
Constrained optimization



Problem in standard form

minimize f(x)

subject to ai(x) = 0, for i = 1, 2, · · · p

cj(x) ≥ 0 for j = 1, 2, · · · , q

f : Rn → R ai : Rn → R cj : Rn → R

f(x∗) = −∞, if problem is unbounded below

f(x∗) =∞, if problem is infeasible



Equality constraints

• An equality constraint defines a hypersurface where ai(x) = 0 

• A regular point is a point in the feasible region and has a full-
rank Jacobian

• A tangent plane of the hypersurface determined by the 
constraint at a regular point x is well defined

• The number of constraints, p, must be less than the dimension 
of the domain, n



Linear equality constraints

• What is the Jacobian of a linear equality constraint, Ax = b?

• If rank(A) = p, any feasible x is a regular point

• If rank(A) < p, we can test whether contradiction or 
redundancy exists by checking: rank([A b])

• if rank([A b]) ? rank(A), contradiction

• if rank ([A b]) ? rank(A), redundancy



Inequality constraints

• What is the largest number of inequality constraints in an 
optimization in Rn?

• Two general approaches to deal with inequality constraints:

• Divide into active and inactive constraints

• Convert into equality constraints



• Alternative form can be conformed to the standard form

• The feasible set is a polyhedra

Linear programming
minimize cT x

subject to Ax = b
x ≥ 0

minimize cT x
subject to Ax ≥ b



Constraint transformations

• We can convert each inequality to equality constraint by 
introducing slack variable: y = Ax - b

• Inequalities becomes Ax - y = b and y ≥ 0

• We can introduce nonnegative bounds on x by adding two 
nonnegative vectors x+ and x-: x = x+ - x-

• With new variables,                         ,the problem becomes:

minimize ĉT x̂

subject to Âx̂ = b̂

x̂ ≥ 0

x̂ = [x+ x− y]





Convex quadratic programming

• If Hessian is positive semidefinite, QP can be regarded as a 
special class of convex programming

• If Hessisn is indefinite, the problem becomes NP hard

minimize f(x) = 1
2x

T Hx + xT p + c

subject to Ax = b

Cx ≥ d





Quadratically constrained QP

• Objective function and constraints are convex objective

• If Hi are positive definite, the feasible region is the intersection 
of m ellipsoids and an affine set

minimize f(x) = 1
2x

T Hx + xT p + c

subject to Ax = b

1
2
xT Hix + xT pi + ci, i = 1, · · · , m



Second-order cone programming

• Inequalities are called second-order cone constraints

• More general than LP and QCQP

• For Ai = 0 and ci = 0, reduces to an LP. For bi = 0, reduces to 
QCQP

minimize bT x

subject to ‖�i�+ �i‖2 ≤ �T
i �+ di i = 1, · · · , q

{‖Ax + c‖,bT x + d} ∈ second order cone in Rn+1









Semidefinite programming

• The inequality constraint is called linear matrix inequality 
(LMI)

• Multiple LMIs can be represented by one a single LMI

minimize cT x

Ax = b with Fi,G ∈ Sn

subjecto to x1F1 + x2F2 + · · · + xnFn + G ! 0

x1F̂1 + x2F̂2 + · · · + xnF̂n + Ĝ ! 0

x1F̃1 + x2F̃2 + · · · + xnF̃n + G̃ ! 0

x1
[

F̂1 0
0 F̃1

]
+ · · · + xn

[
F̂n 0
0 F̃n

]
+

[
Ĝ 0
0 G̃

]
! 0





Nonconvex problems

• A problem is not convex if one constraint is not convex or the 
objective function is not convex

• Use SQP or penalty methods (Barrier function methods)



Simple transformation methods

• Introduce equality constraints

• Eliminate equality constraints

• Eliminate nonnegativity bounds

• Eliminate interval-type constraints



Eliminate equality constraints

• Use Moore-Penrose pseudo inverse of A

• A+ = AT(AAT)-1

• A+ b is a point on the hyperplane

• Introduce a new variable ϕ’, which is a vector lies on the 
hyperplane defined by the constraint

• ϕ’ is in the null space of A

minimize f(x)

subject to Ax = b

ci(x) ≥ 0 for 1 ≤ i ≤ q



Eliminate equality constraints

• Reduce the dimension of variables from n to the null space of 
A

• Apply SVD on A = UΣVT to computes the null space of A

• Null space of A: Vr , spanned by the last n-m vectors of V

• The old variable x can be represented by

• x = Vrϕ + A+b, where ϕ is an arbitrary vector in Rn-m



Eliminate nonnegativity bounds

• Nonnegativity bound xi ≥ 0 can be eliminated using the 
variable transformation xi = yi2

• Constraint xi ≥ d can be eliminated by the variable 
transformation xi = d + yi2

• What about xi ≤ d?



Eliminate interval-type constraints

• Interval constraint a ≤  x ≤ b can be eliminated by variable 
transformation 

, where tanh(z) = ez−e−z

ez+e−z

x =
b− a

2
tanh(z) +

b + a
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