1/8 Your Name:

I commit to uphold the ideals of honor and integrity by refusing to betray the trust bestowed
upon me as a member of the Georgia Tech community.

CS 1316 Exam 2
Summer 2009

Section/Problem Points Earned Points Possible
1. Terms & Concepts 64

2. Fill in the Blank 5

3. Trees 9

4. Code Comprehension 10

5. Turtle Graphics 8

6. Write Code: Copy A Queue 10

7. Write Code: AddLast 10

8. Write Code: Simple Plugin 15

Total Points: 131

2/8 Your Name:

1. Terms & Concepts (64 points)

For each of the terms below, write 1 or 2 sentences defining the term and proving you understand what
your definition means. You may include an example if you think it will help your explanation. Be
concise and precise.

General grading criteria: If the answer convinces the grader that the student knows what the term
means, they receive 2 points. If the student uses some of the correct terminology but their answer is
lacking enough details to convince the grader that they understand the term (but nothing about the
answer is incorrect) they receive 1 point. If their answer includes incorrect elements mixed with correct
elements, is clearly wrong, or missing, they receive zero points. Example answers that should receive 2
points are shown below. Typically in the examples below the first sentence is necessary and sufficient
for full credit, the 2™ sentence adds details.

1. abstract (super) class — A class that can not be instantiated, but can be
extended (subclassed). Can be used to define methods and behaviors that
subclasses use.

2. abstract data type — A data type that has a description of how it works, but
not how it is implemented. Abstract data types such as Stacks and Queues can
be implemented in multiple different ways.

3. anonymous inner class — A class that has no name which can be quickly
created and used to perform small jobs. An example is using an anonymous
inner class to be the ActionListener for GUI components.

4. binary search tree — A Binary tree that is sorted so that items within it
can be found quickly. Elements that are greater than a node are to the right
of the node, elements that are smaller are to the left.

5. circular linked list — A linked list where the end points to the head. Can
be used to store cyclical animations such as walking motion.

6. class — The blueprint or “framework” from which objects are instantiated.
Classes define variables (fields) and behaviors (methods) that every object
will have, and sometimes also define static fields/methods that are stored
in the class (shared by all objects).

7. dynamic data structure — A data structure that can grow and change. Examples
include linked lists and trees.

8. final static variable — A constant variable that can't be changed.

9. graph (directed, undirected, acyclic) — A data structure made up of nodes
and connections between nodes (lines). Connections can be unidirectional or
bidirectional, and can sometimes have associated weights.

10.in-order traversal (of a tree) — Visiting all elements of a tree
recursively: At each node, visit the left subtree, then visit the node
itself, then visit the right subtree.

3/8 Your Name:

11.inheritance — The process of inheriting behavior (methods) and data (fields/
variables) from a superclass to a child or subclass. Inheritance is the main
way that code reuse is achieved in OOP.

12.interface — A list of method names (and signatures) that a class must
implement to be said to “implement” the interface. Multiple interfaces can
be implemented by the same class.

13.layout manager — In charge of controlling how GUI elements (widgets) are
displayed/arranged/laid-out in a panel. Examples include Border, Flow, and
Box layout.

14.1leaf node — A node in a tree that has no children. (Located at the edges of
the tree, hence the “leaf” name.)

15.LIFO0 — An acronym that stands for Last In First Out. A Stack is LIFO.

16.1inked list — A data storage mechanism where a series of nodes each have a
bit of data, and a pointer to the node that comes after them.

17.object — An object is a collection of fields (variables) and behaviors
(methods) that can be “instantiated” based upon a “blueprint” or “plan” from
a class.

18.private (keyword) — A keyword that indicates that a field or method can only
be accessed by the current class/object.

19.queue — Abstract data type where the first item put into the queue will be
the first that will be taken out. Useful for modeling real life
queues/lines.

20.recursion — When a method that calls itself. (Should have a terminating
condition and work towards that terminating condition to be “good”
recursion.)

2l.refactor(ing) code — Changing or moving code to remove duplication
(typically by moving it up the inheritance hierarchy) without changing the
overall program behavior, usually to improve readability or maintainability.

22.reference — A pointer to a specific object.

23.scene graph — A graph used to organize and lay out elements in a 2D or 3D
animation. By manipulating a node in the scene graph, you can affect all of
it's child nodes at the same time.

24 .spanning tree — A graph without cycles that contains all of the nodes of a
larger graph that has cycles. Useful to make sure you visit all nodes in a
graph only once.

25.static field (variable) — A variable owned by the “class” instead of any
particular (object) instance of the class. All instances of an object share
one static class variable, although a static field can be accessed without
creating even one instance of the class.

4/8 Your Name:

26.static method — A method owned by the class. See static field definition.
Can not access object variables.

27 .superclass — The class that the current class inherited from (extended).
Sometimes called the “Parent” class.

28.this (keyword) — A special keyword that always contains a refernece to the
object that “holds” the currently active code.

29.traverse — The process of doing the same operation (set data, get data,
print data, etc...) to every item in a data structure, typically a linked
list, graph, or tree.

30.user interface events — Event that is dispatched when the user does
something to a GUI, like clicking a button, or moving the mouse.

31l.void (keyword) — A keyword that indicates that a method will not return
anything.

2. Fill in the Blank (5 points)

In Java, logical and is written using the ~ && symbol, and logical or is written using the
symbol.

