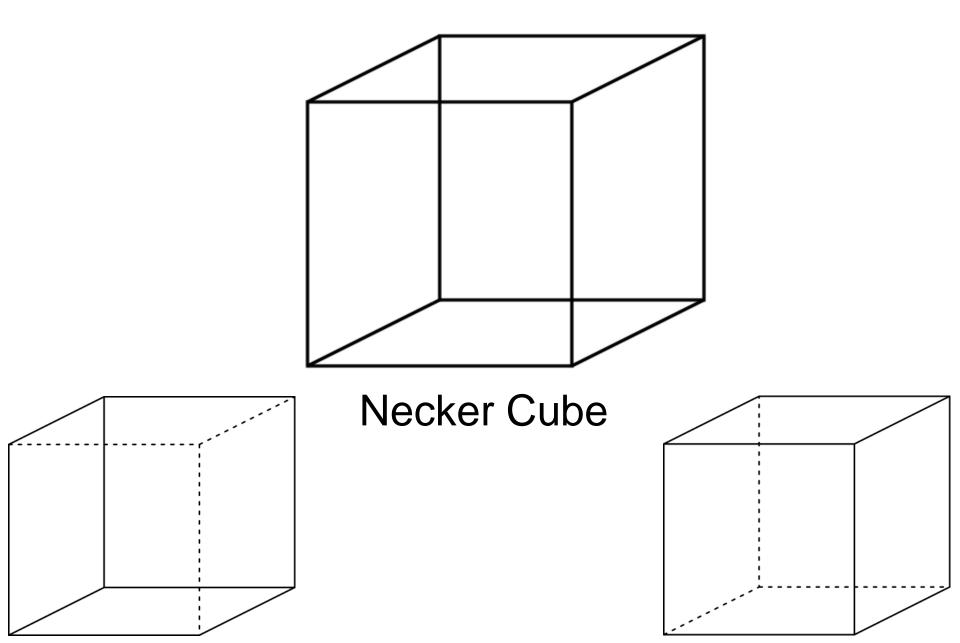
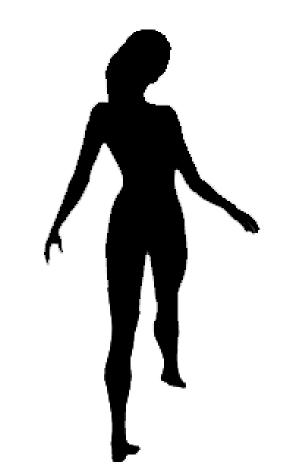
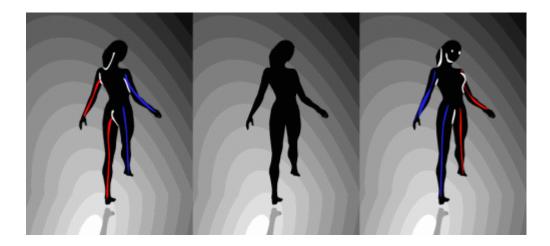
Multi-stable Perception





Spinning dancer illusion, Nobuyuki Kayahara



Fitting and Alignment

Szeliski 6.1

Computer Vision

James Hays

Acknowledgment: Many slides from Derek Hoiem, Lana Lazebnik, and Grauman&Leibe 2008 AAAI Tutorial

Project 2 – due date moved to Friday

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and 7 were incorrect (highlighted in red).

Project 2: Local Feature Matching

Review

Fitting: find the parameters of a model that best fit the data

Alignment: find the parameters of the transformation that best align matched points

Review: Fitting and Alignment

- Design challenges
 - Design a suitable **goodness of fit** measure
 - Similarity should reflect application goals
 - Encode robustness to outliers and noise
 - Design an **optimization** method
 - Avoid local optima
 - Find best parameters quickly

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Iterative closest point (ICP)

