Multi-stable Perception

/

"""""""

/

Necker Cube

Spinning dancer illusion, Nobuyuki Kayahara

Fitting and Alighment

Szeliski 6.1

Computer Vision

James Hays

Project 2 — due date moved to Friday

i A

£Y

%]

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and
7 were incorrect (highlighted in red).

Project 2: Local Feature Matching

Review

Fitting: find the parameters of a model that
best fit the data

Alignment: find the parameters of the
transformation that best align matched points

Review: Fitting and Alighnment

* Design challenges
— Design a suitable goodness of fit measure

» Similarity should reflect application goals
* Encode robustness to outliers and noise
— Design an optimization method

* Avoid local optima
* Find best parameters quickly

Fitting and Alignment: Methods

* Global optimization / Search for parameters
— Least squares fit
— Robust least squares
— |terative closest point (ICP)

* Hypothesize and test

— Hough transform
— RANSAC

Review: Hough Transform

1. Create a grid of parameter values

2. Each point votes for a set of parameters,
incrementing those values in grid

3. Find maximum or local maxima in grid

Review: Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High
Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains
the data points best

Hough space

y=mx+Db

Slide from S. Savarese

Review: Hough transform

y \\ m
X
Yy m
\
X

Slide from S. Savarese

Hough Transform

« How would we find circles?
— Of fixed radius
— Of unknown radius

— Of unknown radius but with known edge
orientation

Hough transform for circles

image space Hough parameter space

A Y

(X, ¥)+rVI(X,y) j>l

/ (x.y)
(X’ y) —rvi (X’ y) \/

Hough transform for circles

* Conceptually equivalent procedure: for
each (x,y,r), draw the corresponding circle
In the image and compute its “support”

Ar

LR

!

Is this more or less efficient than voting with features?

Hough transform conclusions

Good

* Robust to outliers: each point votes separately
* Fairly efficient (much faster than trying all sets of parameters)
* Provides multiple good fits

Bad

* Some sensitivity to noise

* Bin size trades off between noise tolerance, precision, and
speed/memory

— Can be hard to find sweet spot

* Not suitable for more than a few parameters
— grid size grows exponentially

Common applications

e Line fitting (also circles, ellipses, etc.)

* Object instance recognition (parameters are affine transform)
* Object category recognition (parameters are position/scale)

RANSAC ° o
| O o ©
(RANdom SAmple Consensus) : ‘
Fischler & Bolles in ‘81. “ ‘
¢ O
o ©
@ ® 0
O O
O

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC ° o
o o ®
Line fitting example O
.‘:
o ©
@ ® 0
O .
.

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese

RANSAC

Line fitting example

Algorithm:

1. mple (randomly) the number of points requir fit the model (#=
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

N, =6

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?

 Number of samples N

— Choose N so that, with probability p, at least one random sample is free
from outliers (e.g. p=0.99) (outlier ratio: e)

* Number of sampled points s
— Minimum number needed to fit the model

e Distance threshold 6

— Choose 0 so that a good point with noise is likely (e.g., prob=0.95) within threshold
— Zero-mean Gaussian noise with std. dev. o: t2=3.8402

proportion of outliers €

N =log(1—p)/ |09(1—(1—e)5)

S 5% 10% 20% 25% 30% 40% 50%
2 2 3) 6 7 11 17
3 3 4 7 9 11 19 35
4 3) 9 13 17 34 12
) 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8) 9 26 44 (8 272 1177
For p =0.99

modified from M. Pollefeys

RANSAC conclusions
Good

e Robust to outliers

* Applicable for larger number of objective function parameters
than Hough transform

* Optimization parameters are easier to choose than Hough
transform

Bad

 Computational time grows quickly with fraction of outliers
and number of parameters

* Not good for getting multiple fits

Common applications
 Computing a homography (e.g., image stitching)
e Estimating fundamental matrix (relating two views)

How do we fit the best alighment?

Alignment

* Alignment: find parameters of model that maps
one set of points to another

e Typically want to solve for a global transformation
that accounts for *most™ true correspondences

* Difficulties
— Noise (typically 1-3 pixels)
— QOutliers (often 50%)
— Many-to-one matches or multiple objects

Parametric (global) warping

Transformation T is a coordinate-changing machine:
P’ =T(p)

What does it mean that T is global?
— |Is the same for any point p
— can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix
p'=Tp

Rl

Common transformations

original

Transformed

perspective

Scaling

Scaling a coordinate means multiplying each of its components by a

scalar

Uniform scaling means this scalar is the same for all components:

X 2

N

Scaling

* Non-uniform scaling: different scalars per component:

X x 2,
Y x 0.5

Scaling

* Scaling operation: X'= ax
y'="Dy
* Or,in matrix form: = _ _
X a O
y'| |0 b
a—l

scaling matrix S

2-D Rotation

o (X, Y')

(X, ¥)

o by

2-D Rotation

This is easy to capture in matrix form:
x| [cos(@) —sin(@)] x
y'| |sin(@) cos(@) |y

.

