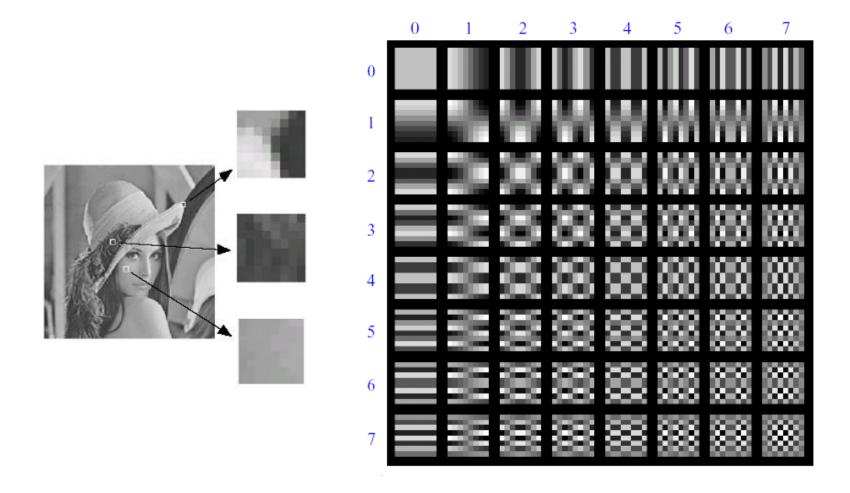
Compression

How is it that a 4MP image can be compressed to a few hundred KB without a noticeable change?

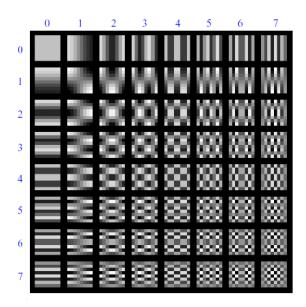
Lossy Image Compression (JPEG)



Block-based Discrete Cosine Transform (DCT)

Using DCT in JPEG

- The first coefficient B(0,0) is the DC component, the average intensity
- The top-left coeffs represent low frequencies, the bottom right – high frequencies



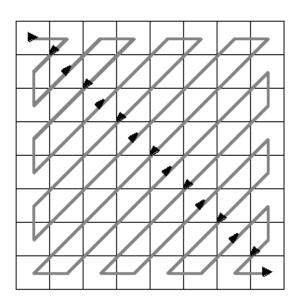


Image compression using DCT

- Quantize
 - More coarsely for high frequencies (which also tend to have smaller values)
 - Many quantized high frequency values will be zero
- Encode
 - Can decode with inverse dct

Filter responses $\overset{u}{\longrightarrow}$											
G =	$\begin{bmatrix} -415.38 \\ 4.47 \\ -46.83 \\ -48.53 \\ 12.12 \\ -7.73 \\ -1.03 \\ -0.17 \end{bmatrix}$	$\begin{array}{r} -30.19 \\ -21.86 \\ 7.37 \\ 12.07 \\ -6.55 \\ 2.91 \\ 0.18 \\ 0.14 \end{array}$	$\begin{array}{r} -61.20 \\ -60.76 \\ 77.13 \\ 34.10 \\ -13.20 \\ 2.38 \\ 0.42 \\ -1.07 \end{array}$	$27.24 \\ 10.25 \\ -24.56 \\ -14.76 \\ -3.95 \\ -5.94 \\ -2.42 \\ -4.19$	$56.13 \\ 13.15 \\ -28.91 \\ -10.24 \\ -1.88 \\ -2.38 \\ -0.88 \\ -1.17$	$\begin{array}{r} -20.10 \\ -7.09 \\ 9.93 \\ 6.30 \\ 1.75 \\ 0.94 \\ -3.02 \\ -0.10 \end{array}$	$\begin{array}{r} -2.39 \\ -8.54 \\ 5.42 \\ 1.83 \\ -2.79 \\ 4.30 \\ 4.12 \\ 0.50 \end{array}$	$\begin{array}{c} 0.46 \\ 4.88 \\ -5.65 \\ 1.95 \\ 3.14 \\ 1.85 \\ -0.66 \\ 1.68 \end{array}$	$\bigg \downarrow^v$		
Qua	ntized	value	es	Ţ							
	В		-2 - 3	$\begin{array}{cccc} 6 & 2 \\ 4 & 1 \\ 5 & -1 \\ 2 & -1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}$	$\begin{array}{cccc} 2 & -1 \\ 1 & 0 \\ -1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$ \begin{array}{cccc} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array} $					

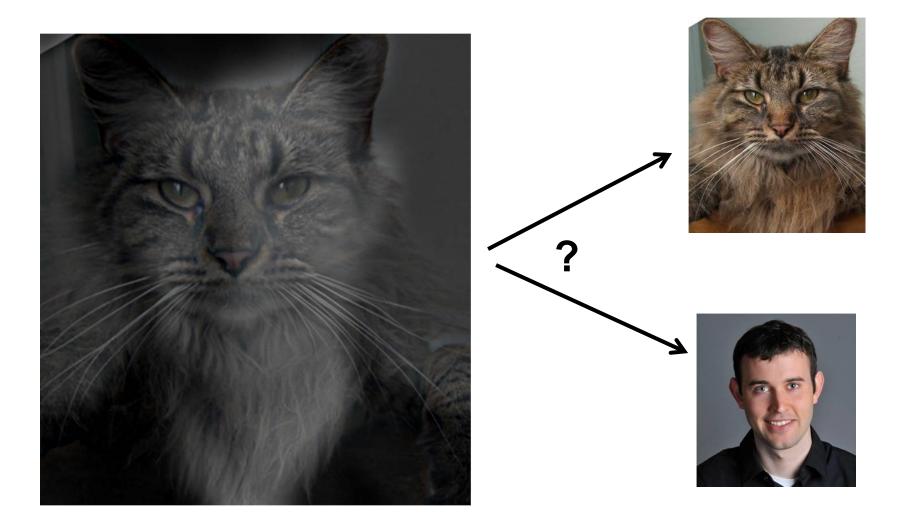
Quantization table

	16 12 14	$ \begin{array}{c} 11 \\ 12 \\ 13 \end{array} $	10 14 16	16 19 24	$24 \\ 26 \\ 40$	40 58 57 87 109 104 121 100	$51 \\ 60 \\ 69$	61 55 56
Q =	14 14 18	17 22	22 37	29 56	$\frac{40}{51}$	87 109	80 103	62 77
	24 49 72	$35 \\ 64 \\ 92$	$\frac{55}{78}$ 95	64 87 98	81 103 112	104 121 100	113 120 103	92 101 99

JPEG Compression Summary

- 1. Convert image to YCrCb
- 2. Subsample color by factor of 2
 - People have bad resolution for color
- 3. Split into blocks (8x8, typically), subtract 128
- 4. For each block
 - a. Compute DCT coefficients
 - b. Coarsely quantize
 - Many high frequency components will become zero
 - c. Encode (with run length encoding and then Huffman coding for leftovers)

Why do we get different, distance-dependent interpretations of hybrid images?