- Hypothesize and test
 - Hough transform
 - RANSAC

Review: Hough Transform

1. Create a grid of parameter values

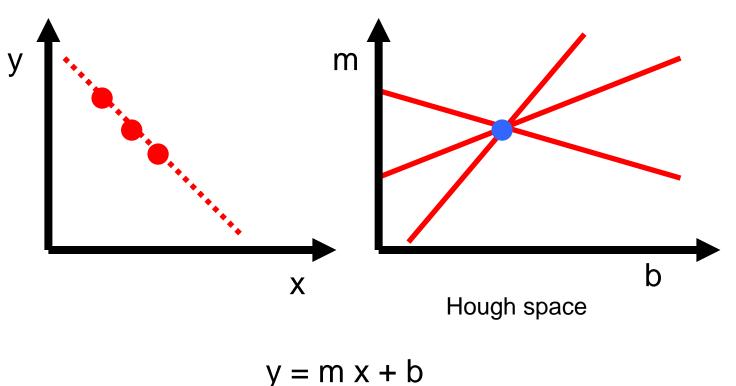
2. Each point votes for a set of parameters, incrementing those values in grid

3. Find maximum or local maxima in grid

Review: Hough transform

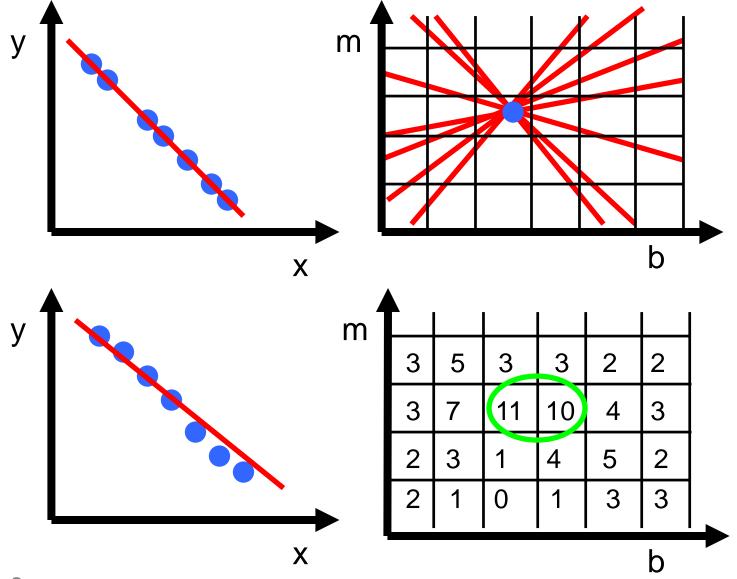
P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best



Slide from S. Savarese

Review: Hough transform



Slide from S. Savarese

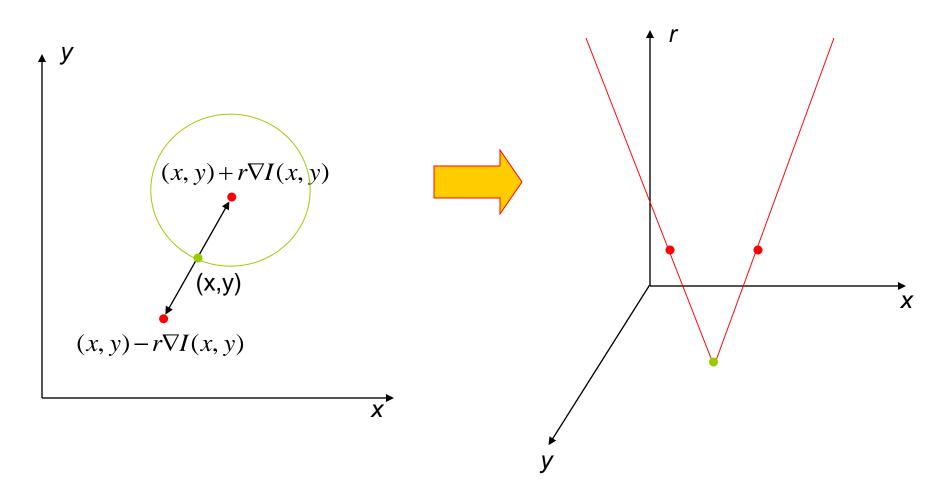
Hough Transform

- How would we find circles?
 - Of fixed radius
 - Of unknown radius
 - Of unknown radius but with known edge orientation