Y
R

Even though sin(0) and cos(0) are nonlinear functions of 9,
— x’is a linear combination of x and y
— y’is alinear combination of x and y

What is the inverse transformation?

— Rotation by —0
— For rotation matrices R_l — RT

Basic 2D transformations

X' - COS® —sIin® || X
y'| |sin® cos® |y

Rotate

Shear
T
X' 1 0 ¢t
y'| |0 1 t, Z)l/
Translate - -

Affine is any combination of
translation, scale, rotation,
shear

Affine Transformations

Affine transformations are combinations of

Properties of affine transformations:

Linear transformations, and
Translations

Lines map to lines

Parallel lines remain parallel
Ratios are preserved
Closed under composition

or
1 [a b
=|d e

Projective Transformations

Projective transformations are combos of
 Affine transformations, and y
* Projective warps |

Properties of projective transformations:
* Lines map to lines
« Parallel lines do not necessarily remain parallel
« Ratios are not preserved
« Closed under composition
* Models change of basis
» Projective matrix is defined up to a scale (8 DOF)

@D

—h O

2D image transformations (reference table)

A
) similarity P1o) ﬂm ©
translation
/"y
Euclidean aﬂme >
~— x
Name Matrix # D.O.F. | Preserves: Icon
translation [I ‘ t]2 ; 2 orientation + - - -
oy
rigid (Euclidean) [R ‘ t]2 ; 3 lengths + - - - O
oy
similarity [sR | t]2 \ 4 angles + - - - O
oy
afline [A]ng 6 parallelism + - - - E
projective [H]3){3 8 straight lines E|

Szeliski 2.1

Example: solving for translation

Given matched points in {A} and {B}, estimate the translation of the object

MEMEN

Example: solving for translation

(te t)

Least squares solution

1. Write down objective function
2. Derived solution
a) Compute derivative
b) Compute solution
3. Computational solution
a) Write in form Ax=Db
b) Solve using pseudo-inverse or
eigenvalue decomposition

Example: solving for translation

(te t)

Problem: outliers

RANSAC solution xB x A t
1. Sample a set of matching points (1 pair) 'B = IA + ¢

2. Solve for transformation parameters
3. Score parameters with number of inliers
4. Repeat steps 1-3 N times

Example: solving for translation

Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution x B x A t

1. Initialize a grid of parameter values N el N +

2. Each matched pair casts a vote for Yi Y. L
consistent values

3. Find the parameters with the most votes

4. Solve using least squares with inliers

Example: solving for translation

What if you want to align but have no prior
matched pairs?

* Hough transform and RANSAC not applicable

* Important applications

Medical imaging: match brain Robotics: match point clouds
scans or contours

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets
of points

1. Initialize transformation (e.g., compute difference in means
and scale)

2. Assign each pointin {Set 1} to its nearest neighbor in {Set 2}
3. Estimate transformation parameters

— e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated parameters
5. Repeat steps 2-4 until change is very small

Example: aligning boundaries

Extract edge pixels p,..p,and q,..q,,

2. Compute initial transformation (e.g., compute translation and scaling
by center of mass, variance within each image)

3. Get nearest neighbors: for each point p; find corresponding
match(i) = argmin dist(pi, qj)
J

Compute transformation T based on matches

5. Warp points p accordingto T
Repeat 3-5 until convergence

Example: solving for translation

(te t)

Problem: no initial guesses for correspondence

ICP solution e y A t

1. Find nearest neighbors for each point IB IA t

2. Compute transform using matches Yi Y.
3. Move points using transform
4. Repeat steps 1-3 until convergence

|l
n

Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Sparse ICP

Sofien Bouaziz

Andrea Tagliasacchi

Mark Pauly

Algorithm Summaries

* Least Squares Fit
— closed form solution
— robust to noise
— not robust to outliers
* Robust Least Squares
— improves robustness to outliers
— requires iterative optimization
* Hough transform
— robust to noise and outliers
— can fit multiple models
— only works for a few parameters (1-4 typically)
* RANSAC
— robust to noise and outliers
— works with a moderate number of parameters (e.g, 1-8)
* |terative Closest Point (ICP)
— For local alignment only: does not require initial correspondences

