A Tutorial on Network Data Streaming

Jun (Jim) Xu
Networking and Telecommunications Group
College of Computing
Georgia Institute of Technology

Motivation for new network monitoring algorithms

Problem: we often need to monitor network links for quantities such as

- Elephant flows (traffic engineering, billing)
- Number of distinct flows, average flow size (queue management)
- Flow size distribution (anomaly detection)
- Per-flow traffic volume (anomaly detection)
- Entropy of the traffic (anomaly detection)
- Other "unlikely" applications: traffic matrix estimation, P2P routing, IP traceback

The challenge of high-speed network monitoring

- Network monitoring at high speed is challenging
 - packets arrive every 25ns on a 40 Gbps (OC-768) link
 - has to use SRAM for per-packet processing
 - per-flow state too large to fit into SRAM
 - traditional solution of sampling is not accurate due to the low sampling rate dictated by the resource constraints (e.g., DRAM speed)

Network data streaming – a smarter solution

- Computational model: process a long stream of data (packets) in one pass using a small (yet fast) memory
- **Problem to solve:** need to answer some queries about the stream at the end or continuously
- **Trick:** try to remember the most important information about the stream *pertinent to the queries* learn to forget unimportant things
- Comparison with sampling: streaming peruses every piece of data for most important information while sampling digests a small percentage of data and absorbs all information therein.

The "hello world" data streaming problem

- Given a long stream of data (say packets) d_1, d_2, \dots , count the number of distinct elements (F_0) in it
- Say in a, b, c, a, c, b, d, a this number is 4
- Think about trillions of packets belonging to billions of flows
- A simple algorithm: choose a hash function h with range (0,1)
- $\bullet \ \hat{X} := \min(h(d_1), h(d_2), \ldots)$
- We can prove $E[\hat{X}] = 1/(F_0 + 1)$ and then estimate F_0 using method of moments
- Then averaging hundreds of estimations of F_0 up to get an accurate result

Another solution to the same problem [Whang et al., 1990]

- Initialize a bit array A of size m to all 0 and fix a hash function h that maps data items into a number in $\{1, 2, ..., m\}$.
- For each incoming data item x_t , set $A[h(x_t)]$ to 1
- Let m_0 be the number of 0's in A
- Then $\hat{F}_0 = m \times \ln(m/m_0)$
 - Given an arbitrary index i, let Y_i the number of elements mapped to it and let X_i be 1 when $Y_i = 0$. Then $E[X_i] = Pr[Y_i = 0] = (1 1/m)^{F_0} \approx e^{-F_0/m}$.
 - Then $E[X] = \sum_{i=1}^m E[X_i] \approx m \times e^{-F_0/m}$.
 - By the method of moments, replace E[X] by m_0 in the above equation, we obtain the above unbiased estimator (also shown to be MLE).

Cash register and turnstile models [Muthukrishnan,]

- The implicit state vector (varying with time t) is the form $\vec{a} = < a_1, a_2, ..., a_n >$
- Each incoming data item x_t is in the form of $\langle i(t), c(t) \rangle$, in which case $a_{i(t)}$ is incremented by c(t)
- Data streaming algorithms help us approximate functions of \vec{a} such as $F_0(\vec{a}) = \sum_{i=1}^n |a_i|^0$ (number of distinct elements).
- ullet Cash register model: c(t) has to be positive (often is 1 in networking applications)
- ullet Turnstile model: c(t) can be both positive and negative

Estimating the sample entropy of a stream [Lall et al., 2006]

- Note that $\sum_{i=1}^{n} a_i = N$
- The sample entropy of a stream is defined to be

$$H(\vec{a}) \equiv -\sum_{i=1}^{n} (a_i/N) \log (a_i/N)$$

- All logarithms are base 2 and, by convention, we define $0 \log 0 \equiv 0$
- We extend the previous algorithm ([Alon et al., 1999]) to estimate the entropy
- Another team obtained similar results simultaneously

The concept of entropy norm

We will focus on computing the entropy norm value $S \equiv \sum_{i=1}^{n} a_i \log a_i$ and note that

$$H = -\sum_{i=1}^{n} \frac{a_i}{N} \log \left(\frac{a_i}{N}\right)$$

$$= \frac{-1}{N} \left[\sum_{i} a_i \log a_i - \sum_{i} a_i \log N \right]$$

$$= \log N - \frac{1}{N} \sum_{i} a_i \log a_i$$

$$= \log N - \frac{1}{N} S,$$

so that we can compute H from S if we know the value of N.

(ϵ, δ) -Approximation

An (ϵ, δ) -approximation algorithm for X is one that returns an estimate X' with relative error more than ϵ with probability at most δ . That is

$$Pr(|X - X'| \ge X\epsilon) \le \delta.$$

For example, the user may specify $\epsilon = 0.05, \delta = 0.01$ (i.e., at least 99% of the time the estimate is accurate to within 5% error). These parameters affect the space usage of the algorithm, so there is a tradeoff of accuracy versus space.

The Algorithm

The strategy will be to sample as follows:

$$t = 1$$

1 5 6 11 6 6 6 6 6 ...

 $r = rand(1, m)$ $c = 4$

and compute the following estimating variable:

$$X = N\left(c\log c - (c-1)\log\left(c-1\right)\right).$$
 can be viewed as $f'(x)|_{x=c}$ where $f(x) = x\log x$

Algorithm Analysis

This estimator $X = N\left(c\log c - (c-1)\log\left(c-1\right)\right)$ is an unbiased estimator of S since

$$E[X] = \frac{N}{N} \sum_{i=1}^{n} \sum_{j=1}^{a_i} (j \log j - (j-1) \log (j-1))$$

$$= \sum_{i=1}^{n} a_i \log a_i$$

$$= S.$$

Algorithm Analysis, contd.

Next, we bound the variance of X:

$$Var(X) = E(X^{2}) - E(X)^{2} \le E(X^{2})$$

$$= \frac{N^{2}}{N} \left[\sum_{i=1}^{n} \sum_{j=2}^{a_{i}} (j \log j - (j-1) \log (j-1))^{2} \right]$$

$$\le N \sum_{i=1}^{n} \sum_{j=2}^{a_{i}} (2 \log j)^{2} \le 4N \sum_{i=1}^{n} a_{i} \log^{2} a_{i}$$

$$\le 4N \log N(\sum_{i} a_{i} \log a_{i}) \le 4(\sum_{i} a_{i} \log a_{i}) \log N(\sum_{i} a_{i} \log a_{i})$$

$$= 4S^{2} \log N,$$

assuming that, on average, each item appears in the stream at least twice.

Algorithm contd.