Hough transform for circles

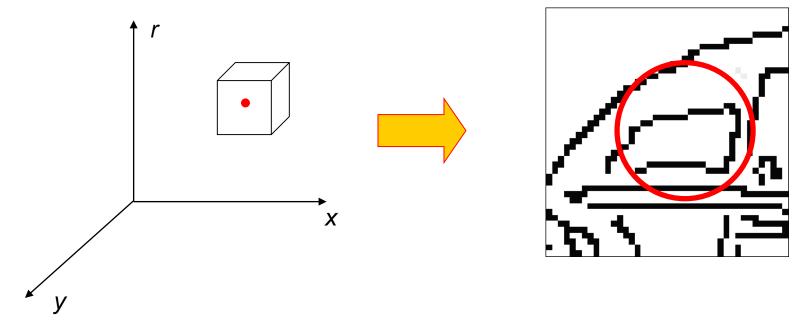
image space

Hough parameter space



Hough transform for circles

 Conceptually equivalent procedure: for each (x,y,r), draw the corresponding circle in the image and compute its "support"



Is this more or less efficient than voting with features?

Hough transform conclusions

Good

- Robust to outliers: each point votes separately
- Fairly efficient (much faster than trying all sets of parameters)
- Provides multiple good fits

Bad

- Some sensitivity to noise
- Bin size trades off between noise tolerance, precision, and speed/memory
 - Can be hard to find sweet spot
- Not suitable for more than a few parameters
 - grid size grows exponentially

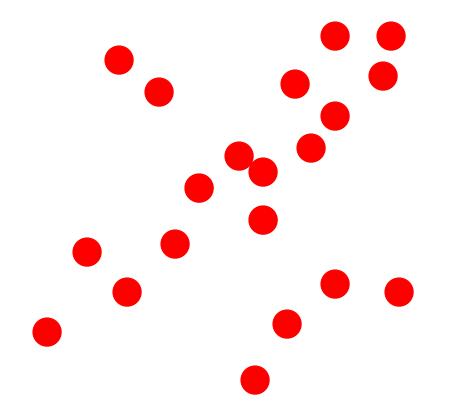
Common applications

- Line fitting (also circles, ellipses, etc.)
- Object instance recognition (parameters are affine transform)
- Object category recognition (parameters are position/scale)

RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in '81.

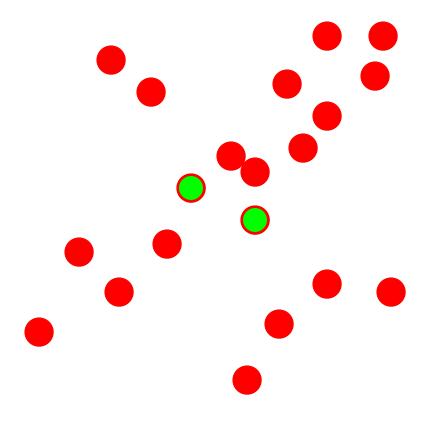


Algorithm:

- 1. Sample (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

RANSAC

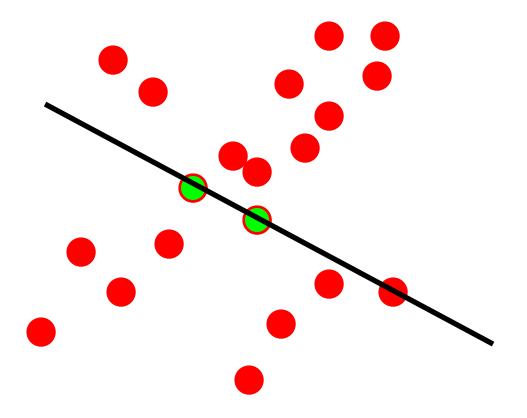
Line fitting example



Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

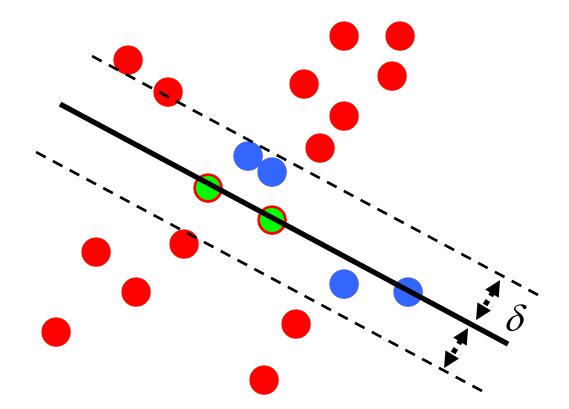
Line fitting example



Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

Line fitting example

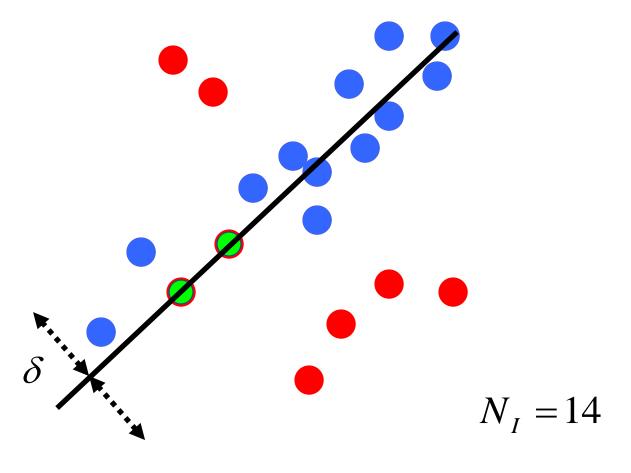


 $N_{I} = 6$

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

RANSAC



Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. Solve for model parameters using samples
- 3. Score by the fraction of inliers within a preset threshold of the model

How to choose parameters?

- Number of samples *N*
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Number of sampled points *s*
 - Minimum number needed to fit the model
- Distance threshold δ
 - Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold
 - Zero-mean Gaussian noise with std. dev. σ : t²=3.84 σ ²

$$N = log(1-p)/log(1-(1-e)^{s})$$

	proportion of outliers e							
S	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

For p = 0.99

modified from M. Pollefeys

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of objective function parameters than Hough transform
- Optimization parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Not good for getting multiple fits

Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

How do we fit the best alignment?



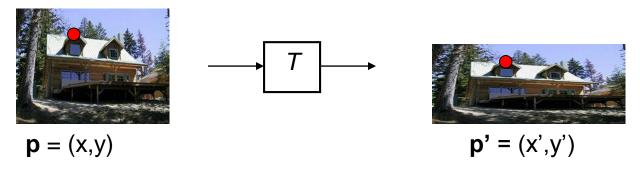
Alignment

• Alignment: find parameters of model that maps one set of points to another

 Typically want to solve for a global transformation that accounts for *most* true correspondences

- Difficulties
 - Noise (typically 1-3 pixels)
 - Outliers (often 50%)
 - Many-to-one matches or multiple objects

Parametric (global) warping



Transformation T is a coordinate-changing machine: p' = T(p)

What does it mean that *T* is global?

- Is the same for any point p
- can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