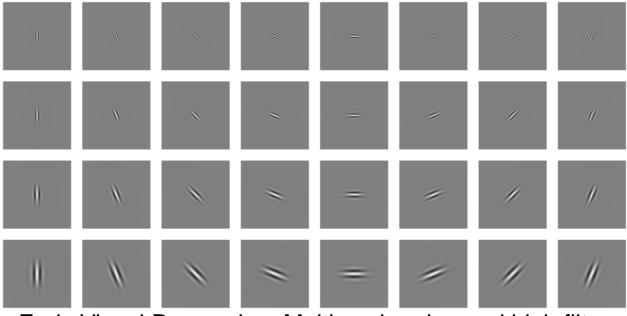


Application: Hybrid Images

 A. Oliva, A. Torralba, P.G. Schyns, <u>"Hybrid Images,"</u> SIGGRAPH 2006

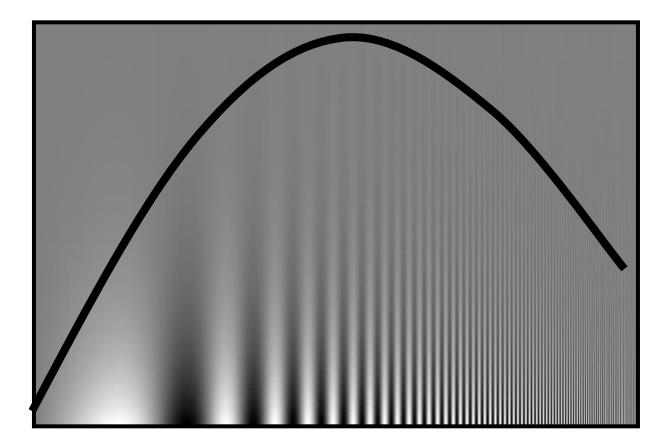
Clues from Human Perception

- Early processing in humans filters for various orientations and scales of frequency
- Perceptual cues in the mid-high frequencies dominate perception
- When we see an image from far away, we are effectively subsampling it

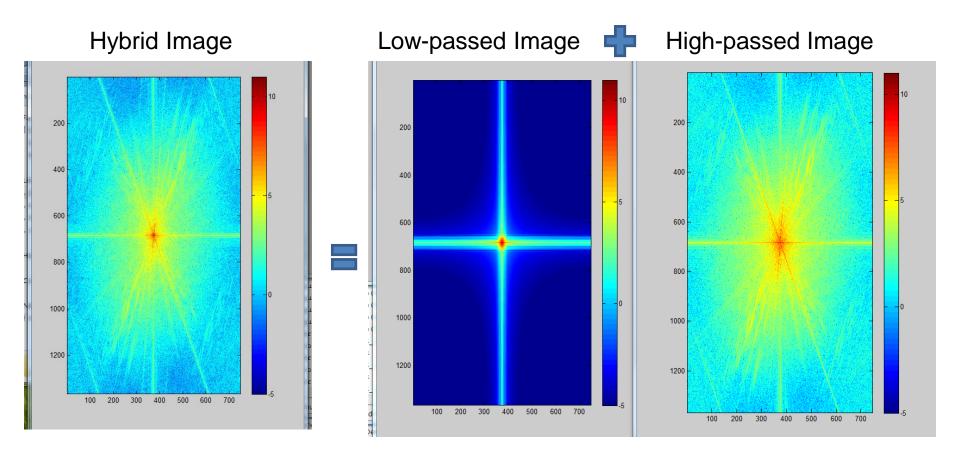


Early Visual Processing: Multi-scale edge and blob filters

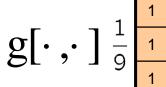
Campbell-Robson contrast sensitivity curve



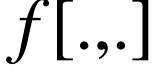
Hybrid Image in FFT



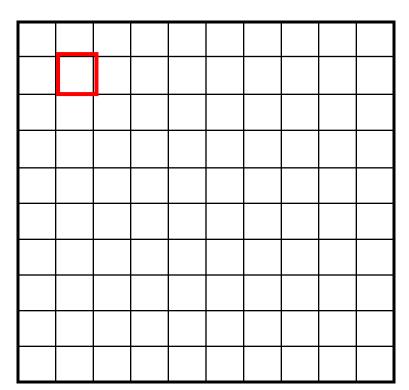
Review: Image filtering



1 9	1	1	1
	1	1	1
	1	1	1



0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

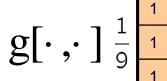


h[.,.]

 $h[m,n] = \sum f[k,l] g[m+k,n+l]$ k.l

Credit: S. Seitz

Image filtering



1	1	1	1
1 9	1	1	1
	1	1	1

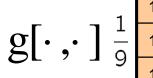
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

h[.,.]

$$h[m,n] = \sum_{k,l} f[k,l] g[m+k,n+l]$$

Credit: S. Seitz

Image filtering



1 9	1	1	1
	1	1	1
	1	1	1

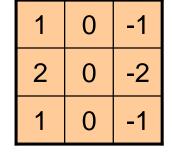
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

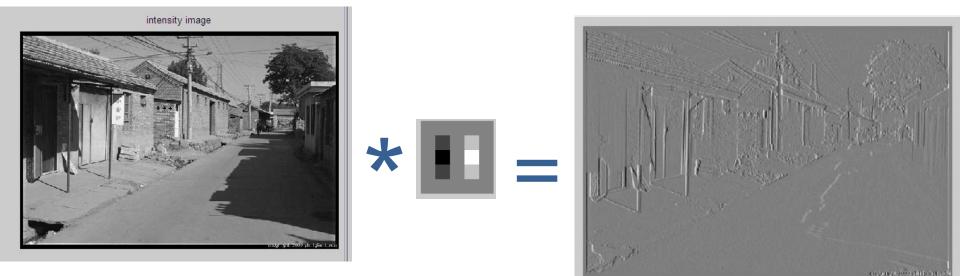
h[.,.]