If we compute $s_1 = (32 \log N)/\epsilon^2$ such estimators and compute their average Y, then by Chebyschev's inequality we have:

$$Pr(|Y - S| > \epsilon S) \le \frac{Var(Y)}{\epsilon^2 S^2}$$

$$\le \frac{4S^2 \log N}{s_1 \epsilon^2 S^2} = \frac{4 \log N}{s_1 \epsilon^2}$$

$$\le \frac{1}{8}.$$

If we repeat this with $s_2 = 2 \log (1/\delta)$ groups and take their median, by a Chernoff bound we get more than ϵS error with probability at most δ .

Hence, the median of averages is an (ϵ, δ) -approximation.

The Sieving Algorithm

- KEY IDEA: Separating out the elephants decreases the variance, and hence the space usage, of the previous algorithm.
- \bullet Each packet is now sampled with some fixed probability p.
- If a particular item is sampled *two or more* times, it is considered an elephant and its exact count is estimated.
- For all items that are not elephants we use the previous algorithm.
- The entropy is estimated by adding the contribution from the elephants (from their estimated counts) and the mice (using the earlier algorithm).

Estimating the k_{th} moments [Alon et al., 1999]

- Problem statement (cash register model with increments of size 1): approximating $F_k = \sum_{i=1}^n a_i^k$
- Given a stream of data $x_1, x_2, ..., x_N$, the algorithm samples an item uniformly randomly at $s_1 \times s_2$ locations like before
- If it is already in the hash table, increment the corresponding counter, otherwise add a new entry < i, 1 > to it
- After the measurement period, for each record $< i, c_i >$, obtain an estimate as c_i^k c_i^{k-1} $(f'(x)|_{x=c}$ where $f(x) = x^k$)
- Median of the means of these $s_1 \times s_2$ estimates like before
- Our algorithm is inspired by this one

Tug-of-War sketch for estimating the 2nd moment [Alon et al., 1999]

- Fix an explicit set $V = \{v_1, v_2, ..., v_h\}$ of $h = O(n^2)$ vectors of length n with +1 and -1 entries
- These vectors are 4-wise independent, that is, for every four distinct indices $i_1, ..., i_4$ and every choice of $\epsilon_1, ..., \epsilon_4 \in \{-1, +1\}$, exactly 1/16 of the vectors in V take these values they can be generated using BCH codes using a small seed
- randomly choose $v = < \epsilon_1, \epsilon_2, ..., \epsilon_n >$ from V, and let X be square of the dot product of v and the implicit state vector, i.e., $X = (\sum_{i=1}^n \epsilon_i \times a_i)^2$. This can be calculated in one pass.
- Then take the median of a bunch of such X's

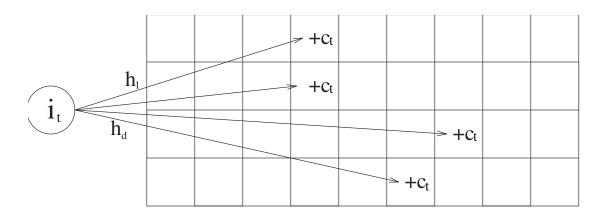
Elephant detection algorithms

- \bullet Problem: finding all the elements whose frequency is over θN
- There are three types of solutions:
 - Those based on "intelligent sampling"
 - Those based on a sketch that provides a "reading" on the approximate size of the flow that an incoming packet belongs to, in combination with a heap (to keep the largest ones).
 - The hybrid of them
- We will not talk about change detection, as it can be viewed as a variant of the elephant detection problem

Karp-Shenker-Papadimitriou Algorithm

- A deterministic algorithm to guarantee that all items whose frequency count is over θN are reported:
 - 1. maintain a set of $\langle e, f \rangle$ tuples
 - 2. foreach incoming data x_i
 - 3. search/increment/create an item in the set
 - 4. if the set has more than $1/\theta$ items then
 - 5. decrement the count of each item in the set by 1,
 - 6. remove all zero-count items from the set
 - 7. Output all the survivors at the end
- Not suitable for networking applications

Count-Min or Cormode-Muthukrishnan sketch



- The count is simply the minimum of all the counts
- One can answer several different kinds of queries from the sketch (e.g., point estimation, range query, heavy hitter, etc.)
- It is a randomized algorithm (with the use of hash functions)

Elephant detection algorithm with the CM sketch

- maintain a heap H of "small" size
 - 1. for each incoming data item x_t
 - 2. get its approximate count f from the CM sketch
 - 3. if $f \geq \theta t$ then
 - 4. increment and/or add x_t to H
 - 5. delete H.min() if it falls under θt
 - 6. output all above-threshold items from H
- Suitable for networking applications

Charikar-Chen-(Farach-Colton) sketch

- It is a randomized algorithm (with the use of hash functions)
- Setting: An $m \times b$ counter array C, hash functions $h_1, ..., h_m$ that map data items to $\{1, ..., b\}$ and $s_1, ..., s_m$ that map data items to $\{-1, +1\}$.
- Add (x_t) : compute $i_j := h_j(x_t)$, j = 1, ..., m, and then increment $C[j][i_j]$ by $s_j(x_t)$.
- Estimate(x_t): return the median $_{1 \le j \le m} \{C[j][i_j] \times s_j(x_t)\}$
- Suitable for networking applications

Sticky sampling algorithm [Manku and Motwani, 2002]

- ullet sample (and hold) initially with probability 1 for first 2t elements
- ullet sample with probability 1/2 for the next 2t elements and resample the first 2t elements
- ullet sample with probability 1/4 for the next 4t elements, resample, and so on ...
- A little injustice to describe it this way as it is earlier than [Estan and Varghese, 2002]
- Not suitable for networking applications due to the need to resample

Lossy counting algorithm [Manku and Motwani, 2002]

- \bullet divide the stream of length N into buckets of size $\omega = \lceil 1/\theta \rceil$ each
- maintain a set D of entries in the form $\langle e, f, \Delta \rangle$
 - 1. foreach incoming data item x_t
 - 2. $b := \lceil \frac{t}{\omega} \rceil$
 - 3. if x_t is in D then increment its f accordingly
 - 4. else add entry $\langle x_t, 1, b-1 \rangle$ to D
 - 5. if t is divisible by ω then
 - 6. delete all items e whose $f + \Delta \leq b$
 - 7. return all items whose $f \geq (\theta \epsilon)N$.
- Not suitable for networking applications

Sample-and-hold [Estan and Varghese, 2002]

- ullet maintain a set D of entries in the form < e, f>
 - 1. foreach incoming data item x_t
 - 2. if it is in D then increment its f
 - 3. else insert a new entry to D with probability $b * 1/(N\theta)$
 - 4. return all items in D with high frequencies

Multistage filter [Estan and Varghese, 2002]

- maintain multiple arrays of counters C_1 , C_2 , ..., C_m of size b and a set D of entries $\langle e, f \rangle$, and let $h_1, h_2, ..., h_m$ be hash functions that map data items to $\{1, 2, ..., b\}$.
 - 1. for each incoming data item x_t
 - 2. increment $C_i[h_i(x_t)], i = 1, ..., m$ by 1 if possible
 - 3. if these counters reach value MAX
 - 4. then insert/increment x_t into D
 - 5. Output all items with count at least $N \times \theta MAX$
- Conservative update: only increment the minimum(s)
- Serial version is more memory efficient, but increases delay