p' = Tp

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix}$$

Common transformations

original

Transformed

translation

rotation

aspect

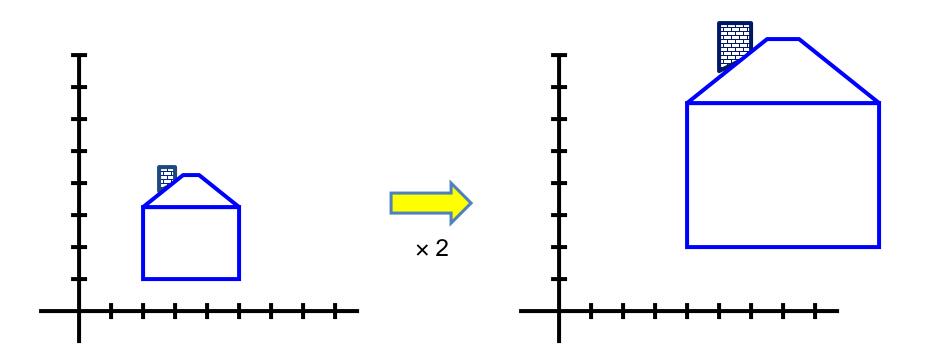
affine

perspective

Slide credit (next few slides): A. Efros and/or S. Seitz

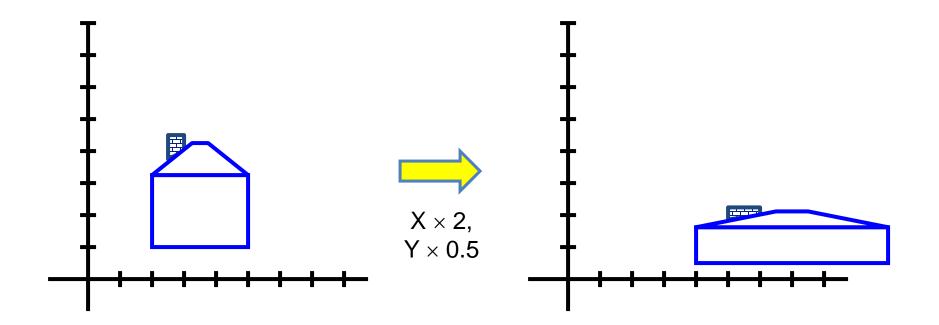
Scaling

- *Scaling* a coordinate means multiplying each of its components by a scalar
- *Uniform scaling* means this scalar is the same for all components:



Scaling

• *Non-uniform scaling*: different scalars per component:



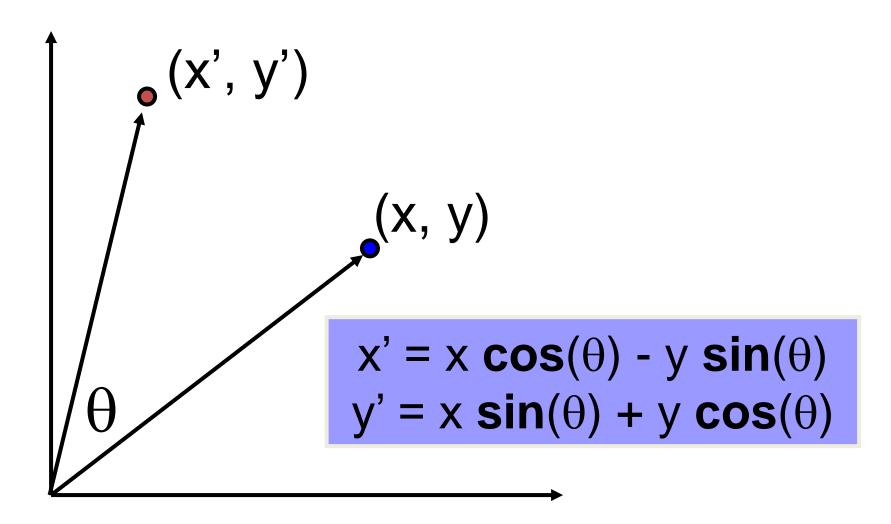
Scaling

• Scaling operation: x' = axy' = by

• Or, in matrix form: $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

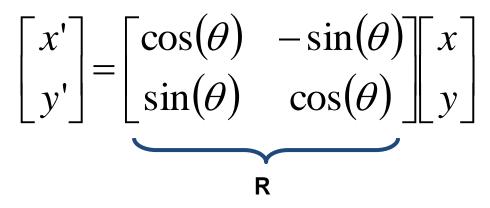
scaling matrix S

2-D Rotation



2-D Rotation

This is easy to capture in matrix form:



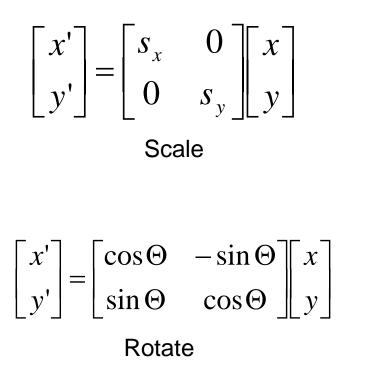
Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,

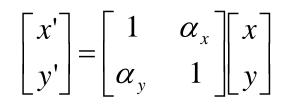
- -x' is a linear combination of x and y
- y' is a linear combination of x and y

What is the inverse transformation?

