Camera

Ow

iw

kw

jw

t

R

Recovering the camera center





















































1

Z

Y

X

s

sv

su

 XtRKx 





































































1
100

0

1 333231

232221

131211

0

0

z

y

x

trrr

trrr

trrr

v

us

v

u

w

z

y

x





This is not the camera

center C. It is –RC

(because a point will

be rotated before tx, ty,

and tz are added)

This is t * K

Q

So K-1 m4 is t

So we need

-R-1 K-1 m4 to get C

Q is K * R. So we just

need -Q-1 m4

Estimate of camera center

1.5706 -0.1490 0.2598

-1.5282 0.9695 0.3802

-0.6821 1.2856 0.4078

0.4124 -1.0201 -0.0915

1.2095 0.2812 -0.1280

0.8819 -0.8481 0.5255

-0.9442 -1.1583 -0.3759

0.0415 1.3445 0.3240

-0.7975 0.3017 -0.0826

-0.4329 -1.4151 -0.2774

-1.1475 -0.0772 -0.2667

-0.5149 -1.1784 -0.1401

0.1993 -0.2854 -0.2114

-0.4320 0.2143 -0.1053

-0.7481 -0.3840 -0.2408

0.8078 -0.1196 -0.2631

-0.7605 -0.5792 -0.1936

0.3237 0.7970 0.2170

1.3089 0.5786 -0.1887

1.2323 1.4421 0.4506

1.0486 -0.3645

-1.6851 -0.4004

-0.9437 -0.4200

1.0682 0.0699

0.6077 -0.0771

1.2543 -0.6454

-0.2709 0.8635

-0.4571 -0.3645

-0.7902 0.0307

0.7318 0.6382

-1.0580 0.3312

0.3464 0.3377

0.3137 0.1189

-0.4310 0.0242

-0.4799 0.2920

0.6109 0.0830

-0.4081 0.2920

-0.1109 -0.2992

0.5129 -0.0575

0.1406 -0.4527

Epipolar Geometry and
Stereo Vision

Many slides adapted from Derek Hoiem, Lana Lazebnik, Silvio Saverese, Steve Seitz, many figures from Hartley & Zisserman

• Epipolar geometry

– Relates cameras from two positions

Depth from Stereo

• Goal: recover depth by finding image coordinate x’
that corresponds to x

f

x x’

Baseline

B

z

C C’

X

f

X

x

x'

Depth from Stereo

• Goal: recover depth by finding image coordinate x’ that
corresponds to x

• Sub-Problems

1. Calibration: How do we recover the relation of the cameras (if
not already known)?

2. Correspondence: How do we search for the matching point x’?

X

x

x'

Correspondence Problem

• We have two images taken from cameras with different
intrinsic and extrinsic parameters

• How do we match a point in the first image to a point in the
second? How can we constrain our search?

x ?

Where do we need to search?

Key idea: Epipolar constraint

Potential matches for x have to lie on the corresponding line l’.

Potential matches for x’ have to lie on the corresponding line l.

Key idea: Epipolar constraint

x x’

X

x’

X

x’

X

Wouldn’t it be nice to know where
matches can live? To constrain our 2d
search to 1d.

VLFeat’s 800 most confident matches
among 10,000+ local features.

• Epipolar Plane – plane containing baseline (1D family)

• Epipoles

= intersections of baseline with image planes

= projections of the other camera center

• Baseline – line connecting the two camera centers

Epipolar geometry: notation
X

x x’

• Epipolar Lines - intersections of epipolar plane with image

planes (always come in corresponding pairs)

Epipolar geometry: notation
X

x x’

• Epipolar Plane – plane containing baseline (1D family)

• Epipoles

= intersections of baseline with image planes

= projections of the other camera center

• Baseline – line connecting the two camera centers

Example: Converging cameras

Example: Motion parallel to image plane

Example: Forward motion

What would the epipolar lines look like if the
camera moves directly forward?

e

e’

Example: Forward motion

Epipole has same coordinates in both

images.