Estimating L_1 norm [Indyk, 2006]

- Recall the turnstile model (increments can be both positive and negative)
- L_1 norm is exactly $L_1(\vec{a}) = \sum_{i=1}^n |a_i|$ and is more general than frequency moments, under the turnstile model
- Algorithm to estimate the L_1 norm:
 - 1. prescribe independent hash functions h_1 , ..., h_m that maps a data item into a Cauchy random variable distributed as $f(x) = \frac{1}{\pi} \frac{1}{1+x^2}$ and initialize real-valued registers r_1 , ..., r_m to 0.0
 - 2. for each incoming data item $x_t = \langle i(t), c_i(t) \rangle$
 - 3. obtain $v_1 = h_1(i(t)), ..., v_m = h_m(i(t))$
 - 4. increment r_1 by v_1 , r_2 by v_2 , ..., and r_m by v_m
 - 5. return median($|r_1|, |r_2|, ..., |r_m|$)

Why this algorithm works [Indyk, 2006]

- Property of Cauchy distribution: if X_1 , X_2 , X are standard Cauchy RV's, and X_1 and X_2 are independent, then $aX_1 + bX_2$ has the same distribution as (|a| + |b|)X
- Given the actual state vector as $\langle a_1, a_2, ..., a_n \rangle$, after the execution of this above algorithm, we get in each r_i a random variable of the following format $a_1 \times X_1 + a_2 \times X_2 + ... + a_n \times X_n >$, which has the same distribution as $(\sum_{i=1}^n |a_i|)X$
- Since median(|X|) = 1 (or $F_X^{-1}(0.75) = 1$), the estimator simply uses the sample median to approximate the distribution median
- Why not "method of moments"?

The theory of stable distributions

- The existence of p-stable distributions $(S(p), 0 is discovered by Paul Levy about 100 years ago <math>(p \text{ replaced with } \alpha \text{ in most of the mathematical literature}).$
- Property of p-stable distribution: let X_1 , ..., X_n denote mutually independent random variables that have distribution S(p), then $a_1X_1+a_2X_2+...+a_nX_n$ and $(|a_1|^p+|a_2|^p+...+|a_n|^p)^{1/p}X$ are identically distributed.
- Cauchy is 1-stable as shown above and Gaussian $(f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2})$ is 2-stable

The theory of stable distributions, contd.

Although analytical expressions for the probability density function of stable distributions do not exist (except for p=0.5,1,2), random variables with such distributions can be generated through the following formula:

$$X = \frac{\sin(p\theta)}{\cos^{1/p}\theta} \left(\frac{\cos(\theta(1-p))}{-\ln r}\right)^{1/p-1},$$

where θ is chosen uniformly in $[-\pi/2, \pi/2]$ and r is chosen uniformly in [0, 1] [Chambers et al., 1976].

Fourier transforms of stable distributions

• Each S(p) and correspondingly $f_p(x)$ can be uniquely characterized by its characteristic function as

$$E[e^{itX}] \equiv \int_{-\infty}^{\infty} f_p(x)(\cos(tx) + i \cdot \sin(tx)) = e^{-|t|^p}.$$
 (1)

- It is not hard to verify that the fourier inverse transform of the above is a distribution function (per Polya's criteria)
- Verify the stableness property of S(p):

$$E[e^{it(a_1X_1 + a_2X_2 + \dots + a_nX_n)}]$$

$$= E[e^{ita_1X_1}] \cdot E[e^{ita_2X_2}] \cdot \dots \cdot E[e^{ita_nX_n}]$$

$$= e^{-|a_1t|^p} \cdot e^{-|a_2t|^p} \cdot \dots \cdot e^{-|a_2t|^p}$$

$$= e^{-[(|a_1|^p + |a_2|^p + \dots + |a_n|^p)^{1/p}|t|]^p}$$

$$= E[e^{it((|a_1|^p + |a_2|^p + \dots + |a_n|^p)^{1/p}X)}].$$

Estimating L_p norms for 0

- L_p norm is defined as $L_p(\vec{a}) = (\sum_{i=1}^n |a_i|^p)^{1/p}$, which is equivalent to the p-th root of F_p (p_{th} moment) under the cash register model (not equivalent under the turnstile model)
- Simply modify the L_1 algorithm by changing the output of these hash functions h_1 , ..., h_m from Cauchy (i.e., S(1)) to S(p), and divide by distribution median of $S^+(p)$
- Moments of S(p) may not exist but median estimator will work when m is reasonably large (say ≥ 5).
- Indyk's algorithms focus on reducing space complexity and some of these tricks may not be relevant to networking applications

Estimating entropy of OD Flows [Zhao et al., 2007]

• We can approximate $x \ln x$ by linear combinations of x^p for x on a fixed interval [0, N] within relative error ϵ :

$$x \ln x \approx \frac{1}{2\alpha} (x^{1+\alpha} - x^{1-\alpha}), \text{ where } \alpha = \frac{\sqrt{\frac{6\epsilon}{1+6\epsilon}}}{\ln N}$$

- Proof: By Taylor expansion of $x^{\alpha} = e^{\alpha \ln x}$
- Therefore we can use $L_{1+\alpha}$ and $L_{1-\alpha}$ norms to estimate the entropy norm S

$$S = \sum a_i \ln a_i \approx \frac{1}{2\alpha} \left(\sum a_i^{1+\alpha} - \sum a_i^{1-\alpha}\right)$$

• In parallel, we have an elephant-detection module that handles (with high probability) all the flows of size greater than N.

Estimating L_1 norm

- ullet To estimate entropy, we need the entropy norm and the L_1 norm.
- We can utilize $L_{1+\alpha}$ and $L_{1-\alpha}$ norm estimations to avoid the overhead of L_1 norm estimation.

$$x \approx \frac{1}{2}(x^{1+\alpha} + x^{1-\alpha})$$

$$L_1(\vec{a}) = \sum a_i \approx \frac{1}{2}(\sum a_i^{1+\alpha} + \sum a_i^{1-\alpha})$$

Estimating L_p norm of OD flows

- Indyk's algorithm has Intersection Measurable Property (IMP).
- If we denote the L_p sketch at origin as \vec{O} , the one at destination as \vec{D} , and the median estimator as $\Lambda()$, then the L_p norm of the cross-traffic between origin and destination can be estimated by $\left(\frac{\Lambda(\vec{O})^p + \Lambda(\vec{D})^p \Lambda(\vec{O} \vec{D})^p}{2}\right)^{1/p}$ or $\left(\frac{\Lambda(\vec{O} + \vec{D})^p \Lambda(\vec{O} \vec{D})^p}{2^p}\right)^{1/p}$, where $\vec{O} + \vec{D}$ and $\vec{O} \vec{D}$ are component-wise additions and subtractions of the sketches.
- $L_{1+\alpha}$ and $L_{1-\alpha}$ norm estimations of OD flows give us entropy estimation of OD flows.