$$h[m,n] = \sum_{k,l} f[k,l] g[m+k,n+l]$$

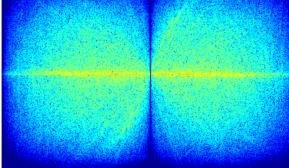
Credit: S. Seitz

Filtering in spatial domain





Filtering in frequency domain FFT intensity image log fft magnitude FFT \mathbf{X} **Inverse FFT**

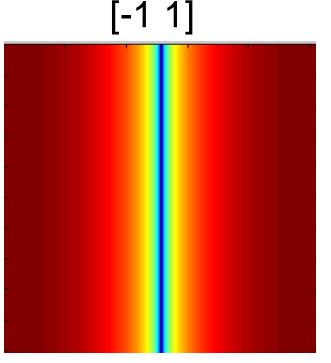


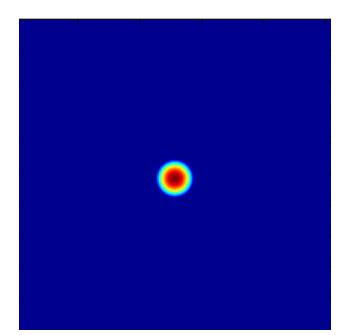
Review of Filtering

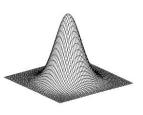
- Filtering in frequency domain
 - Can be faster than filtering in spatial domain (for large filters)
 - Can help understand effect of filter
 - Algorithm:
 - 1. Convert image and filter to fft (fft2 in matlab)
 - 2. Pointwise-multiply ffts
 - 3. Convert result to spatial domain with ifft2

Review of Filtering

- Linear filters for basic processing
 - Edge filter (high-pass)
 - -Gaussian filter (low-pass)







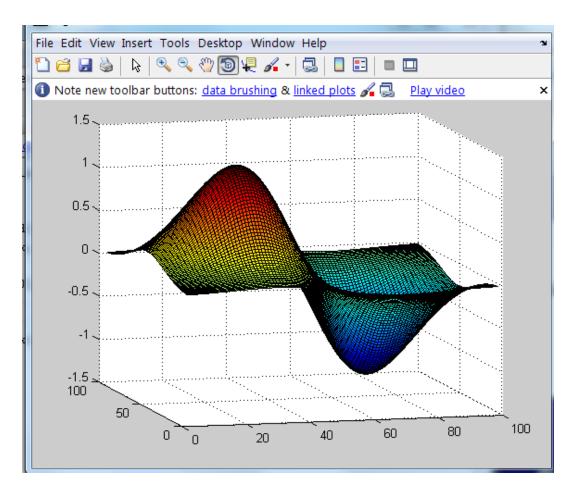
Gaussian

FFT of Gradient Filter

FFT of Gaussian

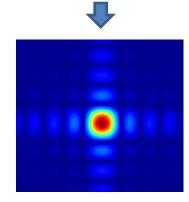
Review of Filtering

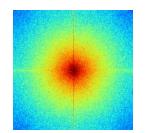
• Derivative of Gaussian

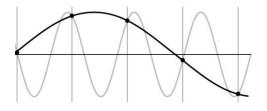


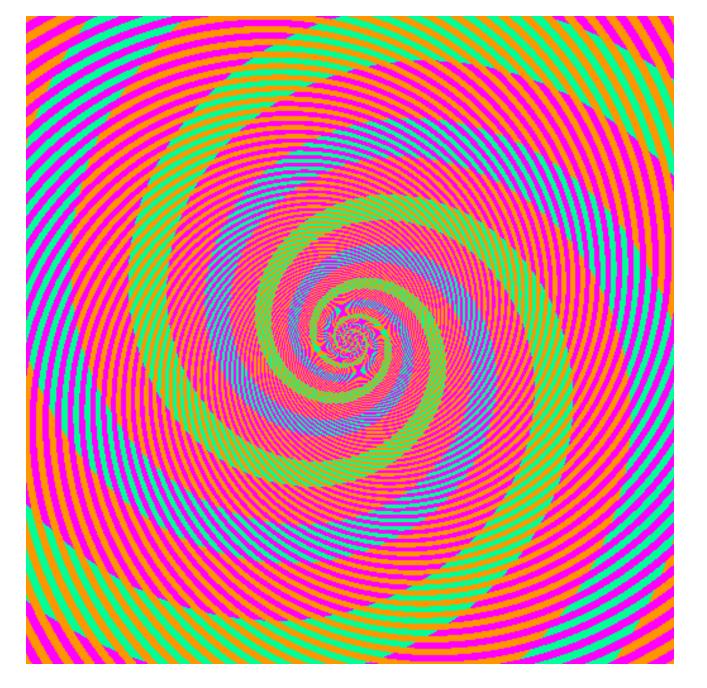
Things to Remember

- Sometimes it makes sense to think of images and filtering in the frequency domain
 - Fourier analysis
- Can be faster to filter using FFT for large images (N logN vs. N² for autocorrelation)
- Images are mostly smooth
 Basis for compression
- Remember to low-pass before sampling

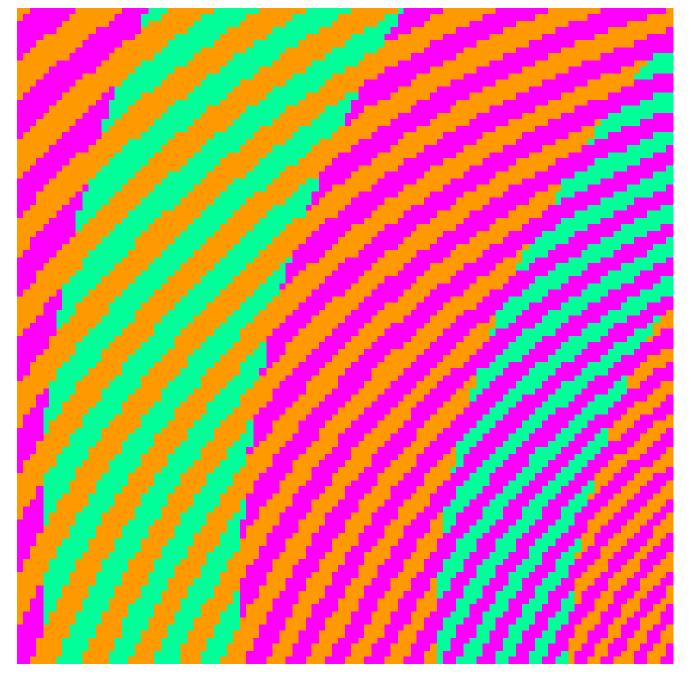








The blue and green colors are actually the same



http://blogs.discovermagazine.com/badastronomy/2009/06/24/the-blue-and-the-green/