Points move along lines radiating from e:

“Focus of expansion”

Epipolar constraint: Calibrated case

x x’

X

t

XxKx 1  ˆ XxKx 1  ˆ

0)]ˆ([ˆ  xRtx

(because 𝑥, 𝑅 𝑥′, and 𝑡 are co-planar)

 𝑥′
 𝑥

Essential Matrix

(Longuet-Higgins, 1981)

Essential matrix

0)]ˆ([ˆ  xRtx   RtExExT

 with0ˆˆ

X

x x’

The Fundamental Matrix

Fundamental Matrix

(Faugeras and Luong, 1992)

0ˆˆ xExT

1with0   KEKFxFx TT

Without knowing K and K’, we can define a similar

relation using unknown normalized coordinates

xKx 1ˆ

xKx 1  ˆ

Properties of the Fundamental matrix

1with0   KEKFxFx TT

• F x’ = 0 is the epipolar line associated with x’

• FTx = 0 is the epipolar line associated with x

• F e’ = 0 and FTe = 0

• F is singular (rank two): det(F)=0

• F has seven degrees of freedom: 9 entries but defined up to scale, det(F)=0

X

x x’

Estimating the Fundamental Matrix

• 8-point algorithm
– Least squares solution using SVD on equations from 8 pairs of

correspondences
– Enforce det(F)=0 constraint using SVD on F

• 7-point algorithm
– Use least squares to solve for null space (two vectors) using SVD

and 7 pairs of correspondences
– Solve for linear combination of null space vectors that satisfies

det(F)=0

• Minimize reprojection error
– Non-linear least squares

Note: estimation of F (or E) is degenerate for a planar scene.

8-point algorithm

1. Solve a system of homogeneous linear
equations

a. Write down the system of equations

0xx FT

𝑢𝑢′𝑓11 + 𝑢𝑣′𝑓12 + 𝑢𝑓13 + 𝑣𝑢′𝑓21 + 𝑣𝑣′𝑓22 + 𝑣𝑓23 + 𝑢′𝑓31 + 𝑣′𝑓32 + 𝑓33 = 0

A𝒇 =
𝑢1𝑢1′ 𝑢1𝑣1′ 𝑢1 𝑣1𝑢1′ 𝑣1𝑣1′ 𝑣1 𝑢1′ 𝑣1′ 1

⋮
𝑢𝑛𝑢𝑣

′
⋮

𝑢𝑛𝑣𝑛′
⋮
𝑢𝑛

⋮
𝑣𝑛𝑢𝑛′

⋮
𝑣𝑛𝑣𝑛′

⋮
𝑣𝑛

⋮
𝑢𝑛′

⋮
𝑣𝑛′

⋮
1

𝑓11
𝑓12
𝑓13
𝑓21
⋮

𝑓33

=0

8-point algorithm

1. Solve a system of homogeneous linear
equations

a. Write down the system of equations

b. Solve f from Af=0 using SVD

Matlab:
[U, S, V] = svd(A);

f = V(:, end);

F = reshape(f, [3 3])’;

Need to enforce singularity constraint

8-point algorithm

1. Solve a system of homogeneous linear
equations

a. Write down the system of equations

b. Solve f from Af=0 using SVD

2. Resolve det(F) = 0 constraint using SVD

Matlab:
[U, S, V] = svd(A);

f = V(:, end);

F = reshape(f, [3 3])’;

Matlab:
[U, S, V] = svd(F);

S(3,3) = 0;

F = U*S*V’;

8-point algorithm

1. Solve a system of homogeneous linear
equations

a. Write down the system of equations

b. Solve f from Af=0 using SVD

2. Resolve det(F) = 0 constraint by SVD

Notes:

• Use RANSAC to deal with outliers (sample 8
points)

– How to test for outliers?

Problem with eight-point algorithm

  1

32

31

23

22

21

13

12

11





































f

f

f

f

f

f

f

f

vuvvvuvuvuuu

  1

32

31

23

22

21

13

12

11





































f

f

f

f

f

f

f

f

vuvvvuvuvuuu

Problem with eight-point algorithm

Poor numerical conditioning

Can be fixed by rescaling the data

The normalized eight-point algorithm

• Center the image data at the origin, and scale it so

the mean squared distance between the origin and

the data points is 2 pixels

• Use the eight-point algorithm to compute F from the

normalized points

• Enforce the rank-2 constraint (for example, take SVD

of F and throw out the smallest singular value)

• Transform fundamental matrix back to original units:

if T and T’ are the normalizing transformations in the

two images, than the fundamental matrix in original

coordinates is T’T F T

(Hartley, 1995)

VLFeat’s 800 most confident matches
among 10,000+ local features.

Epipolar lines

Keep only the matches at are “inliers” with
respect to the “best” fundamental matrix