Estimating L_p norm of OD flows

$$\Lambda(\vec{O})^{p} \approx |f_{1}|^{p} + \dots + |f_{k}|^{p} + |g_{1}|^{p} + \dots + |g_{l}|^{p}
\Lambda(\vec{D})^{p} \approx |f_{1}|^{p} + \dots + |f_{k}|^{p} + |h_{1}|^{p} + \dots + |h_{m}|^{p}
\Lambda(\vec{O} - \vec{D})^{p} \approx |g_{1}|^{p} + \dots + |g_{l}|^{p} + |h_{1}|^{p} + \dots + |h_{m}|^{p}
\Lambda(\vec{O} + \vec{D})^{p} \approx |2f_{1}|^{p} + \dots + |2f_{k}|^{p} + |g_{1}|^{p} + \dots + |g_{l}|^{p} + |h_{1}|^{p} + \dots + |h_{m}|^{p}$$

Hence,

$$\frac{\Lambda(\vec{O})^{p} + \Lambda(\vec{D})^{p} - \Lambda(\vec{O} - \vec{D})^{p}}{2} \approx |f_{1}|^{p} + \dots + |f_{k}|^{p}$$

$$\frac{\Lambda(\vec{O} + \vec{D})^{p} - \Lambda(\vec{O} - \vec{D})^{p}}{2^{p}} \approx |f_{1}|^{p} + \dots + |f_{k}|^{p}.$$

Modifications to Indyk's Sketch

- Note that for every packet we have to perform hundreds or thousands of updates per packet (infeasible at line speeds).
- Solution: Hash packets into many (thousands of) buckets. For packets mapped to each bucket we apply Indyk's sketch with only a small number (tens) of registers and estimate the L_p norm of those packets. We add those results together to get the L_p norm of all the packets.
- The overall relative error is much small than the relative error of each bucket.
- We also use large lookup tables for the stable distribution RV's.

Data Streaming Algorithm for Estimating Flow Size Distribution [Kumar et al., 2004]

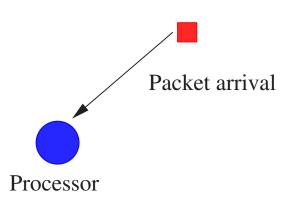
- **Problem:** To estimate the probability distribution of flow sizes. In other words, for each positive integer i, estimate n_i , the number of flows of size i.
- **Applications:** Traffic characterization and engineering, network billing/accounting, anomaly detection, etc.
- Importance: The mother of many other flow statistics such as average flow size (first moment) and flow entropy
- **Definition of a flow:** All packets with the same flow-label. The flow-label can be defined as any combination of fields from the IP header, e.g., <Source IP, source Port, Dest. IP, Dest. Port, Protocol>.

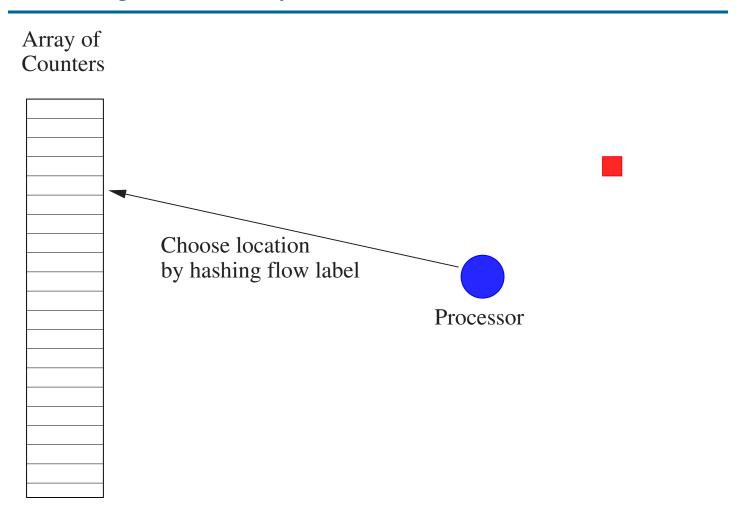
Architecture of our Solution — Lossy data structure

- Maintain an array of counters in fast memory (SRAM).
- For each packet, a counter is chosen via hashing, and incremented.
- No attempt to detect or resolve collisions.
- Each 64-bit counter only uses 4-bit of SRAM (due to [Zhao et al., 2006b])
- Data collection is lossy (erroneous), but very fast.

