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“Flashed Face Distortion”
2nd Place in the 8th Annual

, VSS 2012


https://en.wikipedia.org/wiki/Best_Illusion_of_the_Year_Contest

Keep your eyes
on the cross
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This section: correspondence and
alignment

* Correspondence: matching points, patches,
edges, or regions across images




Overview of Keypoint Matching

1. Find a set of
distinctive key-
points

2. Define aregion
around each
keypoint

3. Extract and
normalize the
region content

4. Compute a local
descriptor from the
normalized region

d(f,, fz)<T

5. Match local
descriptors

K. Grauman, B. Leibe



Review: Harris corner detector c0.)

* Approximate distinctiveness by local
auto-correlation.

* Approximate local auto-correlation by
second moment matrix

e Quantify distinctiveness (or cornerness)
as function of the eigenvalues of the
second moment matrix.

* But we don’t actually need to , %

compute the eigenvalues by
using the determinant and trace
of the second moment matrix.



Harris Detector [Harrisss]

e Second moment matrix
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5. Non-maxima suppression




Orientation Normalization

 Compute orientation histogram [Lowe, SIFT, 1999]
e Select dominant orientation
* Normalize: rotate to fixed orientation
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Local features: main components

1) Detection: Identify the
interest points

2) Description: Extract vector
feature descriptor surrounding X, =
each interest point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman



Image representations

L . ‘
* Templates
™%
— Intensity, gradients, etc. ' \ A

* Histograms
— Color, texture, SIFT descriptors, etc.



Image Representations: Histograms
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Global histogram

* Represent distribution of features

— Color, texture, depth, ...

Images from Dave Kauchak



Image Representations: Histograms

Histogram: Probability or count of data in each bin
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* Joint histogram Marginal histogram

— Requires lots of data * Requires independent features
— Loss of resolution to « More data/bin than

avoid empty bins joint histogram

Images from Dave Kauchak



What kind of things do we compute
histograms of?

e Color .

—

lightness

L*a*b* color space HSV color space

e Texture (filter banks or HOG over regions)



What kind of things do we compute
histograms of?
* Histograms of oriented gradients
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Image gradients Keypoint descriptor

SIFT — Lowe 1JCV 2004



SIFT vector formation

« Computed on rotated and scaled version of window
according to computed orientation & scale

— resample the window

« Based on gradients weighted by a Gaussian of
variance half the window (for smooth falloff)

Image gradients



SIFT vector formation

« 4x4 array of gradient orientation histogram weighted
by magnitude

8 orientations x 4x4 array = 128 dimensions

« Motivation: some sensitivity to spatial layout, but not
too much.
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Image gradients Keypoint descriptor
showing only 2x2 here but is 4x4




Ensure smoothness

 (Gaussian weight

 Trilinear interpolation

— a given gradient contributes to 8 bins:
4 In space times 2 In orientation
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Image gradients Keypoint descriptor



Reduce effect of illumination

e 128-dim vector normalized to 1

 Threshold gradient magnitudes to avoid excessive

Influence of high gradients
— after normalization, clamp gradients >0.2
— renormalize
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Image gradients Keypoint descriptor



Local Descriptors: SURF

Fast approximation of SIFT idea

Efficient computation by 2D box filters &
integral images

= 6 times faster than SIFT

Equivalent quality for object identification

GPU implementation available

Feature extraction @ 200Hz
(detector + descriptor, 640480 img)

http://www.vision.ee.ethz.ch/~surf

[Bay, ECCV’'06], [Cornelis, CVGPU’08]

K. Grauman, B. Leibe



Local Descriptors: Shape Context

Count the number of points
Inside each bin, e.g.:

Count =4

Count =10

Log-polar binning: more
precision for nearby points,
more flexibility for farther
points.

Belongie & Malik, ICCV 2001



Shape Context Descriptor




Self-similarity Descriptor

AN et
Figure 1. These images of the same object (a heart) do NOT share

common image properties (colors, textures, edges), but DO share
a similar geometric layout of local internal self-similarities.

Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007



Self-similarity Descriptor

Input image Correlation Image
surface descriptor
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Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007



Self-similarity Descriptor

Matc
and Videos, Shechtman and Irani, 2007



Learning Local Image Descriptors, Winder
and Brown, 2007
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Local Descriptors

* Most features can be thought of as templates,
histograms (counts), or combinations
 The ideal descriptor should be
— Robust
— Distinctive
— Compact
— Efficient
* Most available descriptors focus on
edge/gradient information
— Capture texture information
— Color rarely used

K. Grauman, B. Leibe



Local features: main components

1) Detection: Identify the
interest points

2) Description: Extract vector
feature descriptor surrounding X, =
each interest point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman



Matching

e Simplest approach: Pick the nearest neighbor.
Threshold on absolute distance

* Problem: Lots of self similarity in many photos



Distance: 0.34, 0.30, 0.40 Distance: 0.61
Distance: 1.22




Nearest Neighbor Distance Ratio

Nx; where NN1 is the distance to the first

nearest neighbor and NN2 is the distance to
the second nearest neighbor.

* Sorting by this ratio puts matches in order of
confidence.



Matching Local Features

* Nearest neighbor (Euclidean distance)
* Threshold ratio of nearest to 2"d nearest descriptor
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Repeatability (%)

SIFT Repeatability
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SIFT Repeatability

Repeatability (%)
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SIFT Repeatability
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Choosing a detector

 What do you want it for?
— Precise localization in x-y: Harris
— Good localization in scale: Difference of Gaussian
— Flexible region shape: MSER

e Best choice often application dependent
— Harris-/Hessian-Laplace/DoG work well for many natural categories
— MSER works well for buildings and printed things

* Why choose?
— Get more points with more detectors

* There have been extensive evaluations/comparisons
— [Mikolajczyk et al., IJCV’'05, PAMI’05]
— All detectors/descriptors shown here work well



Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.
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Choosing a descriptor

* Again, need not stick to one

* For object instance recognition or stitching,
SIFT or variant is a good choice



Things to remember

* Keypoint detection: repeatable
and distinctive

— Corners, blobs, stable regions
— Harris, DoG

* Descriptors: robust and selective

— spatial histograms of orientation
— SIFT




