

Constrained optimization

Problem in standard form

minimize $f(\mathbf{x})$

subject to $a_i(\mathbf{x}) = 0$, for $i = 1, 2, \dots, p$

$c_j(\mathbf{x}) \geq 0$ for $j = 1, 2, \dots, q$

$f : \mathbf{R}^n \rightarrow \mathbf{R}$ $a_i : \mathbf{R}^n \rightarrow \mathbf{R}$ $c_j : \mathbf{R}^n \rightarrow \mathbf{R}$

$f(\mathbf{x}^*) = \infty$, if problem is infeasible

$f(\mathbf{x}^*) = -\infty$, if problem is unbounded below

Equality constraints

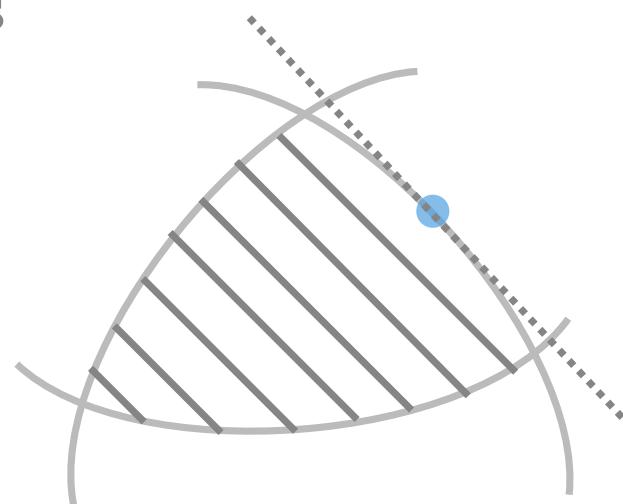
- An *equality constraint* defines a hypersurface where $a_i(\mathbf{x}) = 0$
- A *regular point* is a point in the feasible region and has a full-rank Jacobian
- A tangent plane of the hypersurface determined by the constraint at a regular point \mathbf{x} is well defined
- The number of constraints, p , must be less than the dimension of the domain, n

Linear equality constraints

- What is the Jacobian of a linear equality constraint, $\mathbf{Ax} = \mathbf{b}$?
- If $\text{rank}(\mathbf{A}) = p$, any feasible \mathbf{x} is a regular point
- If $\text{rank}(\mathbf{A}) < p$, we can test whether contradiction or redundancy exists by checking: $\text{rank}([\mathbf{A} \ \mathbf{b}])$
 - if $\text{rank}([\mathbf{A} \ \mathbf{b}]) < \text{rank}(\mathbf{A})$, contradiction
 - if $\text{rank}([\mathbf{A} \ \mathbf{b}]) = \text{rank}(\mathbf{A})$, redundancy

Inequality constraints

- What is the largest number of inequality constraints in an optimization in \mathbb{R}^n ?
- Two general approaches to deal with inequality constraints:
 - Divide into active and inactive constraints
 - Convert into equality constraints



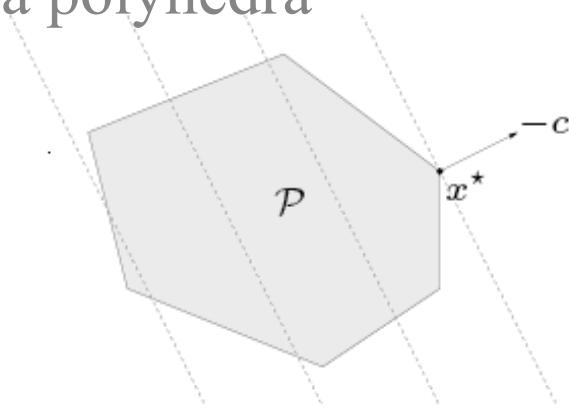
Linear programming

$$\begin{aligned} & \text{minimize } \mathbf{c}^T \mathbf{x} \\ & \text{subject to } \mathbf{A}\mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{aligned}$$

- Alternative form can be conformed to the standard form

$$\begin{aligned} & \text{minimize } \mathbf{c}^T \mathbf{x} \\ & \text{subject to } \mathbf{A}\mathbf{x} \geq \mathbf{b} \end{aligned}$$