Assume that the Student class is a subclass of the Person class, and the Person class is a subclass of the
Human class. A variable that is defined to be of type Person can refer to (hold) an object of type
_Person/Student _ or type __ Student/Person but a variable defined to be of type Student can
only refer to an object of type _Student

3. Trees (9 points)

a. If the in-order traversal of the binary tree Tis: AD B G C F E, draw the tree:
g

d f

a b c e

b. If the pre-order traversal of the binary tree T is: AD B G C F E, draw the tree:

a

c. If the post-order traversal of the binary Tree is AD B G C F E, draw the tree:

e
b f

5/8 Your Name:

4. Code Comprehension (10 points):

Consider the method mystery below that manipulates linked lists of integers. What does this code
do? (hint: draw a linked list of integers, then apply the code to the example list. IntNode is a linked list
node similar to AgentNode or LLNode, which contains integers.)

If q references the list, what is returned by mystery(q, null)?

public IntNode mystery(IntNode aList, IntNode upTillNow) {

if (alist == null) {
return upTillNow;
} else {

IntNode temp = aList.getNext();
aList.setNext(upTillNow);
return(mystery(temp, aList));

}

} This code returns the original list in reverse order.
4 points if they get that it's recursive but not what it does.

5. Turtle Graphics (8 points)

The following code creates a turtle, add the code to draw a hexagon like as the one
shown to the right. (You may draw your hexagon in any orientation, and with any
length sides you want. You may start drawing the hexagon as soon as the turtle is
created, you do not need to do any movement or rotation of the turtle to “get it to the
hexagon” before you start drawing.)

Turtle t = new Turtle(new World());

for(int T = 0; I < 6; I++) {
t.forward(<anyNumber>);
t.turn(60);

}

Grading:
4 points for turning at least 5 times
-2 points if they didn't turn 60 degrees each time
4 points for moving exactly 6 times.
-2 points if they are off by one.

6/8 Your Name:

6. Copy a queue (10 points):

Write code that accepts a queue as a parameter, creates a new empty queue, fills the new empty queue
with the same contents as the original queue, and returns the new empty queue. Note: Your function
must leave the original queue in the same state that it was in when you received it! You may assume the
Queue supports the standard enqueue(item), dequeue(), peek(), size(), and isEmpty() methods.

We have given you the shell of the method, fill in the missing statements so that it works.

public static Queue<String> copyQ(Queue<String> original) {
// Create a new queue:
Queue<String> new(Q = new Queue<String>();
int numElements = original.size();
int doneSoFar = 0;
while(doneSoFar < numElements) {

// Add the missing statements here:

String d = original.dequeue();
newQ.enqueue(d);
original.enqueue(d);

doneSoFar++; // OR, numElements--

Grading:

+3 points for getting items out of the original

+2 points for putting item into the newQ

+2 points for putting the item back into the original

+2 points for incrementing the counter.

} // end while
return(newQ);
} // end

7/8

Your Name:

7. Write Code — Add Last (10 points)

Write a public method addLast(String data, StringNode first) that will create a new
StringNode (containing the String “data’) and add it to the end of the linked list (the
“first” variable contains a reference to the first node in the linked list). You may assume
that the first node will always exist (e.g. first will never be null). The class definition for
StringNode is below:

public class StringNode {

private myString;
private StringNode next;

public StringNode(String d) {

myString = d;
next = null;

public StringNode getNext() { return(next); }

public void setNext(StringNode n) { next = n; }
public void setData(String d) { myString = d; }
public String getData() { return(myString); }

} // end class StringNode

public void AddLast(String data, StringNode first) {

}

//Create the new node with data
StringNode nn = new StringNode(data);

// find the end of the linked list.
StringNode current = first; // optional! Could use first.
while(current.getNext() != null) {

current = current.getNext();

}

// Add to the end.
current.setNext(nn);

Grading:

2 points for proper header.

2 point for creating the new node with the data.

4 points for correctly finding the last node of the list.
2 points for adding our new node to the end of the list.

8/8 Your Name:

8. Create an Object: SimplePlugin (15 points)

Below is an interface for writing a plugin for an imaginary program. Your task is to write a class called
SimplePlugin (the plugins' name is also “SimplePlugin”) that implements PluginDesign but also
contains two additional methods: one called "store" and one called “match™:
* The “store” method accepts a generic object (of type "T") as it's only parameter and sets its
value to a private generic class variable "myData" defined in the SimplePlugin class.
* The “match” method accepts a generic object (of type "T”) as it's only parameter and compares
it to the
private class variable "myData". It returns a true (Boolean) if they match (contain the same data, even if
they are not the same object) and false (Boolean) otherwise.
You may assume that the generic object of type “T” has an equals() method. Be sure to consider the
case when your SimplePlugin does not have an object stored.

public interface PluginDesign {
//Return the name of your plugin
public String getName();
//Clears all class variables in the plugin

public void resetVariables();

public class SimplePlugin<T> implements PluginDesign ({ Grading:
//My field:)
private T myData; e 2 points for header, one each

for <T> and “implements

//My methods . .
public void store(T data) { Plug_lnDGSIgn
myData = data; * 1 point for having a
} “myData” field of type T
public Boolean match(T other) { ° 1 po%nt lfmyDa.ta 18 prlvate
if(myData == null) { * 3 points for having the store
return(false); method that accepts T data
} else {
and sets myData.
return(myData.equals(other)); e 4 poin‘[s for the match
} function: 1 each for the
} ..
header, taking in a reference
//PluginDesign Interface methods of type T, using
public String getName() { return("SimplePlugin"); }
public void resetVariables() { myData = null;} myData.equals (NOT

other.equals), and for
checking if myData == null
first.

* 4 points for the two interface
methods. (2 each)

	1. Terms & Concepts (64 points)
	
2. Fill in the Blank (5 points)
	3. Trees (9 points)
	4. Code Comprehension (10 points):
	5. Turtle Graphics (8 points)
	6. Copy a queue (10 points):
	7. Write Code – Add Last (10 points)
	8. Create an Object: SimplePlugin (15 points)