Previous Lectures

- We've now touched on the first three chapters of Szeliski.
 - 1. Introduction
 - 2. Image Formation
 - 3. Image Processing
- Now we're moving on to
 - 4. Feature Detection and Matching
 - Multiple views and motion (7, 8, 11)

Edge / Boundary Detection

Computer Vision

Szeliski 4.2

James Hays

Many slides from Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li, and Derek Hoiem

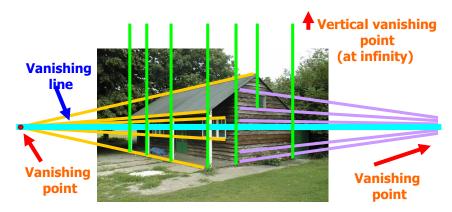
Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

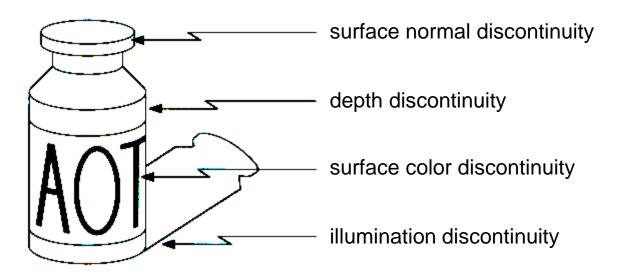
Why do we care about edges?