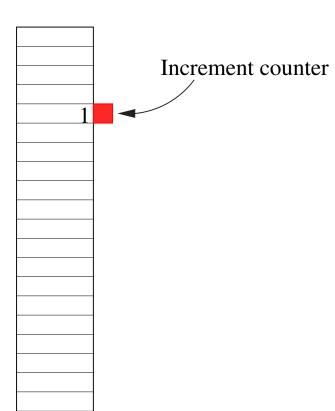
Array of Counters

Array of Counters

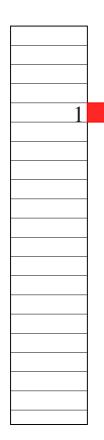


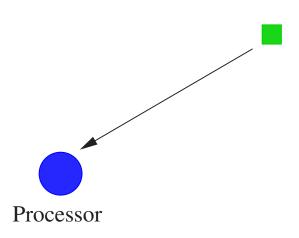


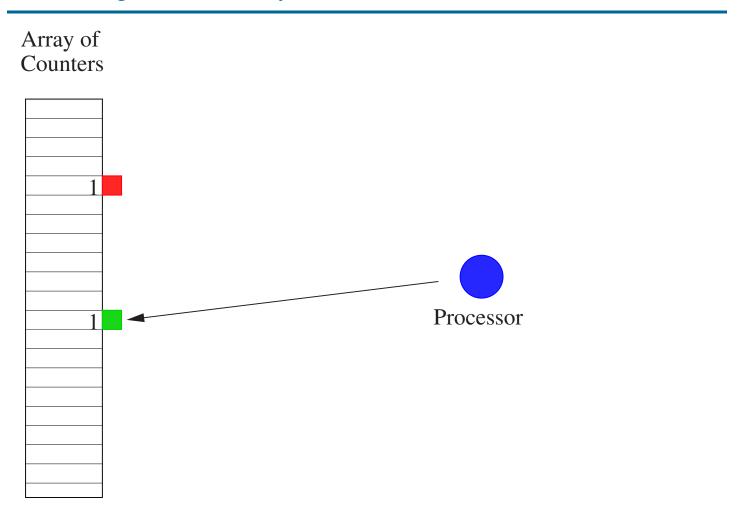
Array of Counters



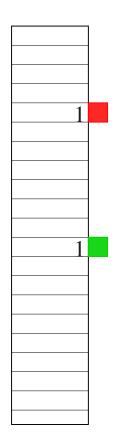
Array of Counters

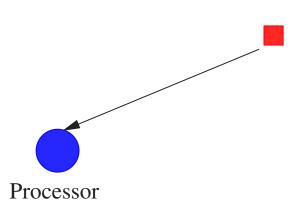


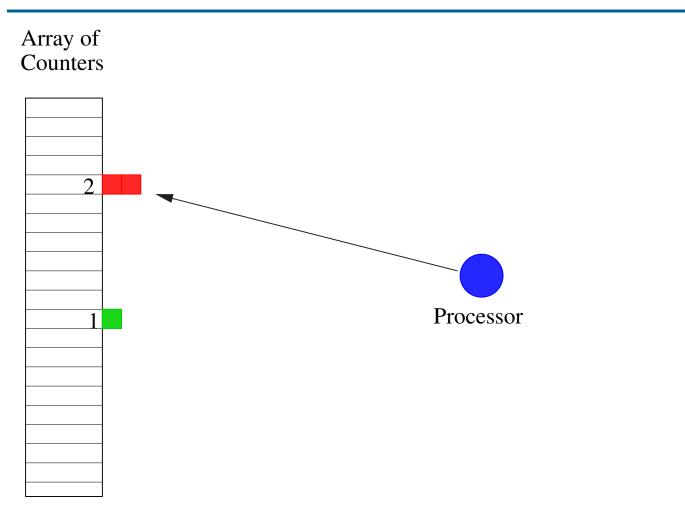




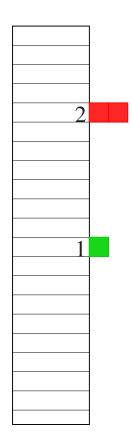
Array of Counters

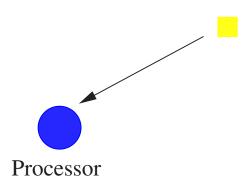


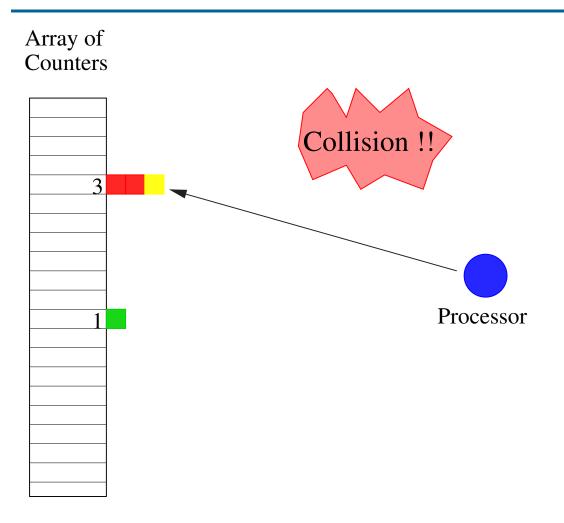




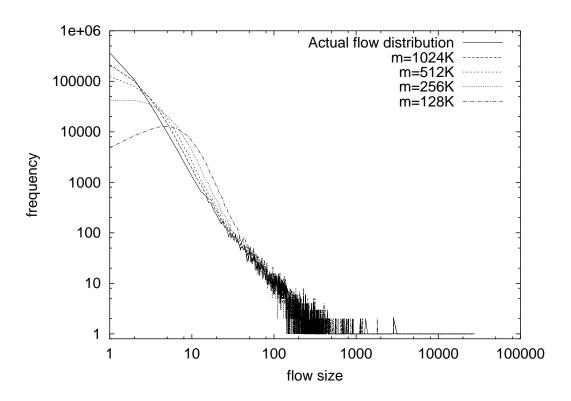
Array of Counters







The shape of the "Counter Value Distribution"



The distribution of flow sizes and raw counter values (both x and y axes are in log-scale). $m = number\ of\ counters$.

Estimating n and n_1

- \bullet Let total number of counters be m.
- Let the number of value-0 counters be m_0
- Then $\hat{n} = m * ln(m/m_0)$ as discussed before
- Let the number of value-1 counters be y_1
- Then $\hat{n_1} = y_1 e^{\hat{n}/m}$
- Generalizing this process to estimate n_2 , n_3 , and the whole flow size distribution will not work
- Solution: joint estimation using Expectation Maximization

Estimating the entire distribution, ϕ , using EM

- Begin with a guess of the flow distribution, ϕ^{ini} .
- Based on this ϕ^{ini} , compute the various possible ways of "splitting" a particular counter value and the respective probabilities of such events.
- This allows us to compute a refined estimate of the flow distribution ϕ^{new} .
- Repeating this multiple times allows the estimate to converge to a *local maximum*.
- This is an instance of *Expectation maximization*.

Estimating the entire flow distribution — an example

- For example, a counter value of 3 could be caused by three events:
 - -3 = 3 (no hash collision);
 - -3 = 1 + 2 (a flow of size 1 colliding with a flow of size 2);
 - -3 = 1 + 1 + 1 (three flows of size 1 hashed to the same location)
- Suppose the respective probabilities of these three events are 0.5, 0.3, and 0.2 respectively, and there are 1000 counters with value 3.
- Then we estimate that 500, 300, and 200 counters split in the three above ways, respectively.
- So we credit 300 * 1 + 200 * 3 = 900 to n_1 , the count of size 1 flows, and credit 300 and 500 to n_2 and n_3 , respectively.

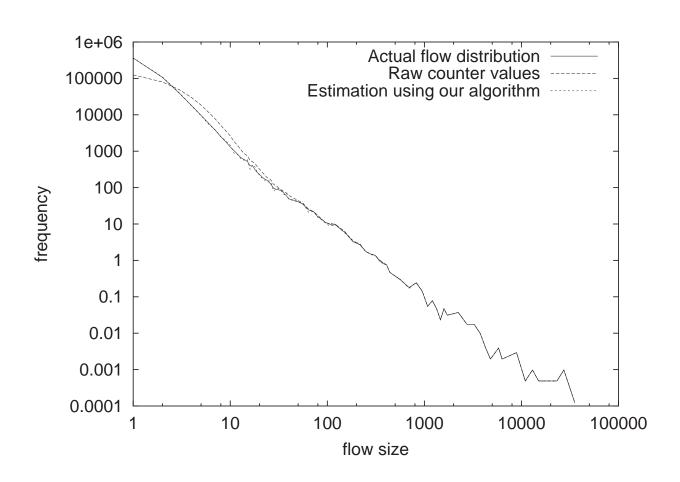
How to compute these probabilities

- Fix an arbitrary index ind. Let β be the event that f_1 flows of size s_1 , f_2 flows of size s_2 , ..., f_q flows of size s_q collide into slot ind, where $1 \le s_1 < s_2 < ... < s_q \le z$, let λ_i be n_i/m and λ be their total.
- Then, the a priori (i.e., before observing the value v at ind) probability that event β happens is

