

How is it that a 4MP image can be compressed
to a few hundred KB without a noticeable
change?

Compression

Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT)

Slides: Efros

Using DCT in JPEG

• The first coefficient B(0,0) is the DC
component, the average intensity

• The top-left coeffs represent low frequencies,
the bottom right – high frequencies

Image compression using DCT

• Quantize
– More coarsely for high frequencies (which also tend to have smaller

values)

– Many quantized high frequency values will be zero

• Encode
– Can decode with inverse dct

Quantization table

Filter responses

Quantized values

JPEG Compression Summary

1. Convert image to YCrCb

2. Subsample color by factor of 2
– People have bad resolution for color

3. Split into blocks (8x8, typically), subtract 128

4. For each block
a. Compute DCT coefficients

b. Coarsely quantize
• Many high frequency components will become zero

c. Encode (with run length encoding and then
Huffman coding for leftovers)

http://en.wikipedia.org/wiki/YCbCr

http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG

Why do we get different, distance-dependent
interpretations of hybrid images?

?

Application: Hybrid Images

• A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006

http://cvcl.mit.edu/hybridimage.htm

• Early processing in humans filters for various orientations and scales of
frequency

• Perceptual cues in the mid-high frequencies dominate perception

• When we see an image from far away, we are effectively subsampling it

Early Visual Processing: Multi-scale edge and blob filters

Clues from Human Perception

Campbell-Robson contrast sensitivity curve

Hybrid Image in FFT

Hybrid Image Low-passed Image High-passed Image

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Credit: S. Seitz

],[],[],[
,

lnkmglkfnmh
lk



[.,.]h[.,.]f

Review: Image filtering

111

111

111

],[g 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

],[],[],[
,

lnkmglkfnmh
lk



[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

],[],[],[
,

lnkmglkfnmh
lk



[.,.]h[.,.]f

Image filtering

111

111

111

],[g 

Credit: S. Seitz

Filtering in spatial domain
-101

-202

-101

* =

Filtering in frequency domain

FFT

FFT

Inverse FFT

=

Review of Filtering

• Filtering in frequency domain

– Can be faster than filtering in spatial domain (for
large filters)

– Can help understand effect of filter

– Algorithm:

1. Convert image and filter to fft (fft2 in matlab)

2. Pointwise-multiply ffts

3. Convert result to spatial domain with ifft2

Review of Filtering

• Linear filters for basic processing

– Edge filter (high-pass)

– Gaussian filter (low-pass)

FFT of Gaussian

[-1 1]

FFT of Gradient Filter

Gaussian

Review of Filtering

• Derivative of Gaussian

Things to Remember

• Sometimes it makes sense to think of
images and filtering in the frequency
domain
– Fourier analysis

• Can be faster to filter using FFT for large
images (N logN vs. N2 for auto-
correlation)

• Images are mostly smooth
– Basis for compression

• Remember to low-pass before sampling

The blue and green colors are actually the same

http://blogs.discovermagazine.com/badastronomy/2009/06/24/the-blue-and-the-green/

Previous Lectures

• We’ve now touched on the first three chapters
of Szeliski.

– 1. Introduction

– 2. Image Formation

– 3. Image Processing

• Now we’re moving on to

– 4. Feature Detection and Matching

– Multiple views and motion (7, 8, 11)

Edge / Boundary Detection

Computer Vision

James Hays

Many slides from Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li, and Derek Hoiem

Szeliski 4.2

Edge detection

• Goal: Identify sudden
changes (discontinuities) in
an image
– Intuitively, most semantic and

shape information from the
image can be encoded in the
edges

– More compact than pixels

• Ideal: artist’s line drawing
(but artist is also using
object-level knowledge)

Source: D. Lowe

Why do we care about edges?

• Extract information,
recognize objects

• Recover geometry and
viewpoint

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

Origin of Edges

• Edges are caused by a variety of factors

depth discontinuity

surface color discontinuity

illumination discontinuity

surface normal discontinuity

Source: Steve Seitz

Closeup of edges

Source: D. Hoiem

Closeup of edges

Source: D. Hoiem

Closeup of edges

Source: D. Hoiem

Closeup of edges

Source: D. Hoiem

Characterizing edges

• An edge is a place of rapid change in the
image intensity function

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative

Intensity profile

Source: D. Hoiem

With a little Gaussian noise

Gradient

Source: D. Hoiem

Effects of noise
• Consider a single row or column of the image

– Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz

Effects of noise

• Difference filters respond strongly to noise

– Image noise results in pixels that look very
different from their neighbors

– Generally, the larger the noise the stronger the
response

• What can we do about it?