- The feasible set is a polyhedra



Constraint transformations

- We can convert each inequality to equality constraint by introducing slack variable: $y = Ax - b$
 - Inequalities becomes $Ax - y = b$ and $y \geq 0$
- We can introduce nonnegative bounds on x by adding two nonnegative vectors x^+ and x^- : $x = x^+ - x^-$
- With new variables, $\hat{x} = [x^+ \ x^- \ y]$, the problem becomes:

$$\text{minimize } \hat{c}^T \hat{x}$$

$$\text{subject to } \hat{A} \hat{x} = \hat{b}$$

$$\hat{x} \geq 0$$

Examples

diet problem: choose quantities x_1, \dots, x_n of n foods

- one unit of food j costs c_j , contains amount a_{ij} of nutrient i
- healthy diet requires nutrient i in quantity at least b_i

to find cheapest healthy diet,

$$\begin{aligned} & \text{minimize} && c^T x \\ & \text{subject to} && Ax \succeq b, \quad x \succeq 0 \end{aligned}$$

piecewise-linear minimization

$$\text{minimize} \quad \max_{i=1, \dots, m} (a_i^T x + b_i)$$

equivalent to an LP

$$\begin{aligned} & \text{minimize} && t \\ & \text{subject to} && a_i^T x + b_i \leq t, \quad i = 1, \dots, m \end{aligned}$$

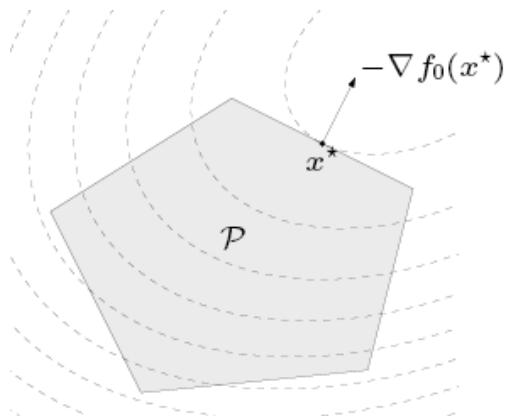
Convex quadratic programming

$$\text{minimize } f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{H}\mathbf{x} + \mathbf{x}^T \mathbf{p} + c$$

$$\text{subject to } \mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\mathbf{C}\mathbf{x} \geq \mathbf{d}$$

- If Hessian is positive semidefinite, QP can be regarded as a special class of convex programming
- If Hessian is indefinite, the problem becomes NP hard



Examples

least-squares

$$\text{minimize } \|Ax - b\|_2^2$$

- analytical solution $x^* = A^\dagger b$ (A^\dagger is pseudo-inverse)
- can add linear constraints, e.g., $l \preceq x \preceq u$

linear program with random cost

$$\begin{aligned} \text{minimize} \quad & \bar{c}^T x + \gamma x^T \Sigma x = \mathbf{E} c^T x + \gamma \text{var}(c^T x) \\ \text{subject to} \quad & Gx \preceq h, \quad Ax = b \end{aligned}$$

- c is random vector with mean \bar{c} and covariance Σ
- hence, $c^T x$ is random variable with mean $\bar{c}^T x$ and variance $x^T \Sigma x$
- $\gamma > 0$ is risk aversion parameter; controls the trade-off between expected cost and variance (risk)

Quadratically constrained QP

$$\text{minimize } f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{H}\mathbf{x} + \mathbf{x}^T \mathbf{p} + c$$

$$\text{subject to } \mathbf{A}\mathbf{x} = \mathbf{b}$$

$$\frac{1}{2}\mathbf{x}^T \mathbf{H}_i \mathbf{x} + \mathbf{x}^T \mathbf{p}_i + c_i, \quad i = 1, \dots, m$$

- Objective function and constraints are convex objective
- If \mathbf{H}_i are positive definite, the feasible region is the intersection of m ellipsoids and an affine set

Second-order cone programming

minimize $\mathbf{b}^T \mathbf{x}$

subject to $\| \mathbf{A}_i \mathbf{x} + \mathbf{c}_i \|_2 \leq \mathbf{b}_i^T \mathbf{x} + d_i \quad i = 1, \dots, q$