• Extract information, recognize objects

 Recover geometry and viewpoint

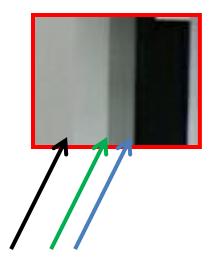


Origin of Edges

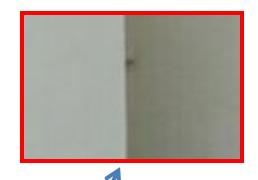


• Edges are caused by a variety of factors

Source: D. Hoiem



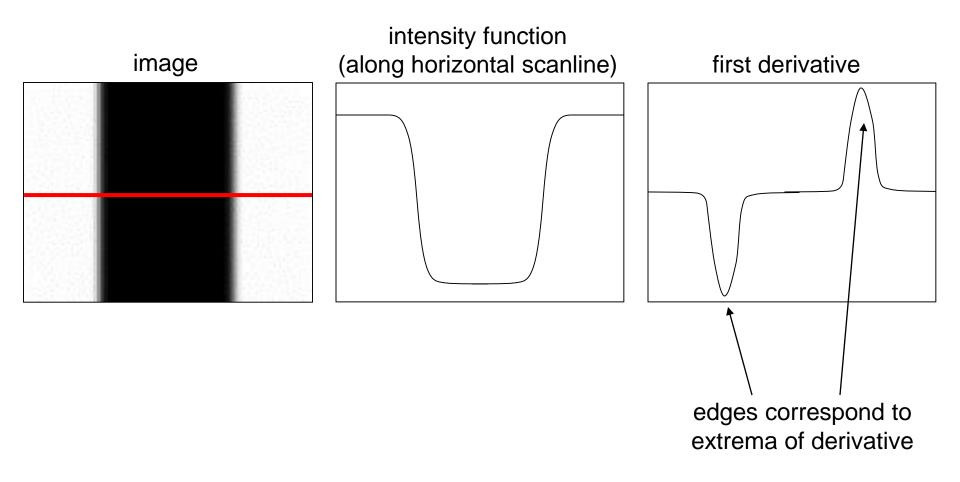
Source: D. Hoiem



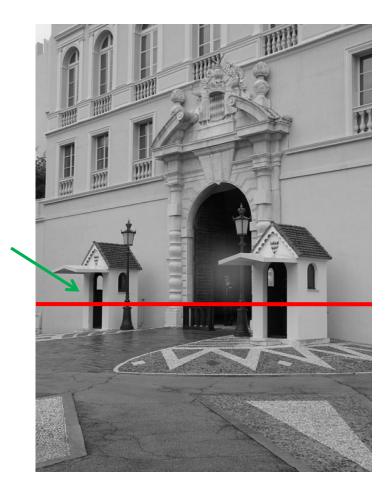
Source: D. Hoiem

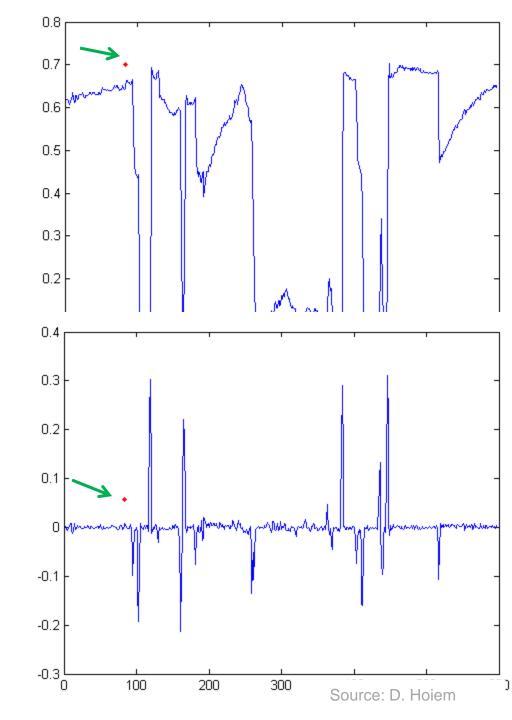
Characterizing edges

• An edge is a place of rapid change in the image intensity function

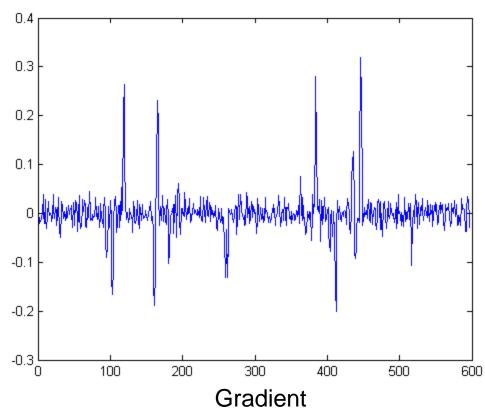


Intensity profile





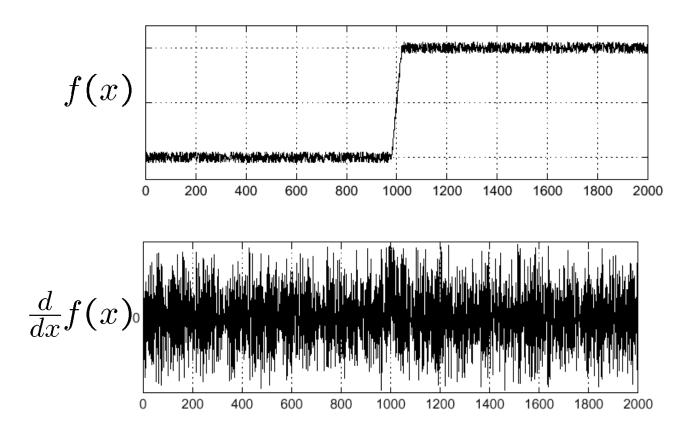
With a little Gaussian noise



Source: D. Hoiem

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

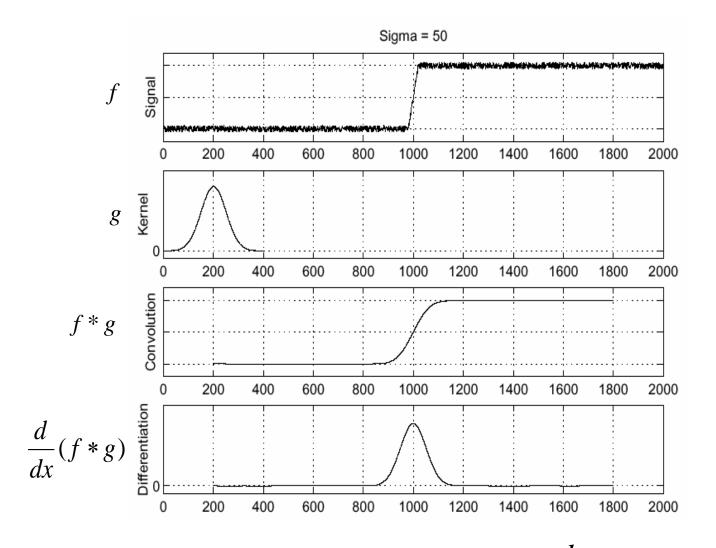


Where is the edge?

Effects of noise

- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- What can we do about it?

Solution: smooth first

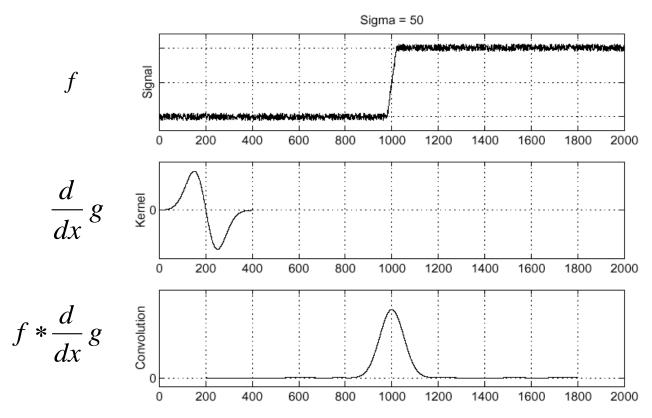


• To find edges, look for peaks in $\frac{d}{dx}(f * g)$

Source: S. Seitz

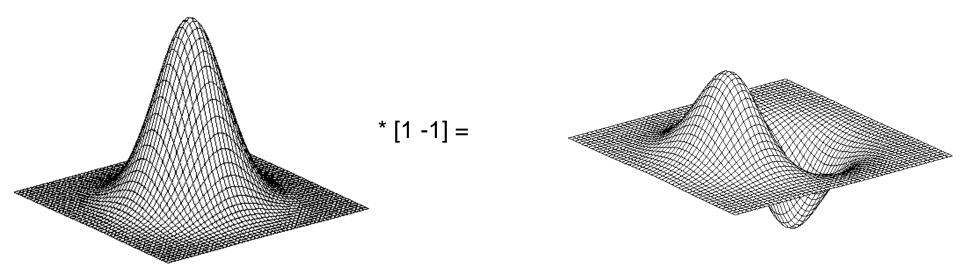
Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f * g) = f * \frac{d}{dx}g$
- This saves us one operation:

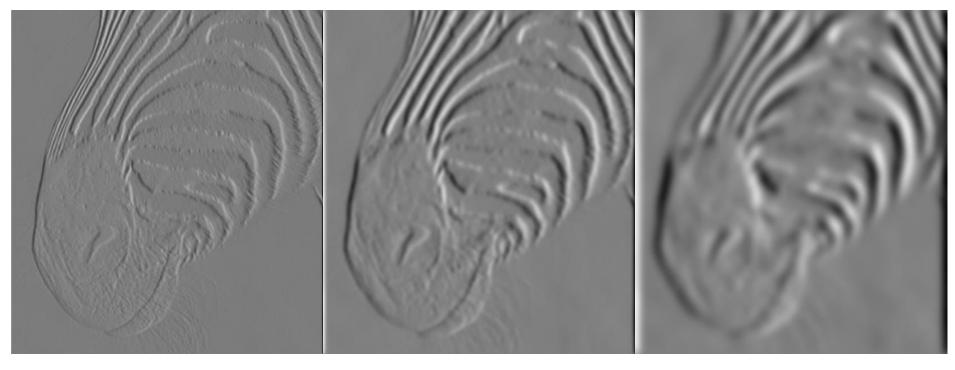


Source: S. Seitz

Derivative of Gaussian filter



Tradeoff between smoothing and localization



1 pixel

3 pixels

7 pixels

 Smoothed derivative removes noise, but blurs edge. Also finds edges at different "scales".

