




Interest Points and Corners

Computer Vision

James Hays

Slides from Rick Szeliski, Svetlana Lazebnik, Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial

Read Szeliski 4.1



Correspondence across views

• Correspondence: matching points, patches, 
edges, or regions across images
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Example: estimating “fundamental matrix” 
that corresponds two views

Slide from Silvio Savarese



Example: structure from motion



Applications  

• Feature points are used for:
– Image alignment 

– 3D reconstruction

– Motion tracking

– Robot navigation

– Indexing and database retrieval

– Object recognition



This class: interest points (continued) 
and local features

• Note: “interest points” = “keypoints”, also 
sometimes called “features”



This class: interest points

• Suppose you have to 
click on some point,  
go away and come 
back after I deform the 
image, and click on the 
same points again.  

– Which points would 
you choose?

original

deformed



Overview of Keypoint Matching

K. Grauman, B. Leibe
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1. Find a set of   

distinctive key-

points 

2. Define a region 

around each 

keypoint   

3. Compute a local 

descriptor from the 

normalized region

4. Match local 

descriptors



Goals for Keypoints

Detect points that are repeatable and distinctive



Invariant Local Features

Image content is transformed into local feature coordinates that are 

invariant to translation, rotation, scale, and other imaging parameters

Features Descriptors



Why extract features?

• Motivation: panorama stitching
• We have two images – how do we combine them?



Local features: main components

1) Detection: Identify the 

interest points

2) Description: Extract vector 

feature descriptor 

surrounding each interest 

point.

3) Matching: Determine 

correspondence between 

descriptors in two views
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Characteristics of good features

• Repeatability
• The same feature can be found in several images despite geometric 

and photometric transformations 

• Saliency
• Each feature is distinctive

• Compactness and efficiency
• Many fewer features than image pixels

• Locality
• A feature occupies a relatively small area of the image; robust to 

clutter and occlusion



Goal: interest operator repeatability

• We want to detect (at least some of) the 

same points in both images.

• Yet we have to be able to run the detection 

procedure independently per image.

No chance to find true matches!

Kristen Grauman



Goal: descriptor distinctiveness

• We want to be able to reliably determine 

which point goes with which.

• Must provide some invariance to geometric 

and photometric differences between the two 

views.

?

Kristen Grauman



Local features: main components

1) Detection: Identify the 

interest points

2) Description:Extract vector 

feature descriptor 

surrounding each interest 

point.

3) Matching: Determine 

correspondence between 

descriptors in two views



Many Existing Detectors Available

K. Grauman, B. Leibe

Hessian & Harris [Beaudet ‘78], [Harris ‘88]
Laplacian, DoG [Lindeberg ‘98], [Lowe 1999]
Harris-/Hessian-Laplace       [Mikolajczyk & Schmid ‘01]
Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04]
EBR and IBR [Tuytelaars & Van Gool ‘04]
MSER [Matas ‘02]
Salient Regions [Kadir & Brady ‘01] 
Others…



Corner Detection: Basic Idea

• We should easily recognize the point by 
looking through a small window

• Shifting a window in any direction should 
give a large change in intensity

“edge”:

no change 

along the edge 

direction

“corner”:

significant 

change in all 

directions

“flat” region:

no change in 

all directions

Source: A. Efros



Corner Detection: Mathematics
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Change in appearance of window w(x,y) 

for the shift [u,v]:

I(x, y)
E(u, v)

E(3,2)

w(x, y)



Corner Detection: Mathematics
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I(x, y)
E(u, v)

E(0,0)

w(x, y)

Change in appearance of window w(x,y) 

for the shift [u,v]:



Corner Detection: Mathematics
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IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski

Change in appearance of window w(x,y) 

for the shift [u,v]:



Corner Detection: Mathematics
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We want to find out how this function behaves for 

small shifts

Change in appearance of window w(x,y) 

for the shift [u,v]:

E(u, v)



Corner Detection: Mathematics
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We want to find out how this function behaves for 

small shifts

Change in appearance of window w(x,y) 

for the shift [u,v]:

But this is very slow to compute naively.