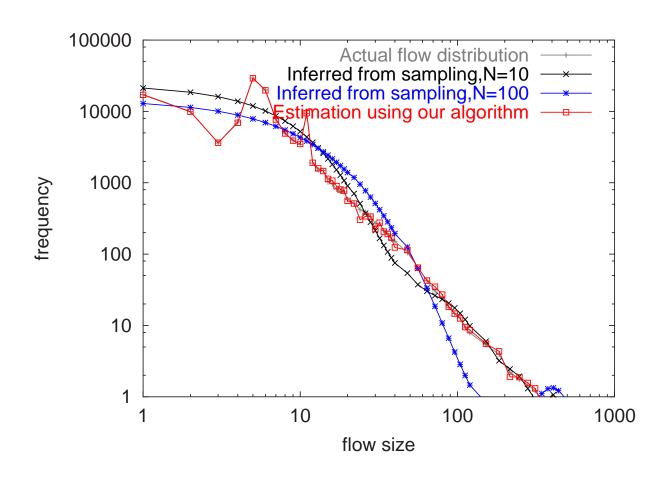
$$p(\beta|\phi,n) = e^{-\lambda} \prod_{i=1}^q \frac{\lambda_{s_i}^{f_i}}{f_i!}.$$

• Let Ω_v be the set of all collision patterns that add up to v. Then by Bayes' rule, $p(\beta|\phi,n,v) = \frac{p(\beta|\phi,n)}{\sum_{\alpha\in\Omega_v}p(\alpha|\phi,n)}$, where $p(\beta|\phi,n)$ and $p(\alpha|\phi,n)$ can be computed as above

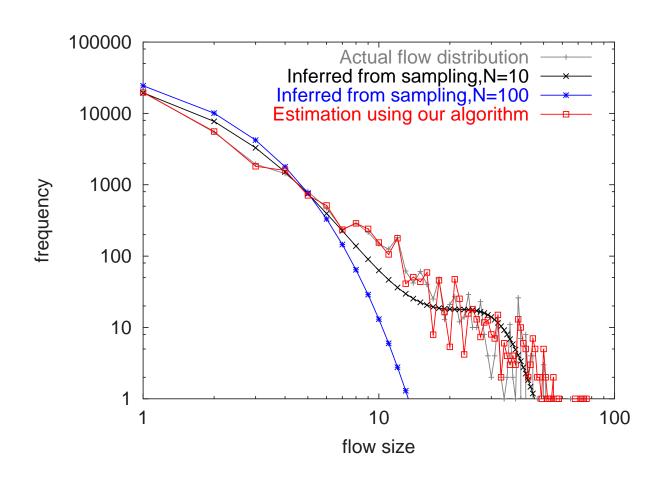
Evaluation — Before and after running the Estimation algorithm



Sampling vs. array of counters – Web traffic.



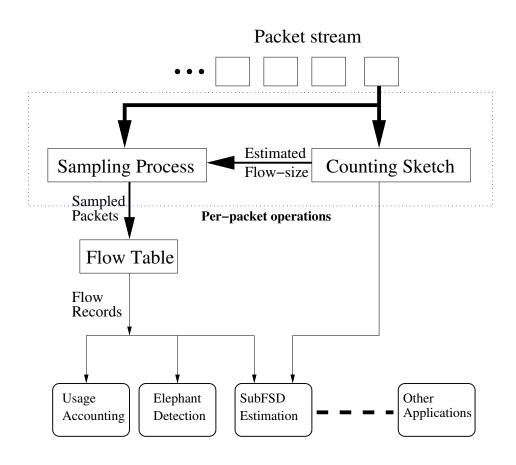
Sampling vs. array of counters – DNS traffic.



Extending the work to estimating subpopulation FSD [Kumar et al., 2005a]

- Motivation: there is often a need to estimate the FSD of a subpopulation (e.g., "what is FSD of all the DNS traffic").
- Definitions of subpopulation not known in advance and there can be a large number of potential subpopulation.
- Our scheme can estimate the FSD of any subpopulation defined after data collection.
- Main idea: perform both data streaming and sampling, and then correlate these two outputs (using EM).

Streaming-guided sampling [Kumar and Xu, 2006]



Estimating the Flow-size Distribution: Results

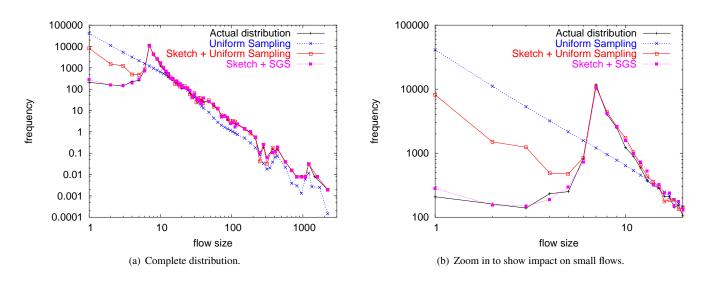


Figure 1: Estimates of FSD of https flows using various data sources.

A hardware primitive for counter management [Zhao et al., 2006b]

- Problem statement: To maintain a large array (say millions) of counters that need to be incremented (by 1) in an arbitrary fashion (i.e., $A[i_1] + +$, $A[i_2] + +$, ...)
- Increments may happen at very high speed (say one increment every 10ns) has to use high-speed memory (SRAM)
- Values of some counters can be very large
- Fitting everything in an array of "long" (say 64-bit) SRAM counters can be expensive
- Possibly lack of locality in the index sequence (i.e., $i_1, i_2, ...$) forget about caching

Motivations

- A key operation in many network data streaming algorithms is to "hash and increment"
- Routers may need to keep track of many different counts (say for different source/destination IP prefix pairs)
- To implement millions of token/leaky buckets on a router
- Extensible to other non-CS applications such as sewage management
- Our work is able to make 16 SRAM bits out of 1 (Alchemy of the 21st century)

Main Idea in Previous Approaches [Shah et al., 2002, Ramabhadran and Va

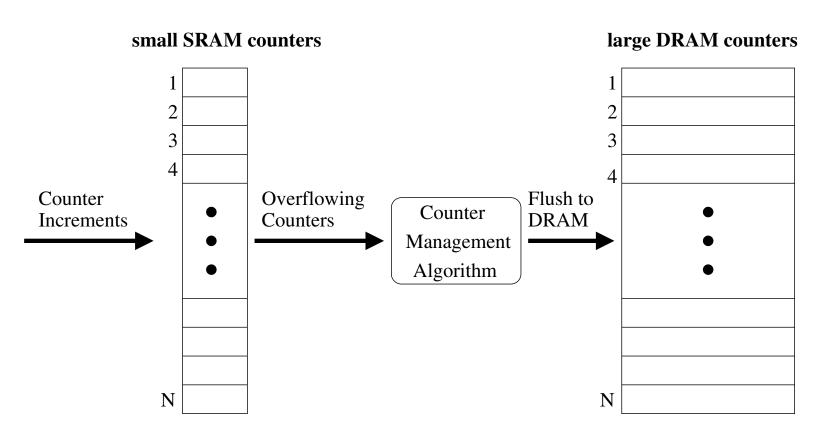


Figure 2: Hybrid SRAM/DRAM counter architecture

CMA used in [Shah et al., 2002]

- Implemented as a priority queue (fullest counter first)
- Need 28 = 8 + 20 bits per counter (when S/D is 12) the theoretical minimum is 4
- Need pipelined hardware implementation of a heap.