Designing an edge detector

- Criteria for a good edge detector:
 - Good detection: the optimal detector should find all real edges, ignoring noise or other artifacts
 - Good localization
 - the edges detected must be as close as possible to the true edges
 - the detector must return one point only for each true edge point

Cues of edge detection

- Differences in color, intensity, or texture across the boundary
- Continuity and closure
- High-level knowledge

Canny edge detector

- This is probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of *signal-to-noise ratio* and localization

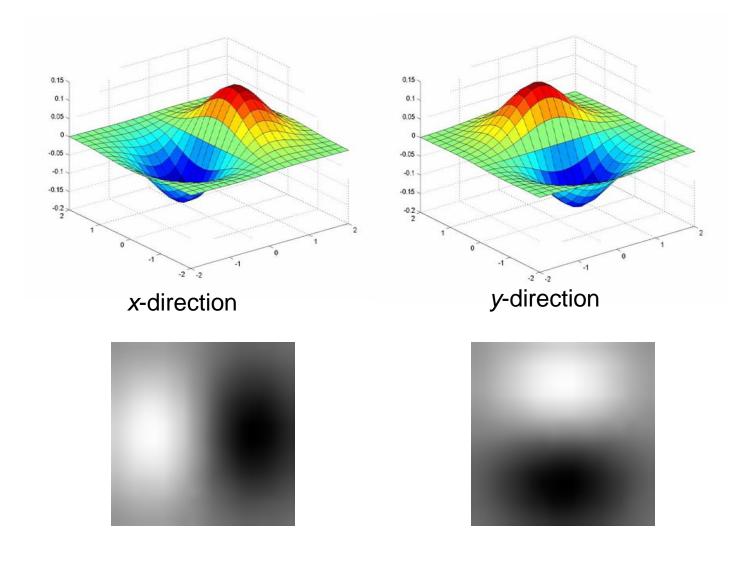
J. Canny, <u>A Computational Approach To Edge Detection</u>, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

22,000 citations!

Example

original image (Lena)

Derivative of Gaussian filter



Compute Gradients (DoG)

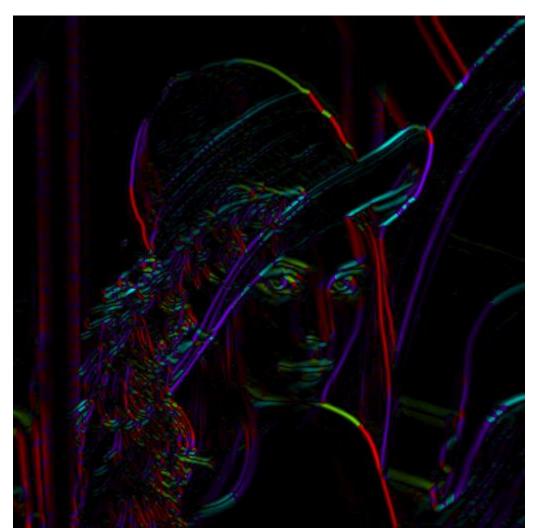
X-Derivative of Gaussian

Y-Derivative of Gaussian

Gradient Magnitude

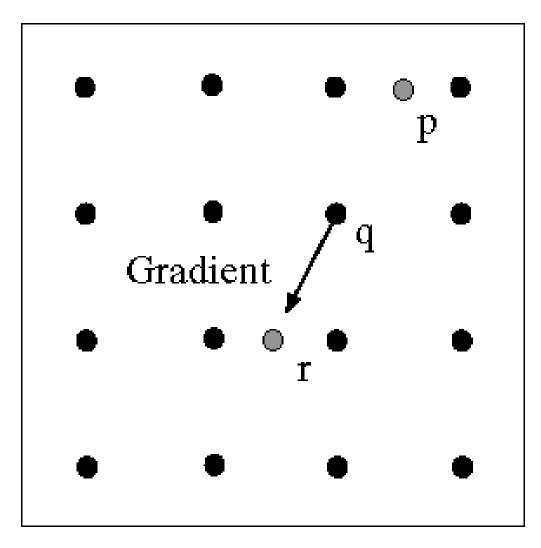
Get Orientation at Each Pixel

- Threshold at minimum level
- Get orientation

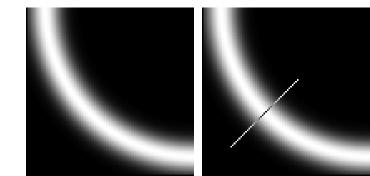


theta = atan2(gy, gx)

Non-maximum suppression for each orientation



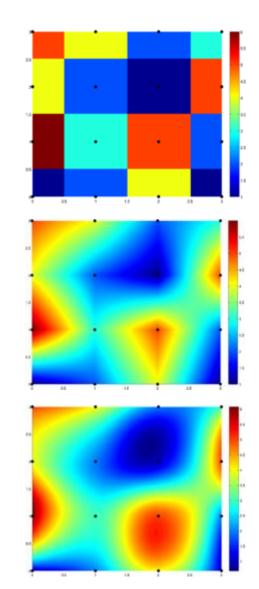
At q, we have a maximum if the value is larger than those at both p and at r. Interpolate to get these values.



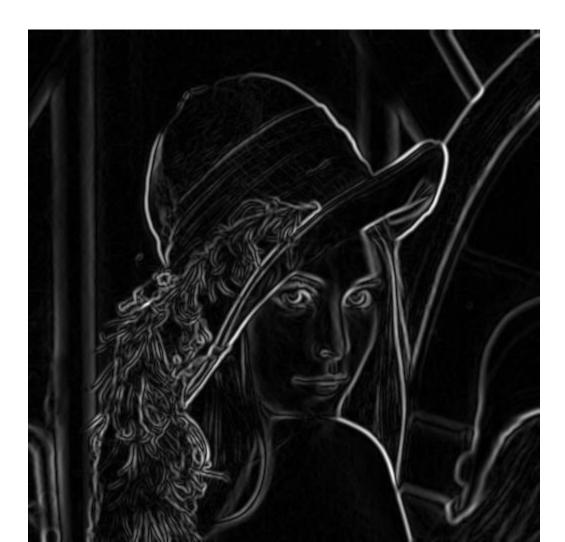
Source: D. Forsyth

Sidebar: Interpolation options

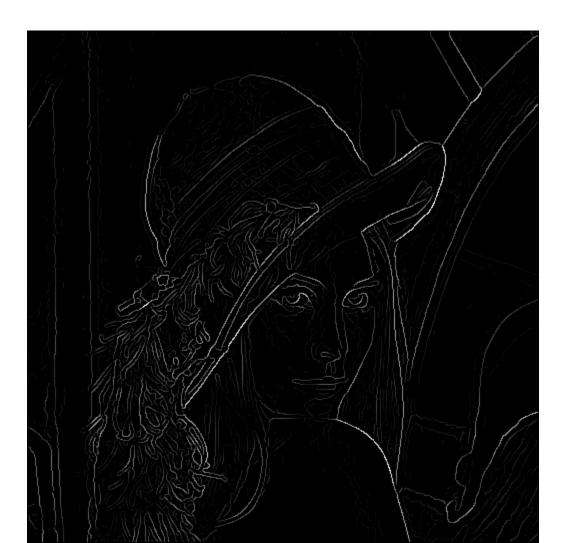
- imx2 = imresize(im, 2, interpolation_type)
- 'nearest'
 - Copy value from nearest known
 - Very fast but creates blocky edges
- 'bilinear'
 - Weighted average from four nearest known pixels
 - Fast and reasonable results
- 'bicubic' (default)
 - Non-linear smoothing over larger area (4x4)
 - Slower, visually appealing, may create negative pixel values