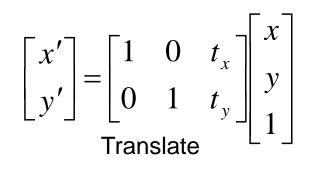
- Rotation by $-\theta$
- For rotation matrices $\mathbf{R}^{-1} = \mathbf{R}^{T}$

Basic 2D transformations





Shear



 $\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} a & b & c\\ d & e & f \end{bmatrix} \begin{vmatrix} x\\y\\1 \end{vmatrix}$ Affine is any combination of translation, scale, rotation, shear

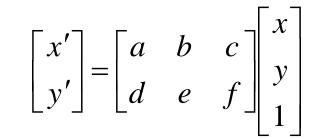
Affine Transformations

Affine transformations are combinations of

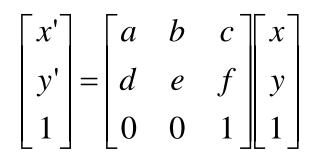
- Linear transformations, and
- Translations

Properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition



or



Projective Transformations

Projective transformations are combos of

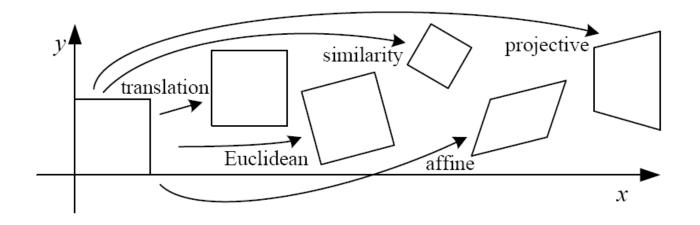
- Affine transformations, and
- Projective warps

Properties of projective transformations:

- Lines map to lines
- Parallel lines do not necessarily remain parallel
- Ratios are not preserved
- Closed under composition
- Models change of basis
- Projective matrix is defined up to a scale (8 DOF)

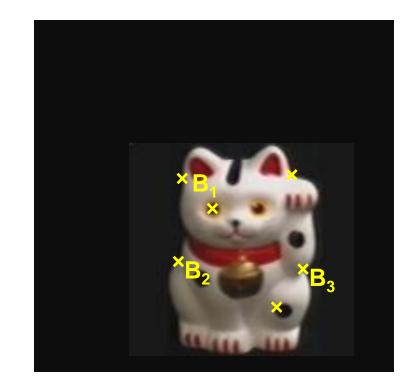
 $\begin{vmatrix} x' \\ y' \\ w' \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ \varrho & h & i \end{vmatrix} \begin{vmatrix} x \\ y \\ w \end{vmatrix}$

2D image transformations (reference table)



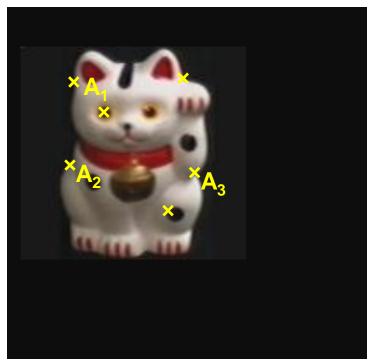
Name	Matrix		Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c c c c c c c c c c c c c c c c c c $	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\begin{array}{c c} s oldsymbol{R} & t \end{array} ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c}ella{}\ A\end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{H} \end{array} ight]_{3 imes 3}$	8	straight lines	

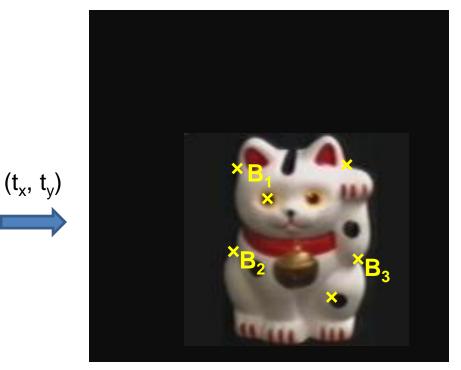
Szeliski 2.1



Given matched points in {A} and {B}, estimate the translation of the object

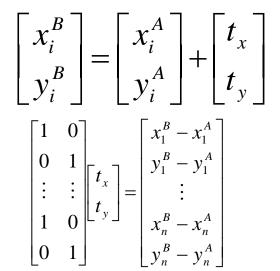
$$\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

