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Feature Matching and Robust Fitting

Computer Vision

James Hays

Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial

Read Szeliski 4.1
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This section: correspondence and 
alignment

• Correspondence: matching points, patches, 
edges, or regions across images
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Overview of Keypoint Matching

K. Grauman, B. Leibe
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Harris Corners – Why so complicated?

• Can’t we just check for regions with lots of 
gradients in the x and y directions?

– No! A diagonal line would satisfy that criteria
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Harris Detector [Harris88]

• Second moment matrix
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4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression
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(optionally, blur first)



Harris Corners – Why so complicated?

• What does the structure matrix look here?
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Harris Corners – Why so complicated?

• What does the structure matrix look here?
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Harris Corners – Why so complicated?

• What does the structure matrix look here?
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Review: Interest points

• Keypoint detection: repeatable 
and distinctive

– Corners, blobs, stable regions

– Harris, DoG, MSER



Comparison of Keypoint Detectors

Tuytelaars Mikolajczyk 2008



Review: Local Descriptors

• Most features can be thought of as templates, 
histograms (counts), or combinations

• The ideal descriptor should be

– Robust and Distinctive

– Compact and Efficient

• Most available descriptors focus on 
edge/gradient information

– Capture texture information

– Color rarely used

K. Grauman, B. Leibe



Feature Matching

• Simple criteria: One feature matches to 
another if those features are nearest 
neighbors and their distance is below some 
threshold.

• Problems:

– Threshold is difficult to set

– Non-distinctive features could have lots of close 
matches, only one of which is correct



Distance: 0.34, 0.30, 0.40

Distance: 0.61, 1.22

How do we decide which features match?



Nearest Neighbor Distance Ratio

•
𝑁𝑁1

𝑁𝑁2
where NN1 is the distance to the first 

nearest neighbor and NN2 is the distance to 
the second nearest neighbor.

• Sorting by this ratio puts matches in order of 
confidence.



Matching Local Features

• Threshold based on the ratio of 1st nearest neighbor 
to 2nd nearest neighbor distance.

Lowe IJCV 2004



SIFT Repeatability

Lowe IJCV 2004



SIFT Repeatability



How do we decide which features match?



Fitting: find the parameters of a model that 
best fit the data

Alignment: find the parameters of the 
transformation that best align matched points



Fitting and Alignment

• Design challenges

– Design a suitable goodness of fit measure

• Similarity should reflect application goals

• Encode robustness to outliers and noise

– Design an optimization method

• Avoid local optima

• Find best parameters quickly



Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Iterative closest point (ICP)

• Hypothesize and test

– Generalized Hough transform

– RANSAC



Simple example: Fitting a line



Least squares line fitting
•Data: (x1, y1), …, (xn, yn)

•Line equation: yi = m xi + b

•Find (m, b) to minimize 
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Matlab: p = A \ y;

Modified from S. Lazebnik



Least squares (global) optimization

Good
• Clearly specified objective

• Optimization is easy

Bad
• May not be what you want to optimize 

• Sensitive to outliers
– Bad matches, extra points

• Doesn’t allow you to get multiple good fits
– Detecting multiple objects, lines, etc.



Least squares: Robustness to noise

• Least squares fit to the red points:



Least squares: Robustness to noise

• Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers



Robust least squares (to deal with outliers)
General approach: 

minimize

ui (xi, θ) – residual of ith point w.r.t. model parameters θ
ρ – robust function with scale parameter σ
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Slide from S. Savarese



Choosing the scale: Just right

The effect of the outlier is minimized



The error value is almost the same for every

point and the fit is very poor

Choosing the scale: Too small



Choosing the scale: Too large

Behaves much the same as least squares



Robust estimation: Details

• Robust fitting is a nonlinear optimization 
problem that must be solved iteratively

• Least squares solution can be used for 
initialization

• Scale of robust function should be chosen 
adaptively based on median residual 



Other ways to search for parameters (for 
when no closed form solution exists)

• Line search
1. For each parameter, step through values and choose value 

that gives best fit
2. Repeat (1) until no parameter changes

• Grid search
1. Propose several sets of parameters, evenly sampled in the 

joint set
2. Choose best (or top few) and sample joint parameters around 

the current best; repeat

• Gradient descent
1. Provide initial position (e.g., random)
2. Locally search for better parameters by following gradient



Hypothesize and test

1. Propose parameters
– Try all possible

– Each point votes for all consistent parameters

– Repeatedly sample enough points to solve for parameters

2. Score the given parameters
– Number of consistent points, possibly weighted by 

distance

3. Choose from among the set of parameters
– Global or local maximum of scores

4. Possibly refine parameters using inliers



Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters, 
incrementing those values in grid

3. Find maximum or local maxima in grid



x

y

b

m

y = m x + b

Hough transform

Given a set of points, find the curve or line that explains 

the data points best

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 

Energy Accelerators and Instrumentation, 1959 

Hough space

Slide from S. Savarese
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Hough transform

Slide from S. Savarese



x

y

Hough transform

Issue : parameter space [m,b] is unbounded…

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High 

Energy Accelerators and Instrumentation, 1959 

Hough space

    siny  cosx

 



Use a polar representation for the parameter space 

 



Slide from S. Savarese



features votes

Hough transform - experiments

Slide from S. Savarese



features votes

Need to adjust grid size or smooth

Hough transform - experiments

Noisy data

Slide from S. Savarese



Issue: spurious peaks due to uniform noise

features votes

Hough transform - experiments

Slide from S. Savarese



1. Image  Canny



2. Canny  Hough votes



3. Hough votes  Edges 

Find peaks and post-process



Hough transform example

http://ostatic.com/files/images/ss_hough.jpg



Incorporating image gradients

• Recall: when we detect an 
edge point, we also know its 
gradient direction

• But this means that the line 
is uniquely determined!

• Modified Hough transform:

• For each edge point (x,y) 
θ = gradient orientation at (x,y)
ρ = x cos θ + y sin θ
H(θ, ρ) = H(θ, ρ) + 1

end



Finding lines using Hough transform

• Using m,b parameterization

• Using r, theta parameterization

– Using oriented gradients

• Practical considerations

– Bin size

– Smoothing

– Finding multiple lines

– Finding line segments



Hough Transform

• How would we find circles?

– Of fixed radius

– Of unknown radius

– Of unknown radius but with known edge 

orientation



Next lecture

• RANSAC

• Connecting model fitting with feature 
matching