CMA used in [Ramabhadran and Varghese, 2003]

- SRAM counters are tagged when they are at least half full (implemented as a bitmap)
- Scan the bitmap clockwise (for the next "1") to flush (half-full)⁺ SRAM counters, and pipelined hierarchical data structure to "jump to the next 1" in O(1) time
- Maintain a small priority queue to preemptively flush the SRAM counters that rapidly become completely full
- 8 SRAM bits per counter for storage and 2 bits per counter for the bitmap control logic, when S/D is 12.

Our scheme

- Our scheme only needs 4 SRAM bits when S/D is 12.
- Flush only when an SRAM counter is "completely full" (e.g., when the SRAM counter value changes from 15 to 16 assuming 4-bit SRAM counters).
- Use a small (say hundreds of entries) SRAM FIFO buffer to hold the indices of counters to be flushed to DRAM
- Key innovation: a simple randomized algorithm to ensure that counters do not overflow in a burst large enough to overflow the FIFO buffer, with overwhelming probability
- Our scheme is provably space-optimal

The randomized algorithm

- Set the initial values of the SRAM counters to independent random variables uniformly distributed in $\{0, 1, 2, ..., 15\}$ (i.e., $A[i] := uniform\{0, 1, 2, ..., 15\}$).
- Set the initial value of the corresponding DRAM counter to the negative of the initial SRAM counter value (i.e., B[i] := -A[i]).
- Adversaries know our randomization scheme, but not the initial values of the SRAM counters
- We prove rigorously that a small FIFO queue can ensure that the queue overflows with very small probability

A numeric example

- One million 4-bit SRAM counters (512 KB) and 64-bit DRAM counters with SRAM/DRAM speed difference of 12
- 300 slots (\approx 1 KB) in the FIFO queue for storing indices to be flushed
- After 10¹² counter increments in an arbitrary fashion (like 8 hours for monitoring 40M packets per second links)
- The probability of overflowing from the FIFO queue: less than 10^{-14} in the worst case (MTBF is about 100 billion years) proven using minimax analysis and large deviation theory (including a new tail bound theorem)

Distributed coordinated data streaming – a new paradigm

- A network of streaming nodes
- Every node is both a producer and a consumer of data streams
- Every node exchanges data with neighbors, "streams" the data received, and passes it on further
- We applied this kind of data streaming to P2P [Kumar et al., 2005b] and sensor network query routing, and the RPI team has applied it to Ad-hoc networking routing.

Finding Global Icebergs over Distributed Data Sets [Zhao et al., 2006a]

- An **iceberg**: the item whose frequency count is greater than a certain threshold.
- A number of algorithms are proposed to find icebergs at a single node (i.e., local icebergs).
- In many real-life applications, data sets are physically distributed over a large number of nodes. It is often useful to find the icebergs over aggregate data across all the nodes (i.e., global icebergs).
- Global iceberg ≠ Local iceberg
- We study the problem of finding global icebergs over distributed nodes and propose two novel solutions.

Motivations: Some Example Applications

- Detection of distributed DoS attacks in a large-scale network
 - The IP address of the victim appears over many ingress points. It may not be a local iceberg at any ingress points since the attacking packets may come from a large number of hosts and Internet paths.
- Finding globally frequently accessed objects/URLs in CDNs (e.g., Akamai) to keep tabs on current "hot spots"
- Detection of system events which happen frequently across the network during a time interval
 - These events are often the indication of some anomalies. For example, finding DLLs which have been modified on a large number of hosts may help detect the spread of some unknown worms or spyware.

Problem statement

- A system or network that consists of N distributed nodes
- The data set S_i at node i contains a set of $\langle x, c_{x,i} \rangle$ pairs.
 - Assume each node has enough capacity to process incoming data stream. Hence each node generates a list of the arriving items and their exact frequency counts.
- The flat communication infrastructure, in which each node only needs to communicate with a central server.
- Objective: Find $\{x | \sum_{i=1}^{N} c_{x,i} \geq T\}$, where $c_{x,i}$ is the frequency count of the item x in the set S_i , with the minimal communication cost.

Our solutions and their impact

- Existing solutions can be viewed as "hard-decision codes" by finding and merging local icebergs
- We are the first to take the "soft-decision coding" approach to this problem: encoding the "potential" of an object to become a global iceberg, which can be decoded with overwhelming probability if indeed a global iceberg
- Equivalent to the minimax problem of "corrupted politician"
- We offered two solution approaches (sampling-based and bloom-filter-based) and discovered the beautiful mathematical structure underneath (discovered a new tail bound theory on the way)
- Sprint, Thomson, and IBM are all very interested in it

Direct Measurement of Traffic Matrices [Zhao et al., 2005a]

- Quantify the aggregate traffic volume for every origin—destination (OD) pair (or ingress and egress point) in a network.
- Traffic matrix has a number of applications in network management and monitoring such as
 - capacity planning: forecasting future network capacity requirements
 - traffic engineering: optimizing OSPF weights to minimize congestion
 - reliability analysis: predicting traffic volume of network links under planned or unexpected router/link failures

Previous Approaches

- Direct measurement [Feldmann et al., 2000]: record traffic flowing through at all ingress points and combine with routing data
 - storage space and processing power are limited: sampling
- Indirect inference such as [Vardi, 1996, Zhang et al., 2003]: use the following information to construct a highly under-constrained linear inverse problem B = AX
 - SNMP link counts B (traffic volume on each link in a network)
 - routing matrix ($\mathbf{A}_{i,j} = \begin{cases} 1 & \text{if traffic of OD flow } j \text{ traverses link } i, \\ 0 & \text{otherwise.} \end{cases}$

Data streaming at each ingress/egress node

- Maintain a bitmap (initialized to all 0's) in fast memory (SRAM)
- Upon each packet arrival, input the invariant packet content to a hash function; choose the bit by hashing result and set it to 1.
 - variant fields (e.g., TTL, CHECKSUM) are marked as 0's
 - adopt the equal sized bitmap and the same hash function
- No attempt to detect or resolve collisions caused by hashing
- Ship the bitmap to a central server at the end of a measurement epoch

How to Obtain the Traffic Matrix Element $TM_{i,j}$?

