Constrained optimization




Problem in standard form

minimize f(x)

subject to a;(x) =0, for i =1,2,---p
cj(x) >0forj=1,2,---,¢q

f:R"— R a; : R" — R c;i :R" = R

f(x*) = o0, if problem is infeasible

f(x*) = —o0, if problem is unbounded below



Equality constraints

® An equality constraint defines a hypersurface where a;(x) =0

e A regular point is a point in the feasible region and has a full-
rank Jacobian

e A tangent plane of the hypersurface determined by the
constraint at a regular point x is well defined

e The number of constraints, p, must be less than the dimension
of the domain, n



Linear equality constraints

What 1s the Jacobian of a linear equality constraint, Ax = b?
If rank(A) = p, any feasible x 1s a regular point

If rank(A) < p, we can test whether contradiction or
redundancy exists by checking: rank([A b])

e if rank([A b]) ? rank(A), contradiction
e if rank ([A b]) ? rank(A), redundancy



Inequality constraints

e What is the largest number of inequality constraints in an
optimization in R"?

e Two general approaches to deal with inequality constraints:
¢ Divide into active and 1nactive constraints

e (Convert into equality constraints




Linear programming

minimize ¢’ x
subject to Ax =Db

x>0

e Alternative form can be conformed to the standard form

minimize c¢lx

subject to Ax > b

e The feasible set 1s a polyhedra



Constraint transformations

e We can convert each inequality to equality constraint by
introducing slack variable: y = Ax - b

e Inequalities becomes Ax-y=bandy >0

e We can introduce nonnegative bounds on x by adding two
nonnegative vectors X" and x: x =x" - x°

_|_

e With new variables, x = [x" x~ y ,the problem becomes:

minimize ¢1x

subject to A



Examples

diet problem: choose quantities =y, .. ., =,, of n foods

e one unit of food j costs ¢;, contains amount a;; of nutrient ¢

e healthy diet requires nutrient 7 in quantity at least b;

to find cheapest healthy diet,

minimize clx

subjectto Axr =b, x =0

piecewise-linear minimization
minimize maX;=1 .. m(a; T+ b;)
equivalent to an LP

minimize t
subject to a?:c +b;,<t, i=1,....m



Convex quadratic programming

minimize f(x) = ;x’Hx +x'p +¢
subject to Ax =Db
Cx>d

e [f Hessian 1s positive semidefinite, QP can be regarded as a
special class of convex programming

e [f Hessisn 1s indefinite, the problem becomes NP hard

.~V fo(z")



Examples

least-squares
minimize ||Axz — b||3
e analytical solution =* = ATb (AT is pseudo-inverse)

e can add linear constraints, e.g., | = = < u

linear program with random cost

minimize é&lz4yr!Sr=Ecl s+~ var(c.T;z:)
subjectto G =h, Axr=5b

e c is random vector with mean ¢ and covariance X

T T TE;L'

e hence, ¢’ x is random variable with mean ¢ = and variance =

e ~ > 0 is risk aversion parameter; controls the trade-off between
expected cost and variance (risk)



Quadratically constrained QP

minimize f(x) = 3x’Hx +x'p +¢
subject to Ax =Db

1
§xTHz-x+pr@-+ci, i=1,---,m

e Objective function and constraints are convex objective

e [f H; are positive definite, the feasible region 1s the intersection
of m ellipsoids and an affine set



Second-order cone programming

minimize bf'x

subject to || i + ille < 7 4+dii=1,--+ g

1

® Inequalities are called second-order cone constraints

{I]Ax + c||,btx + d} € second order cone in R""!

e More general than LP and QCQP

o ForA;=
QCQP

0 and ¢; = 0, reduces to an LP. For b; =

0, reduces to



Robust linear programming

the parameters in optimization problems are often uncertain, e.qg., in an LP
minimize ¢!z
subject to a{;c < b, 1=1,...,m,

there can be uncertainty in ¢, a;, b;

two common approaches to handling uncertainty (in a;, for simplicity)

e deterministic model: constraints must hold for all a; € &;

minimize ¢!z
subject to a..?;z.' < b;jforalla; €&, 1=1,...,m,

1

e stochastic model: a; is random variable; constraints must hold with
probability n

minimize ¢! &

subject to prob(alz <b)>n, i=1,...,m



deterministic approach via SOCP

e choose an ellipsoid as &;:
Ei=Kai+ Pu | ||u|2 < 1} (a; € R", P;eR"™™)
center is a;, semi-axes determined by singular values/vectors of P,

e robust LP

minimize ¢l x
subject to a..,TJ: <b; Va,e&, i1=1,...,m

is equivalent to the SOCP

minimize cLr

subject to  alz+||Plzls <bi, i=1,...,m

(follows from sup”ungﬁ(c‘zi + Pu)Tz = 6%: + ||PiTJT||2)



stochastic approach via SOCP

e assume a; is Gaussian with mean a;, covariance ¥; (a; ~ N(a;, X;))

T

i

_ =T
prob(a.?l: <b)=7 (b’ a; l)

e al'r is Gaussian r.v. with mean a!z, variance =7 ¥;z; hence

15 2|2
where ®(x) = (1/v27) [©_ e/ dt is CDF of N'(0,1)

e robust LP
minimize clx

subject to  prob(alz <b;)>n, i=1,...,m,

with n > 1/2, is equivalent to the SOCP

minimize clr

subject to c‘z{;c + <I>‘1(77)||ZJ:/2;1:||2 <b, i=1,...,m



Semidefinite programming

minimize c¢!'x

subjecto to r1F1 + zoFo+--- 4+ 2, F,, + G <0
Ax=Db with F;,G € S"

e The inequality constraint 1s called linear matrix inequality

(LMI) A A o
x1F1+xoFo+---+2,F,, + G X0

561]?11 —|—£U2]§‘2—|—"‘—|—£Un]§‘n—|—(~; = 0
e Multiple LMIs can be represented by one a single LMI

F, 0 F, 0 G 0
1 b et b Yl <0
x[o F1]+ +x[0 Fn]+[0 G]_



Eigenvalue minimization

minimize A (A(2))

where A(z) = Ag+ 2141 + - - + 2, A, (with given A; € S¥)

equivalent SDP
minimize t
subject to A(x) <t]

e variables r € R". t € R

e follows from
Amax(A) <t =  A=t]



Nonconvex problems

e A problem is not convex if one constraint i1s not convex or the
objective function 1s not convex

e Use SQP or penalty methods (Barrier function methods)



Simple transformation methods

Introduce equality constraints
Eliminate equality constraints
Eliminate nonnegativity bounds

Eliminate interval-type constraints



Eliminate equality constraints

minimize f(x)
subject to Ax =Db
ci(x) >0 forl<i<g
Use Moore-Penrose pseudo inverse of A
o At=Al(AAT)!
A" b 1s a point on the hyperplane

Introduce a new variable ¢’, which 1s a vector lies on the
hyperplane defined by the constraint

¢’ 1s 1n the null space of A



Eliminate equality constraints

e Reduce the dimension of variables from # to the null space of
A

e Apply SVD on A = UXV' to computes the null space of A
e Null space of A: V,, spanned by the last n-m vectors of V
e The old variable x can be represented by

e x=V,¢+ A'b, where ¢ is an arbitrary vector in R



Eliminate nonnegativity bounds

¢ Nonnegativity bound x; > 0 can be eliminated using the
variable transformation x; = y;?

e (Constraint x; > d can be eliminated by the variable
transformation x; = d + y/?

e What about x; <d?



Eliminate intervaltype constraints

e Interval constraint a < x <b can be eliminated by variable
transformation
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