Before Non-max Suppression



After non-max suppression

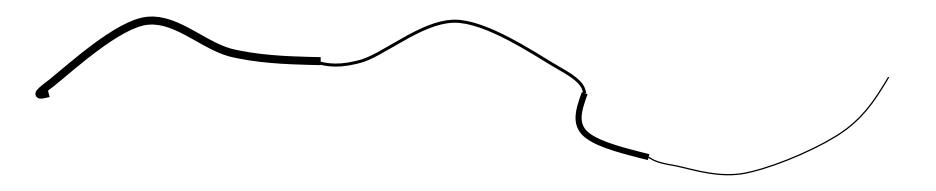


Hysteresis thresholding

- Threshold at low/high levels to get weak/strong edge pixels
- Do connected components, starting from strong edge pixels

Hysteresis thresholding

- Check that maximum value of gradient value is sufficiently large
 - drop-outs? use hysteresis
 - use a high threshold to start edge curves and a low threshold to continue them.



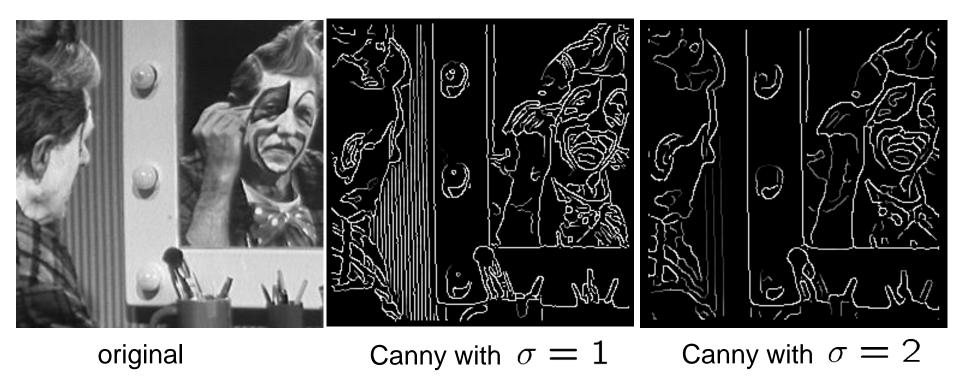
Final Canny Edges

Canny edge detector

- 1. Filter image with x, y derivatives of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Thresholding and linking (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

MATLAB: edge(image, 'canny')

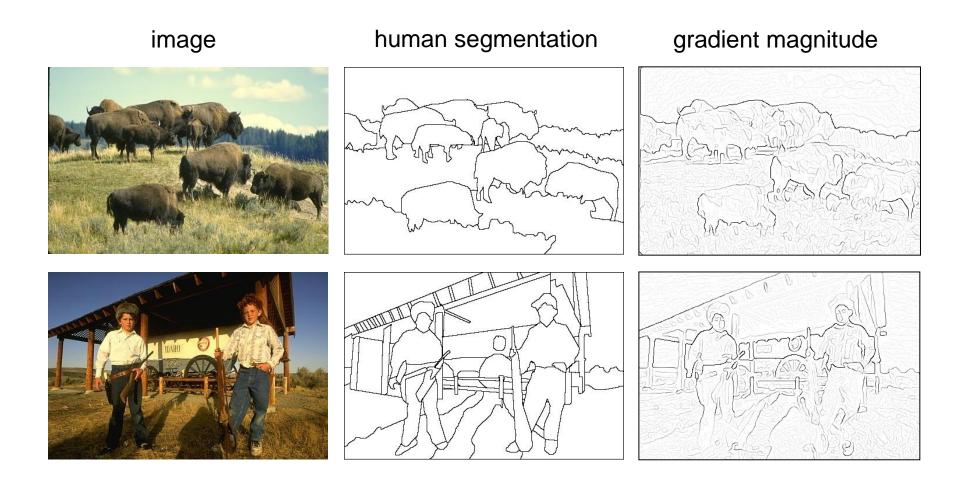
Effect of σ (Gaussian kernel spread/size)



The choice of $\boldsymbol{\sigma}$ depends on desired behavior

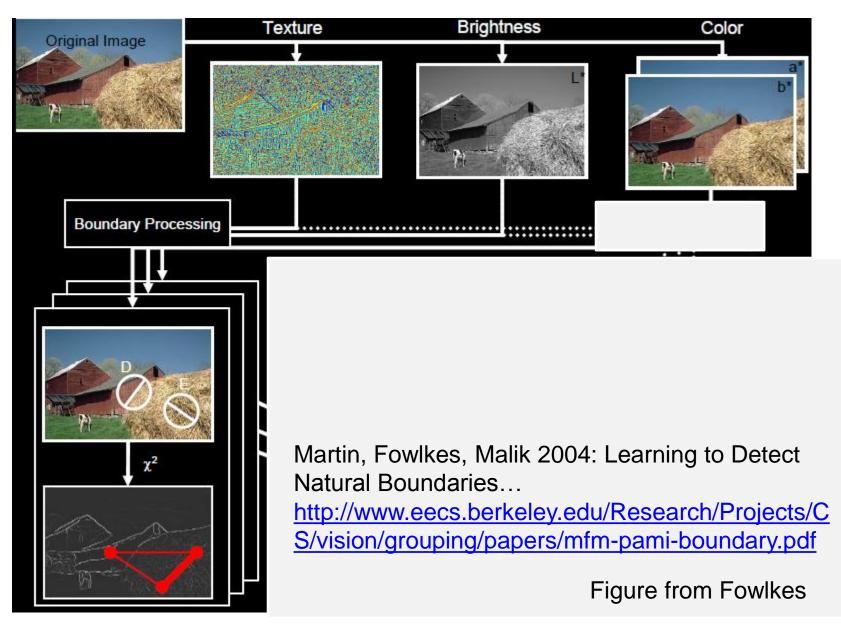
- large σ detects large scale edges
- small σ detects fine features