- Inequalities are called second-order cone constraints
 $\{\|\mathbf{A}\mathbf{x} + \mathbf{c}\|, \mathbf{b}^T \mathbf{x} + d\} \in$ second order cone in R^{n+1}
- More general than LP and QCQP
- For $\mathbf{A}_i = \mathbf{0}$ and $\mathbf{c}_i = \mathbf{0}$, reduces to an LP. For $\mathbf{b}_i = \mathbf{0}$, reduces to QCQP

Robust linear programming

the parameters in optimization problems are often uncertain, *e.g.*, in an LP

$$\begin{aligned} & \text{minimize} && c^T x \\ & \text{subject to} && a_i^T x \leq b_i, \quad i = 1, \dots, m, \end{aligned}$$

there can be uncertainty in c , a_i , b_i

two common approaches to handling uncertainty (in a_i , for simplicity)

- deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

$$\begin{aligned} & \text{minimize} && c^T x \\ & \text{subject to} && a_i^T x \leq b_i \text{ for all } a_i \in \mathcal{E}_i, \quad i = 1, \dots, m, \end{aligned}$$

- stochastic model: a_i is random variable; constraints must hold with probability η

$$\begin{aligned} & \text{minimize} && c^T x \\ & \text{subject to} && \text{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m \end{aligned}$$

deterministic approach via SOCP

- choose an ellipsoid as \mathcal{E}_i :

$$\mathcal{E}_i = \{\bar{a}_i + P_i u \mid \|u\|_2 \leq 1\} \quad (\bar{a}_i \in \mathbf{R}^n, \quad P_i \in \mathbf{R}^{n \times n})$$

center is \bar{a}_i , semi-axes determined by singular values/vectors of P_i

- robust LP

$$\begin{aligned} & \text{minimize} && c^T x \\ & \text{subject to} && a_i^T x \leq b_i \quad \forall a_i \in \mathcal{E}_i, \quad i = 1, \dots, m \end{aligned}$$

is equivalent to the SOCP

$$\begin{aligned} & \text{minimize} && c^T x \\ & \text{subject to} && \bar{a}_i^T x + \|P_i^T x\|_2 \leq b_i, \quad i = 1, \dots, m \end{aligned}$$

(follows from $\sup_{\|u\|_2 \leq 1} (\bar{a}_i + P_i u)^T x = \bar{a}_i^T x + \|P_i^T x\|_2$)

stochastic approach via SOCP

- assume a_i is Gaussian with mean \bar{a}_i , covariance Σ_i ($a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i)$)
- $a_i^T x$ is Gaussian r.v. with mean $\bar{a}_i^T x$, variance $x^T \Sigma_i x$; hence

$$\text{prob}(a_i^T x \leq b_i) = \Phi \left(\frac{b_i - \bar{a}_i^T x}{\|\Sigma_i^{1/2} x\|_2} \right)$$

where $\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^x e^{-t^2/2} dt$ is CDF of $\mathcal{N}(0, 1)$

- robust LP

$$\begin{aligned} & \text{minimize} && c^T x \\ & \text{subject to} && \text{prob}(a_i^T x \leq b_i) \geq \eta, \quad i = 1, \dots, m, \end{aligned}$$

with $\eta \geq 1/2$, is equivalent to the SOCP

$$\begin{aligned} & \text{minimize} && c^T x \\ & \text{subject to} && \bar{a}_i^T x + \Phi^{-1}(\eta) \|\Sigma_i^{1/2} x\|_2 \leq b_i, \quad i = 1, \dots, m \end{aligned}$$

Semidefinite programming

minimize $\mathbf{c}^T \mathbf{x}$

subject to $x_1 \mathbf{F}_1 + x_2 \mathbf{F}_2 + \cdots + x_n \mathbf{F}_n + \mathbf{G} \preceq \mathbf{0}$

$\mathbf{A}\mathbf{x} = \mathbf{b}$ with $\mathbf{F}_i, \mathbf{G} \in \mathbf{S}^n$

- The inequality constraint is called linear matrix inequality (LMI)

$$x_1 \hat{\mathbf{F}}_1 + x_2 \hat{\mathbf{F}}_2 + \cdots + x_n \hat{\mathbf{F}}_n + \hat{\mathbf{G}} \preceq \mathbf{0}$$

$$x_1 \tilde{\mathbf{F}}_1 + x_2 \tilde{\mathbf{F}}_2 + \cdots + x_n \tilde{\mathbf{F}}_n + \tilde{\mathbf{G}} \preceq \mathbf{0}$$