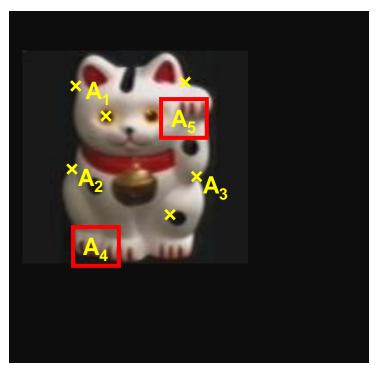


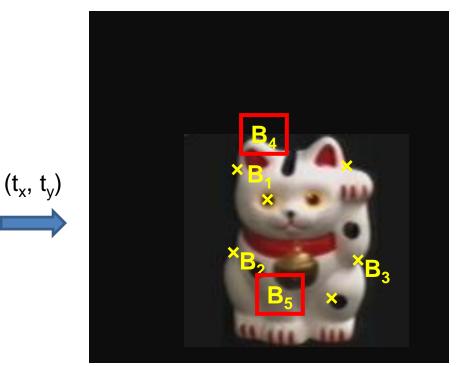


Least squares solution

- 1. Write down objective function
- 2. Derived solution
 - a) Compute derivative
 - b) Compute solution
- 3. Computational solution
 - a) Write in form Ax=b
 - b) Solve using pseudo-inverse or eigenvalue decomposition



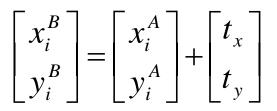


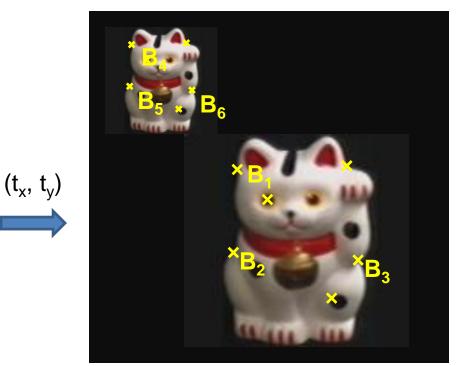


Problem: outliers

RANSAC solution

- 1. Sample a set of matching points (1 pair)
- 2. Solve for transformation parameters
- 3. Score parameters with number of inliers
- 4. Repeat steps 1-3 N times

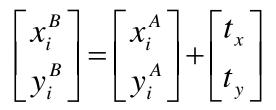


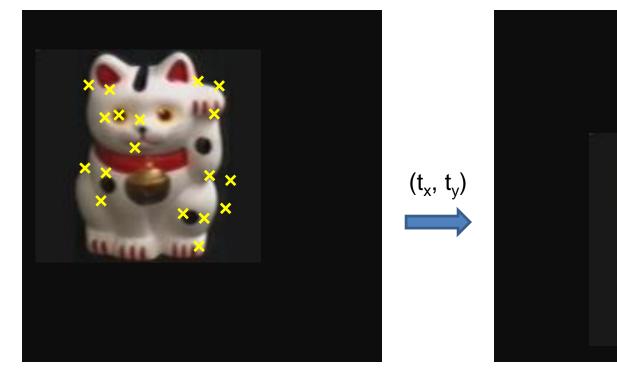


Problem: outliers, multiple objects, and/or many-to-one matches

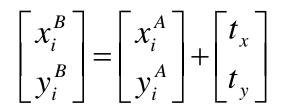
Hough transform solution

- 1. Initialize a grid of parameter values
- 2. Each matched pair casts a vote for consistent values
- 3. Find the parameters with the most votes
- 4. Solve using least squares with inliers





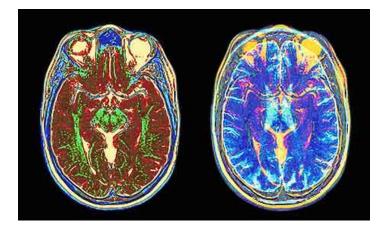
Problem: no initial guesses for correspondence



What if you want to align but have no prior matched pairs?