- Only need the bitmap B_i at node i and the bitmap B_j at node j for $TM_{i,j}$.
- Let T_i denote the set of packets hashed into B_i : $TM_{i,j} = |T_i \cap T_j|$.
 - Linear counting algorithm [Whang et al., 1990] estimates $|T_i|$ from B_i , i.e., $|\widehat{T_i}| = b \log \frac{b}{U}$ where b is the size of B_i and U is the number of "0"s in B_i .
 - $-|T_i \cap T_j| = |T_i| + |T_j| |T_i \cup T_j|.$
 - * $|T_i|$ and $|T_j|$: estimate directly
 - * $|T_i \cup T_j|$: infer from the bitwise-OR of B_i and B_j .

Some theoretical results

• Our estimator is almost unbiased and we derive its approximate variance

$$Var[\widehat{TM_{i,j}}] = b(2e^{t_{T_i \cap T_j}} + e^{t_{T_i \cup T_j}} - e^{t_{T_i}} - e^{t_{T_i}} - t_{T_i \cap T_j} - 1)$$

 Sampling is integrated into our streaming algorithm to reduce SRAM usage

$$Var[\widehat{TM_{i,j}}] = \frac{b}{p^2} \left((e^{\frac{Tp}{b} - \frac{Xp}{2b}} - e^{\frac{Xp}{2b}})^2 + e^{\frac{Xp}{b}} - \frac{Xp}{b} - 1 \right) + \frac{X(1-p)}{p}$$

• The general forms of the estimator and variance for the intersection of $k \ge 2$ sets from the corresponding bitmaps is derived in [Zhao et al., 2005b].

Pros and Cons

• Pros

- multiple times better than the sampling scheme given the same amount of data generated.
- for estimating $TM_{i,j}$, only the bitmaps from nodes i and j are needed.
 - * support submatrix estimation using minimal amount of information
 - * allow for incremental deployment

Cons

- need some extra hardware addition (hardwired hash function and SRAM)
- only support estimation in packets (not in bytes)

References

- [Alon et al., 1999] Alon, N., Matias, Y., and Szegedy, M. (1999). The space complexity of approximating the frequency moments. *Journal of Computer and System Sciences*, 58(1):137–143.
- [Chambers et al., 1976] Chambers, J. M., Mallows, C. L., and Stuck, B. W. (1976). A method for simulating stable random variables. *Journal of the American Statistical Association*, 71(354).
- [Estan and Varghese, 2002] Estan, C. and Varghese, G. (2002). New Directions in Traffic Measurement and Accounting. In *Proc. ACM SIGCOMM*.
- [Feldmann et al., 2000] Feldmann, A., Greenberg, A., Lund, C., Reingold, N., Rexford, J., and F.True (2000). Deriving Traffic Demand for Operational IP Networks: Methodology and Experience. In *Proc. ACM SIG-COMM*.
- [Indyk, 2006] Indyk, P. (2006). Stable distributions, pseudorandom generators, embeddings, and data stream computation. *J. ACM*, 53(3):307–323.
- [Kumar et al., 2004] Kumar, A., Sung, M., Xu, J., and Wang, J. (2004). Data streaming algorithms for efficient and accurate estimation of flow size distribution. In *Proc. ACM SIGMETRICS*.
- [Kumar et al., 2005a] Kumar, A., Sung, M., Xu, J., and Zegura, E. (2005a). A data streaming algorithms for estimating subpopulation flow size distribution. In *Proc. ACM SIGMETRICS*.
- [Kumar and Xu, 2006] Kumar, A. and Xu, J. (2006). Sketch guided sampling—using on-line estimates of flow size for adaptive data collection. In *Proc. IEEE INFOCOM*.
- [Kumar et al., 2005b] Kumar, A., Xu, J., and Zegura, E. W. (2005b). Efficient and scalable query routing for unstructured peer-to-peer networks. In *Proc. of IEEE Infocom*, Miami, Florida, USA.
- [Lall et al., 2006] Lall, A., Sekar, V., Ogihara, M., Xu, J., and Zhang, H. (2006). Data streaming algorithms for estimating entropy of network traffic. In *Proc. ACM SIGMETRICS*.
- [Manku and Motwani, 2002] Manku, G. and Motwani, R. (2002). Approximate frequency counts over data streams. In *Proc. 28th International Conference on Very Large Data Bases (VLDB)*.

- [Muthukrishnan,] Muthukrishnan, S. Data streams: algorithms and applications. available at http://athos.rutgers.edu/~muthu/.
- [Ramabhadran and Varghese, 2003] Ramabhadran, S. and Varghese, G. (2003). Efficient implementation of a statistics counter architecture. In *Proc. ACM SIGMETRICS*.
- [Shah et al., 2002] Shah, D., Iyer, S., Prabhakar, B., and McKeown, N. (2002). Maintaining statistics counters in router line cards. In *IEEE Micro*.
- [Vardi, 1996] Vardi, Y. (1996). Internet tomography: estimating source-destination traffic intensities from link data. *Journal of American Statistics Association*, pages 365–377.
- [Whang et al., 1990] Whang, K., Vander-zanden, B., and Taylor, H. (1990). A linear-time probabilistic counting algorithm for database applications. *IEEE transaction of Database Systems*, pages 208–229.
- [Zhang et al., 2003] Zhang, Y., Roughan, M., Lund, C., and Donoho, D. (2003). An information-theoretic approach to traffic matrix estimation. In *Proc. ACM SIGCOMM*.
- [Zhao et al., 2007] Zhao, H., Lall, A., Ogihara, M., Spatscheck, O., Wang, J., and Xu, J. (2007). A data streaming algorithm for estimating entropies of od flows. In *IMC '07, Proceedings of the Internet Measurement Conference* 2007.
- [Zhao et al., 2005a] Zhao, Q., Kumar, A., Wang, J., and Xu, J. (2005a). Data streaming algorithms for accurate and efficient measurement of traffic and flow matrices. In *Proc. ACM SIGMETRICS*.
- [Zhao et al., 2005b] Zhao, Q., Kumar, A., and Xu, J. (2005b). Joint data streaming and sampling techniques for accurate identification of super sources/destinations. In *Proc. ACM IMC*.
- [Zhao et al., 2006a] Zhao, Q., Ogihara, M., Wang, H., and Xu, J. (2006a). Finding global icebergs over distributed data sets. In *ACM PODS*.
- [Zhao et al., 2006b] Zhao, Q., Xu, J., and Liu, Z. (2006b). Design of a novel statistics counter architecture with optimal space and time efficiency. In *Proc. ACM SIGMETRICS*.