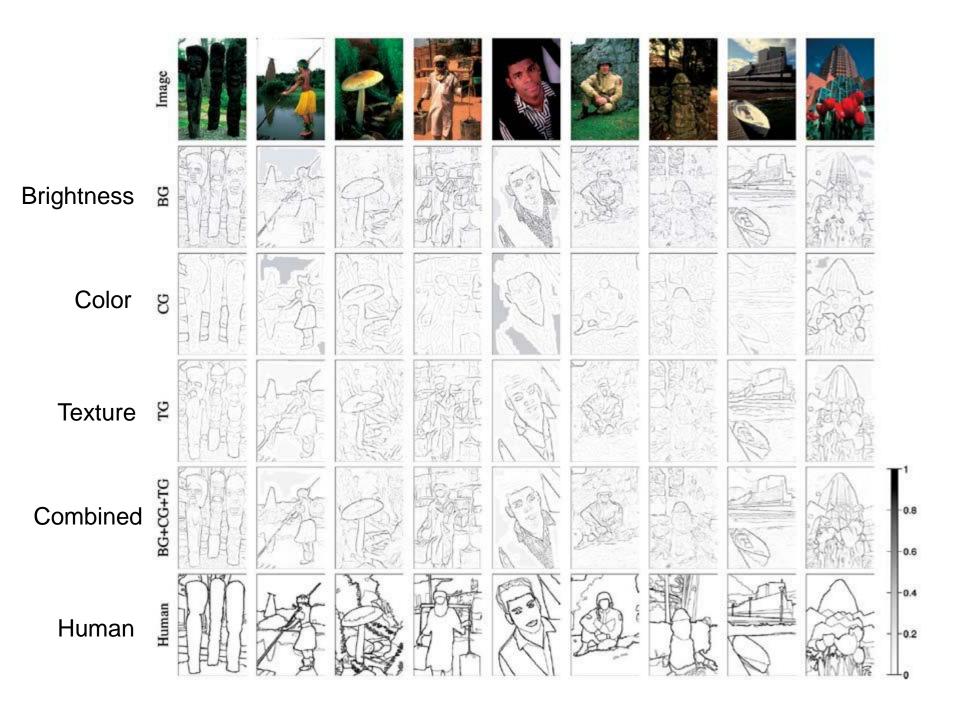
Where do humans see boundaries?



 Berkeley segmentation database: http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

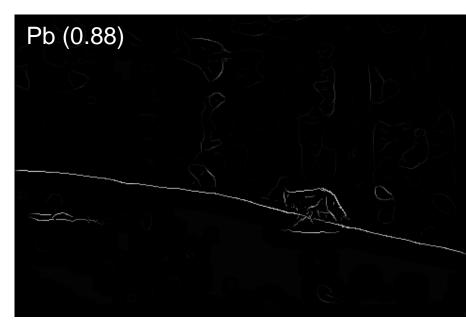
pB boundary detector



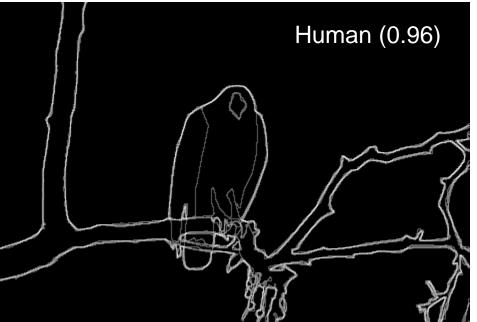


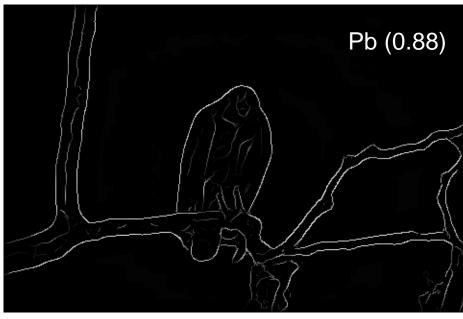
Results

Human (0.95)



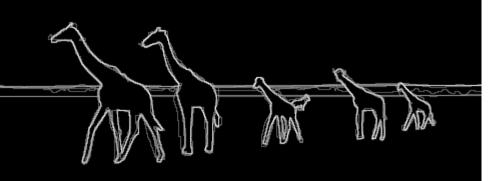
Results

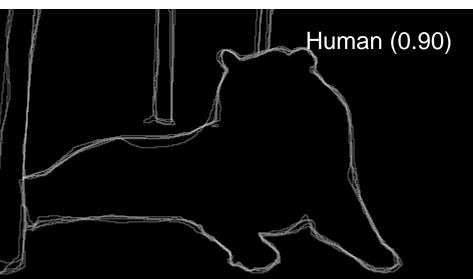






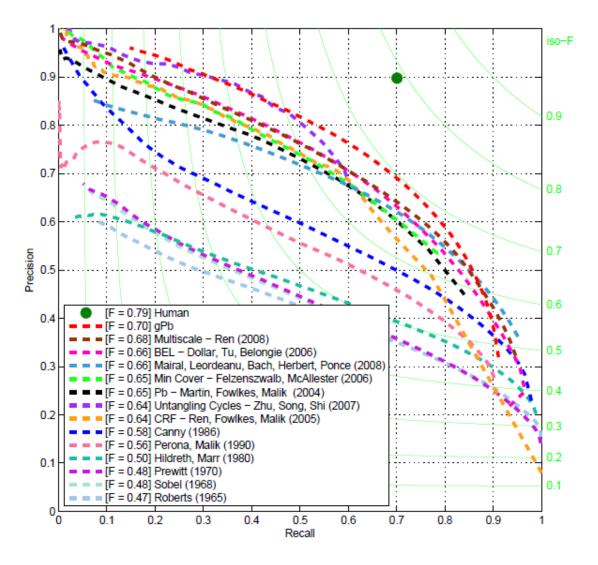
Human (0.95)





For more: http://www.eecs.berkeley.edu/Research/Projects /CS/vision/bsds/bench/html/108082-color.html

45 years of boundary detection



Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf)

State of edge detection

- Local edge detection works well
 - But many false positives from illumination and texture edges
- Some methods to take into account longer contours, but could probably do better
- Modern methods that actually "learn" from data.
- Poor use of object and high-level information