

Interest Points and Corners

Read Szeliski 4.1

Computer Vision

James Hays

Slides from Rick Szeliski, Svetlana Lazebnik, Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial

Correspondence across views

 Correspondence: matching points, patches, edges, or regions across images

Example: estimating "fundamental matrix" that corresponds two views

Example: structure from motion

Applications

- Feature points are used for:
 - Image alignment
 - 3D reconstruction
 - Motion tracking
 - Robot navigation
 - Indexing and database retrieval
 - Object recognition

This class: interest points (continued) and local features

 Note: "interest points" = "keypoints", also sometimes called "features"

This class: interest points

- Suppose you have to click on some point, go away and come back after I deform the image, and click on the same points again.
 - Which points would you choose?

Overview of Keypoint Matching

1. Find a set of distinctive keypoints

- 2. Define a region around each keypoint
- 3. Compute a local descriptor from the normalized region

4. Match local descriptors

Goals for Keypoints

Detect points that are *repeatable* and *distinctive*

Invariant Local Features

Image content is transformed into local feature coordinates that are invariant to translation, rotation, scale, and other imaging parameters

Features Descriptors

Why extract features?

- Motivation: panorama stitching
 - We have two images how do we combine them?

Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

Characteristics of good features

- Repeatability
 - The same feature can be found in several images despite geometric and photometric transformations
- Saliency
 - Each feature is distinctive
- Compactness and efficiency
 - Many fewer features than image pixels
- Locality
 - A feature occupies a relatively small area of the image; robust to clutter and occlusion

Goal: interest operator repeatability

• We want to detect (at least some of) the same points in both images.

No chance to find true matches!

• Yet we have to be able to run the detection procedure *independently* per image.

Goal: descriptor distinctiveness

• We want to be able to reliably determine which point goes with which.

 Must provide some invariance to geometric and photometric differences between the two views.

Local features: main components

1) Detection: Identify the interest points

2) Description:Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

Many Existing Detectors Available

Hessian & Harris Laplacian, DoG Harris-/Hessian-Laplace Harris-/Hessian-Affine EBR and IBR MSER Salient Regions

Others...

[Beaudet '78], [Harris '88]
[Lindeberg '98], [Lowe 1999]
[Mikolajczyk & Schmid '01]
[Mikolajczyk & Schmid '04]
[Tuytelaars & Van Gool '04]
[Matas '02]
[Kadir & Brady '01]

Corner Detection: Basic Idea

- We should easily recognize the point by looking through a small window
- Shifting a window in any direction should give a large change in intensity

"flat" region: no change in all directions

Source: A. Efros

"edge": no change along the edge direction "corner": significant change in all directions

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^2$$

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^2$$

Change in appearance of window w(x,y) for the shift [u,v]:

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^2$$

We want to find out how this function behaves for small shifts

E(u, v)

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^{2}$$

We want to find out how this function behaves for small shifts

But this is very slow to compute naively. O(window_width² * shift_range² * image_width²)

O($11^2 * 11^2 * 600^2$) = 5.2 billion of these 14.6 thousand per pixel in your image

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^2$$

We want to find out how this function behaves for small shifts

Recall Taylor series expansion. A function f can be approximated at point a as

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$$

Recall: Taylor series expansion

A function f can be approximated as

$$f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \cdots$$
Approximation of
$$f(x) = e^x$$
centered at f(0)
$$f(a) = e^x$$

0

2

-2

Change in appearance of window w(x,y) for the shift [u,v]:

$$E(u,v) = \sum_{x,y} w(x,y) \left[I(x+u, y+v) - I(x,y) \right]^2$$

We want to find out how this function behaves for small shifts

Local quadratic approximation of E(u,v) in the neighborhood of (0,0) is given by the second-order *Taylor expansion*:

$$E(u,v) \approx E(0,0) + \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_u(0,0) \\ E_v(0,0) \end{bmatrix} + \frac{1}{2} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} E_{uu}(0,0) & E_{uv}(0,0) \\ E_{uv}(0,0) & E_{vv}(0,0) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

Local quadratic approximation of E(u,v) in the neighborhood of (0,0) is given by the second-order *Taylor expansion*:

The quadratic approximation simplifies to

$$E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}$$

where *M* is a *second moment matrix* computed from image derivatives:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$M = \begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} = \sum \begin{bmatrix} I_x \\ I_y \end{bmatrix} [I_x I_y] = \sum \nabla I (\nabla I)^T$$

Corners as distinctive interest points

$$M = \sum w(x, y) \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).