- Multiple LMIs can be represented by one a single LMI

$$x_1 \begin{bmatrix} \hat{\mathbf{F}}_1 & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{F}}_1 \end{bmatrix} + \cdots + x_n \begin{bmatrix} \hat{\mathbf{F}}_n & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{F}}_n \end{bmatrix} + \begin{bmatrix} \hat{\mathbf{G}} & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{G}} \end{bmatrix} \preceq \mathbf{0}$$

Eigenvalue minimization

$$\text{minimize} \quad \lambda_{\max}(A(x))$$

where $A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$ (with given $A_i \in \mathbf{S}^k$)

equivalent SDP

$$\begin{aligned} & \text{minimize} && t \\ & \text{subject to} && A(x) \preceq tI \end{aligned}$$

- variables $x \in \mathbf{R}^n$, $t \in \mathbf{R}$
- follows from

$$\lambda_{\max}(A) \leq t \iff A \preceq tI$$

Nonconvex problems

- A problem is not convex if one constraint is not convex or the objective function is not convex
- Use SQP or penalty methods (Barrier function methods)

Simple transformation methods

- Introduce equality constraints
- Eliminate equality constraints
- Eliminate nonnegativity bounds
- Eliminate interval-type constraints

Eliminate equality constraints

minimize $f(\mathbf{x})$

subject to $\mathbf{Ax} = \mathbf{b}$

$c_i(\mathbf{x}) \geq 0 \quad \text{for } 1 \leq i \leq q$

- Use Moore-Penrose pseudo inverse of \mathbf{A}
 - $\mathbf{A}^+ = \mathbf{A}^T(\mathbf{A}\mathbf{A}^T)^{-1}$
 - $\mathbf{A}^+ \mathbf{b}$ is a point on the hyperplane
 - Introduce a new variable ϕ' , which is a vector lies on the hyperplane defined by the constraint
 - ϕ' is in the null space of \mathbf{A}

Eliminate equality constraints

- Reduce the dimension of variables from n to the null space of \mathbf{A}
- Apply SVD on $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^T$ to computes the null space of \mathbf{A}
 - Null space of \mathbf{A} : \mathbf{V}_r , spanned by the last $n-m$ vectors of \mathbf{V}
- The old variable \mathbf{x} can be represented by
 - $\mathbf{x} = \mathbf{V}_r\phi + \mathbf{A}^+\mathbf{b}$, where ϕ is an arbitrary vector in \mathbb{R}^{n-m}

Eliminate nonnegativity bounds

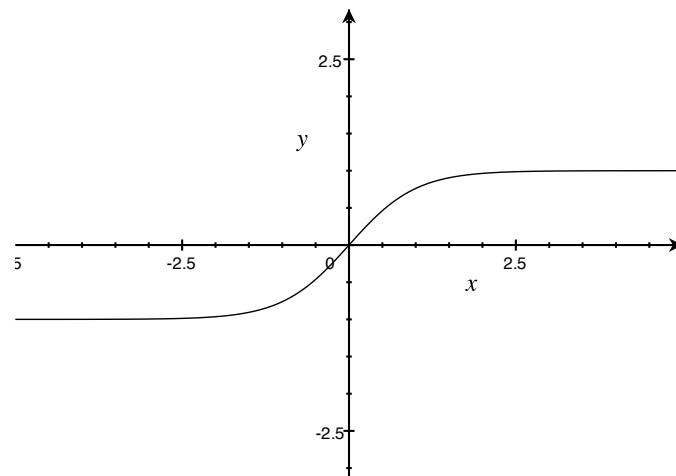
- Nonnegativity bound $x_i \geq 0$ can be eliminated using the variable transformation $x_i = y_i^2$
- Constraint $x_i \geq d$ can be eliminated by the variable transformation $x_i = d + y_i^2$
- What about $x_i \leq d$?

Eliminate interval-type constraints

- Interval constraint $a \leq x \leq b$ can be eliminated by variable transformation

$$x = \frac{b-a}{2} \tanh(z) + \frac{b+a}{2}$$

, where $\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$



References

- A. Antoniou and W.S. Lu, Practical optimization
- S. Boyd, Convex optimization, lecture notes