O(window_width2 * shift_range2 * image_width2)

O( 112 * 112 * 6002 ) = 5.2 billion of these 

14.6 thousand per pixel in your image



Corner Detection: Mathematics
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We want to find out how this function behaves for 

small shifts

Change in appearance of window w(x,y) 

for the shift [u,v]:

Recall Taylor series expansion. A function f can be 

approximated at point a as



Recall: Taylor series expansion

A function f can be approximated as

Approximation of 

f(x) = ex 

centered at f(0)



Corner Detection: Mathematics
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Local quadratic approximation of E(u,v) in the 

neighborhood of (0,0) is given by the second-order 

Taylor expansion:
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We want to find out how this function behaves for 

small shifts

Change in appearance of window w(x,y) 

for the shift [u,v]:



Corner Detection: Mathematics

Local quadratic approximation of E(u,v) in the 

neighborhood of (0,0) is given by the second-order 

Taylor expansion:
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E(u, v)
Always 0

First 

derivative 

is 0



Corner Detection: Mathematics

The quadratic approximation simplifies to
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where M is a second moment matrix computed from image 

derivatives:
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Corners as distinctive interest points

2 x 2 matrix of image derivatives (averaged in 

neighborhood of a point).

Notation:



The surface E(u,v) is locally approximated by a 

quadratic form. Let’s try to understand its shape.

Interpreting the second moment matrix
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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The axis lengths of the ellipse are determined by the 

eigenvalues and the orientation is determined by R

direction of the 

slowest change

direction of the 

fastest change
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Diagonalization of M:



Visualization of second moment matrices



Visualization of second moment matrices



Interpreting the eigenvalues

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region

Classification of image points using eigenvalues 

of M:



Corner response function

“Corner”

R > 0

“Edge” 

R < 0

“Edge” 

R < 0

“Flat” 

region

|R| small

2

2121
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α: constant (0.04 to 0.06)



Harris corner detector

1) Compute M matrix for each image window to 

get their cornerness scores.

2) Find points whose surrounding window gave 

large corner response (f> threshold)

3) Take the points of local maxima, i.e., perform 

non-maximum suppression

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Harris Detector [Harris88]

• Second moment matrix
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4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression
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(optionally, blur first)



Harris Detector: Steps



Harris Detector: Steps

Compute corner response R



Harris Detector: Steps

Find points with large corner response: R>threshold



Harris Detector: Steps

Take only the points of local maxima of R



Harris Detector: Steps



Invariance and covariance

• We want corner locations to be invariant to photometric 

transformations and covariant to geometric transformations

• Invariance: image is transformed and corner locations do not change

• Covariance: if we have two transformed versions of the same image, 

features should be detected in corresponding locations



Affine intensity change

• Only derivatives are used => 

invariance to intensity shift I  I + b

• Intensity scaling: I  a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change

I  a I + b



Image translation

• Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation



Image rotation

Second moment ellipse rotates but its shape 

(i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation



Scaling

All points will 

be classified 

as edges

Corner

Corner location is not covariant to scaling!



Review: Harris corner detector

• Approximate distinctiveness by local 
auto-correlation.

• Approximate local auto-correlation by  
second moment matrix

• Quantify distinctiveness (or cornerness) 
as function of the eigenvalues of the 
second moment matrix.

• But we don’t actually need to 
compute the eigenvalues by
using the determinant and trace
of the second moment matrix.

E(u, v)

(max)
-1/2

(min)
-1/2



So far: can localize in x-y, but not scale



Automatic Scale Selection

K. Grauman, B. Leibe
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How to find corresponding patch sizes?



Automatic Scale Selection

• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection

• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection

• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection

• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection

• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic Scale Selection

• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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What Is A Useful Signature Function?

• Difference-of-Gaussian = “blob” detector

K. Grauman, B. Leibe



Difference-of-Gaussian (DoG)

K. Grauman, B. Leibe

- =



Find local maxima in position-scale space 
of Difference-of-Gaussian

K. Grauman, B. Leibe
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Results: Difference-of-Gaussian

K. Grauman, B. Leibe



T. Tuytelaars, B. Leibe

Orientation Normalization

• Compute orientation histogram

• Select dominant orientation

• Normalize: rotate to fixed orientation 

0 2p

[Lowe, SIFT, 1999]



Maximally Stable Extremal Regions [Matas ‘02]

• Based on Watershed segmentation algorithm

• Select regions that stay stable over a large 
parameter range

K. Grauman, B. Leibe



Example Results: MSER

74 K. Grauman, B. Leibe