Source: D. Forsyth

Solution: smooth first

• To find edges, look for peaks in)(gf
dx

d


f

g

f * g

)(gf
dx

d


Source: S. Seitz

• Differentiation is convolution, and convolution is
associative:

• This saves us one operation:

g
dx

d
fgf

dx

d
)(

Derivative theorem of convolution

g
dx

d
f 

f

g
dx

d

Source: S. Seitz

Derivative of Gaussian filter

* [1 -1] =

• Smoothed derivative removes noise, but blurs
edge. Also finds edges at different “scales”.

1 pixel 3 pixels 7 pixels

Tradeoff between smoothing and localization

Source: D. Forsyth

Designing an edge detector
• Criteria for a good edge detector:

– Good detection: the optimal detector should find all
real edges, ignoring noise or other artifacts

– Good localization
• the edges detected must be as close as possible to

the true edges
• the detector must return one point only for each

true edge point

• Cues of edge detection
– Differences in color, intensity, or texture across the

boundary
– Continuity and closure
– High-level knowledge

Source: L. Fei-Fei

Canny edge detector

• This is probably the most widely used edge
detector in computer vision

• Theoretical model: step-edges corrupted by
additive Gaussian noise

• Canny has shown that the first derivative of
the Gaussian closely approximates the
operator that optimizes the product of
signal-to-noise ratio and localization

J. Canny, A Computational Approach To Edge Detection, IEEE

Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Source: L. Fei-Fei

22,000 citations!

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Example

original image (Lena)

Derivative of Gaussian filter

x-direction y-direction

Compute Gradients (DoG)

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Get Orientation at Each Pixel

• Threshold at minimum level

• Get orientation

theta = atan2(gy, gx)

Non-maximum suppression for each
orientation

At q, we have a

maximum if the

value is larger than

those at both p and

at r. Interpolate to

get these values.

Source: D. Forsyth

Sidebar: Interpolation options

• imx2 = imresize(im, 2, interpolation_type)

• ‘nearest’
– Copy value from nearest known
– Very fast but creates blocky edges

• ‘bilinear’
– Weighted average from four nearest known

pixels
– Fast and reasonable results

• ‘bicubic’ (default)
– Non-linear smoothing over larger area (4x4)
– Slower, visually appealing, may create

negative pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation

http://en.wikipedia.org/wiki/Bicubic_interpolation

Before Non-max Suppression

After non-max suppression

Hysteresis thresholding

• Threshold at low/high levels to get weak/strong edge pixels

• Do connected components, starting from strong edge pixels

Hysteresis thresholding

• Check that maximum value of gradient
value is sufficiently large

– drop-outs? use hysteresis

• use a high threshold to start edge curves and a low
threshold to continue them.

Source: S. Seitz

Final Canny Edges

Canny edge detector

1. Filter image with x, y derivatives of Gaussian

2. Find magnitude and orientation of gradient

3. Non-maximum suppression:

– Thin multi-pixel wide “ridges” down to single pixel width

4. Thresholding and linking (hysteresis):

– Define two thresholds: low and high

– Use the high threshold to start edge curves and the low
threshold to continue them

• MATLAB: edge(image, ‘canny’)

Source: D. Lowe, L. Fei-Fei

Effect of  (Gaussian kernel spread/size)

Canny with Canny with original

The choice of  depends on desired behavior
• large  detects large scale edges

• small  detects fine features

Source: S. Seitz

Where do humans see boundaries?

• Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

pB boundary detector

Figure from Fowlkes

Martin, Fowlkes, Malik 2004: Learning to Detect

Natural Boundaries…

http://www.eecs.berkeley.edu/Research/Projects/C

S/vision/grouping/papers/mfm-pami-boundary.pdf

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/papers/mfm-pami-boundary.pdf

Brightness

Color

Texture

Combined

Human

Results

Human (0.95)

Pb (0.88)

Results

Human

Pb

Human (0.96)

Global PbPb (0.88)

Human (0.95)

Pb (0.63)

Human (0.90)

Pb (0.35)

For more:

http://www.eecs.berkeley.edu/Research/Projects

/CS/vision/bsds/bench/html/108082-color.html

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

45 years of boundary detection

Source: Arbelaez, Maire, Fowlkes, and Malik. TPAMI 2011 (pdf)

State of edge detection

• Local edge detection works well

– But many false positives from illumination and
texture edges

• Some methods to take into account longer
contours, but could probably do better

• Modern methods that actually “learn” from
data.

• Poor use of object and high-level information

