Reminder

- Project 1 due Wednesday
- Intended to be easy intro project
- What if your filtering is slow?
 - Separable filters (Gaussian)
 - Laplacian Pyramid
- What if my results aren't convincing?

Recap: Fourier domain

2d Fourier Transform

$$\hat{F}(k,\ell) = \frac{1}{\sqrt{MN}} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} F(m,n) e^{-j2\pi \left(k\frac{m}{M} + \ell\frac{n}{N}\right)}$$

Fourier Bases

Teases away fast vs. slow changes in the image.

This change of basis is the Fourier Transform

Fourier Bases

in Matlab, check out: imagesc(log(abs(fftshift(fft2(im)))));

Man-made Scene

Can change spectrum, then reconstruct

Low and High Pass filtering

Sinc Filter

 What is the spatial representation of the hard cutoff in the frequency domain?

Frequency Domain

Spatial Domain

Review

1. Match the spatial domain image to the Fourier magnitude image

The Convolution Theorem

 The Fourier transform of the convolution of two functions is the product of their Fourier transforms

$$F[g * h] = F[g]F[h]$$

 Convolution in spatial domain is equivalent to multiplication in frequency domain!

$$g * h = F^{-1}[F[g]F[h]]$$

Filtering in spatial domain

1	0	-1
2	0	-2
1	0	-1

Filtering in frequency domain **FFT** log fft magnitude FFT Inverse FFT Slide: Hoiem

Fourier Matlab demo

Filtering

Why does the Gaussian give a nice smooth image, but the square filter give edgy artifacts?

Gaussian

Box Filter

Is convolution invertible?

- If convolution is just multiplication in the Fourier domain, isn't deconvolution just division?
- Sometimes, it clearly is invertible (e.g. a convolution with an identity filter)
- In one case, it clearly isn't invertible (e.g. convolution with an all zero filter)
- What about for common filters like a Gaussian?

Let's experiment on Novak

Convolution

Deconvolution?

But under more realistic conditions

But under more realistic conditions

But under more realistic conditions

With a random filter...

Deconvolution is hard

- Active research area.
- Even if you know the filter (non-blind deconvolution), it is still very hard and requires strong regularization.
- If you don't know the filter (blind deconvolution) it is harder still.

Sampling

Why does a lower resolution image still make sense to us? What do we lose?

Subsampling by a factor of 2

Throw away every other row and column to create a 1/2 size image

Aliasing problem

1D example (sinewave):

Aliasing problem

• 1D example (sinewave):

Aliasing problem

- Sub-sampling may be dangerous....
- Characteristic errors may appear:
 - "car wheels rolling the wrong way in movies"
 - "Checkerboards disintegrate in ray tracing"
 - "Striped shirts look funny on color television"

Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):

Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

Aliasing in graphics

Sampling and aliasing

Nyquist-Shannon Sampling Theorem

- When sampling a signal at discrete intervals, the sampling frequency must be $\geq 2 \times f_{max}$
- f_{max} = max frequency of the input signal
- This will allows to reconstruct the original perfectly from the sampled version

Anti-aliasing

Solutions:

Sample more often

- Get rid of all frequencies that are greater than half the new sampling frequency
 - Will lose information
 - But it's better than aliasing
 - Apply a smoothing filter

Algorithm for downsampling by factor of 2

- 1. Start with image(h, w)
- 2. Apply low-pass filter
 im_blur = imfilter(image, fspecial('gaussian', 7, 1))
- 3. Sample every other pixel
 im_small = im_blur(1:2:end, 1:2:end);

Anti-aliasing

Subsampling without pre-filtering

Subsampling with Gaussian pre-filtering