Notation:
$$I_x \Leftrightarrow \frac{\partial I}{\partial x}$$
 $I_y \Leftrightarrow \frac{\partial I}{\partial y}$ $I_x I_y \Leftrightarrow \frac{\partial I}{\partial x} \frac{\partial I}{\partial y}$

Interpreting the second moment matrix

The surface E(u, v) is locally approximated by a quadratic form. Let's try to understand its shape.

$$E(u,v) \approx [u \ v] \ M \begin{bmatrix} u \\ v \end{bmatrix}$$
$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$ This is the equation of an ellipse.

Interpreting the second moment matrix

Consider a horizontal "slice" of E(u, v): $\begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$

This is the equation of an ellipse.

Diagonalization of M:
$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

The axis lengths of the ellipse are determined by the eigenvalues and the orientation is determined by R

Visualization of second moment matrices

Visualization of second moment matrices

Interpreting the eigenvalues

Classification of image points using eigenvalues of *M*:

 λ_1

Corner response function

 $R = \det(M) - \alpha \operatorname{trace}(M)^2 = \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$

α: constant (0.04 to 0.06)

- 1) Compute *M* matrix for each image window to get their *cornerness* scores.
- 2) Find points whose surrounding window gave large corner response (*f*> threshold)
- 3) Take the points of local maxima, i.e., perform non-maximum suppression

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u> *Proceedings of the 4th Alvey Vision Conference*: pages 147—151, 1988.

Harris Detector [Harris88]

• Second moment matrix

$$\mu(\sigma_{I},\sigma_{D}) = g(\sigma_{I}) * \begin{bmatrix} I_{x}^{2}(\sigma_{D}) & I_{x}I_{y}(\sigma_{D}) \\ I_{x}I_{y}(\sigma_{D}) & I_{y}^{2}(\sigma_{D}) \end{bmatrix}$$
1. Image derivatives (optionally, blur first)
$$det M = \lambda_{1}\lambda_{2}$$
trace $M = \lambda_{1} + \lambda_{2}$
3. Gaussian filter $g(\sigma_{I})$
4. Cornerness function – both eigenvalues are strong

har

$$har = \det[\mu(\sigma_{I}, \sigma_{D})] - \alpha[\operatorname{trace}(\mu(\sigma_{I}, \sigma_{D}))^{2}] = g(I_{x}^{2})g(I_{y}^{2}) - [g(I_{x}I_{y})]^{2} - \alpha[g(I_{x}^{2}) + g(I_{y}^{2})]^{2}$$

5. Non-maxima suppression

Compute corner response R

Find points with large corner response: *R*>threshold

Take only the points of local maxima of R

.

·

Invariance and covariance

- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - **Invariance:** image is transformed and corner locations do not change
 - **Covariance:** if we have two transformed versions of the same image, features should be detected in corresponding locations

Affine intensity change

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow a I$

x (image coordinate)

Partially invariant to affine intensity change

Image translation

· Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Image rotation

Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Scaling

Corner location is not covariant to scaling!

Review: Harris corner detector

- Approximate distinctiveness by local auto-correlation.
- Approximate local auto-correlation by second moment matrix
- Quantify distinctiveness (or cornerness) as function of the eigenvalues of the second moment matrix.
- But we don't actually need to compute the eigenvalues by using the determinant and trace of the second moment matrix.

 (λ_{\min})

E(u, v)

So far: can localize in x-y, but not scale

How to find corresponding patch sizes?

• Function responses for increasing scale (scale signature)

• Function responses for increasing scale (scale signature)

• Function responses for increasing scale (scale signature)

• Function responses for increasing scale (scale signature)

 $f(I_{i_1...i_m}(x',\sigma))$

K. Grauman, B. Leibe

• Function responses for increasing scale (scale signature)

 $f(I_{i_1...i_m}(x,\sigma))$

• Function responses for increasing scale (scale signature)

What Is A Useful Signature Function?

• Difference-of-Gaussian = "blob" detector

Difference-of-Gaussian (DoG)

K. Grauman, B. Leibe

Find local maxima in position-scale space of Difference-of-Gaussian

Results: Difference-of-Gaussian

Orientation Normalization

- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999]

Maximally Stable Extremal Regions [Matas '02]

- Based on Watershed segmentation algorithm
- Select regions that stay stable over a large parameter range

Example Results: MSER