• Hough transform and RANSAC not applicable

Important applications



Medical imaging: match brain scans or contours

Robotics: match point clouds

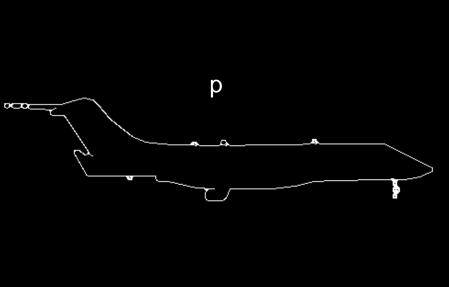
Iterative Closest Points (ICP) Algorithm

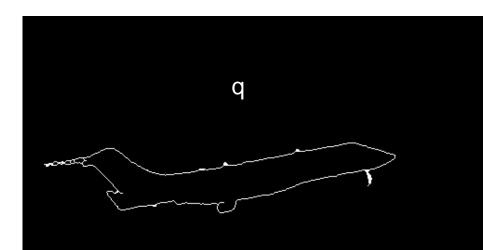
Goal: estimate transform between two dense sets of points

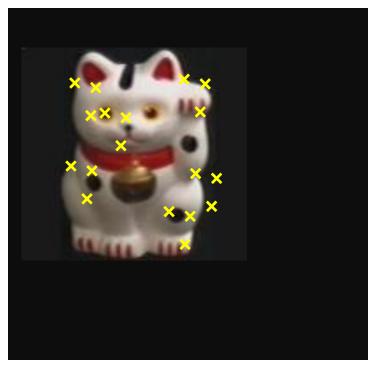
- **1. Initialize** transformation (e.g., compute difference in means and scale)
- **2.** Assign each point in {Set 1} to its nearest neighbor in {Set 2}
- **3.** Estimate transformation parameters
 - e.g., least squares or robust least squares
- 4. Transform the points in {Set 1} using estimated parameters
- 5. Repeat steps 2-4 until change is very small

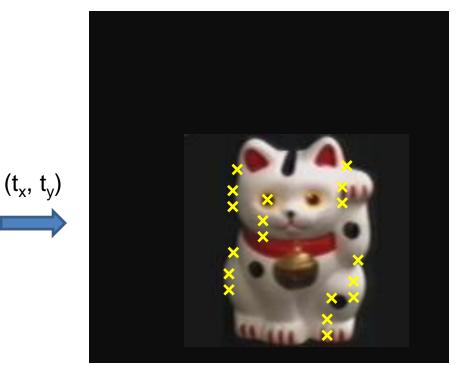
Example: aligning boundaries

- 1. Extract edge pixels $p_1 \dots p_n$ and $q_1 \dots q_m$
- 2. Compute initial transformation (e.g., compute translation and scaling by center of mass, variance within each image)
- 3. Get nearest neighbors: for each point p_i find corresponding match(i) = argmin dist(pi, qj)
- 4. Compute transformation *T* based on matches
- 5. Warp points **p** according to **T**
- 6. Repeat 3-5 until convergence





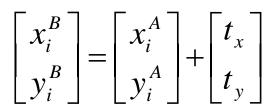




Problem: no initial guesses for correspondence

ICP solution

- 1. Find nearest neighbors for each point
- 2. Compute transform using matches
- 3. Move points using transform
- 4. Repeat steps 1-3 until convergence



Sparse ICP

Sofien Bouaziz Andrea Tagliasacchi Mark Pauly

Algorithm Summaries

- Least Squares Fit
 - closed form solution
 - robust to noise
 - not robust to outliers
- Robust Least Squares
 - improves robustness to outliers
 - requires iterative optimization
- Hough transform
 - robust to noise and outliers
 - can fit multiple models
 - only works for a few parameters (1-4 typically)
- RANSAC
 - robust to noise and outliers
 - works with a moderate number of parameters (e.g, 1-8)
- Iterative Closest Point (ICP)
 - For local alignment only: does not require initial correspondences