BRICK: A Novel Exact Active Statistics Counter Architecture

Nan Hua¹, Bill Lin², Jun (Jim) Xu¹, Haiquan (Chuck) Zhao¹

¹Georgia Institute of Technology ²University of California, San Diego

*Supported in part by CNS-0519745, CNS-0626979, CNS-0716423, CAREER Award ANI-0238315, and a gift from CISCO

Outline

Motivation and current approaches

Our approach

Performance evaluation

Conclusion

Motivation

- Routers need to maintain very large arrays of perflow statistics counters at wirespeed
 - Needed for various network measurement, router management, traffic engineering, and data streaming applications
 - Millions of counters are needed for per-flow measurements
 - Large counters are needed (e.g. 64 bits) for worst-case counts during a measurement epoch
 - At 40 Gb/s, just 8 ns update time

Passive vs. Active Counters

• Passive counters:

 For collection of traffic statistics that are analyzed "offline", counters just need to be updated in wirespeed, **but** full counter values generally do not need to be read frequently (say not until the end of a measurement epoch)

• Active counters:

- However, a number of applications require the maintenance of active counters, in which values may need to be read as frequently as they are incremented, typically on a per packet basis
- e.g. in many data streaming applications, on each packet arrival, values need to be read from some counters to decide on actions that need to be taken

Naïve Approach

 Store full counters in SRAM, which supports both passive and active counter applications

Problem: Prohibitively Expensive

- e.g. 1 million flows x 64-bits = 64 Mbits = 8 MB of SRAM
- Number of flows increasing with line rates

Hybrid SRAM-DRAM Architectures

(Shah'02, Ramabhadran'03, Roeder'04, Zhao'06)

Basic idea

- Store full counters in DRAM (64-bits)
- Keep say a 5-bit SRAM counter, one per flow
- Wirespeed increments on 5-bit SRAM counters
- "Flush" SRAM counters to DRAM before they "overflow"
- Once "flushed", SRAM counter won't overflow again for at least say another $2^5 = 32$ (or 2^b in general) cycles

Problem: Passive Only

Can only read counter values at DRAM speed (e.g. 50 ns << wirespeed)

Interleaved DRAM Architectures

(Lin and Xu, HotMetrics'08)

Basic idea

- Exploit the fact that modern DRAMs have many internal memory banks (e.g. Rambus XDR has 16 internal banks per memory chip)
- New memory transaction can be initiated say every 4ns if to a different (internal) memory bank, even though memory latency is much higher
- Therefore, wirespeed counter updates can be achieved

Problem: Still Passive Only

Worst-case counter read time too high

Counter Braids

(Lu et al, Sigmetrics'08)

- Inspired by the construction of LDPC codes
 - Counter updates performed on an encoded structure called a "counter braid"
 - Counter values can be viewed as a linear transformation of flow counts
 - However, counter braids are "more passive" than SRAM-DRAM or DRAM architectures to find out the size of a single flow, one needs to decode all flow counts in a lengthy decoding process
- Problem: Also Passive Only

Approximate Counters

- Generally based on the approximate counting idea by Morris (1978)
 - Idea is to "probabilistically" increment a counter based on the current counter value
 - Small number of bits can be used (e.g. 5 bits per counter),
 and hence can be stored in SRAM for active retrieval
 - However, approximate counting in general has a very large error margin when the number of bits used is small (e.g. well over 100% error) – not acceptable in many applications
- Problem: Large Errors Possible

Summary

- Naïve "brute-force" SRAM approach
 - Too expensive
- SRAM-DRAM, DRAM, and counter braid approaches
 - Passive counting applications only
- Approximate methods
 - Not sufficiently accurate

Our Approach

Main observations

- The total number of increments during a measurement epoch is bounded by M cycles (e.g. M = 16 million cycles)
- Therefore, the sum of all N counters is also bounded by M
 (e.g. N = 1 million counters)

$$\sum_{i=1}^{N} Ci \leq M$$

- Although worst-case count can be M, the average count is much smaller (e.g. M/N = 16, then average counter size should be just log 16 = 4 bits)

Our Approach (cont'd)

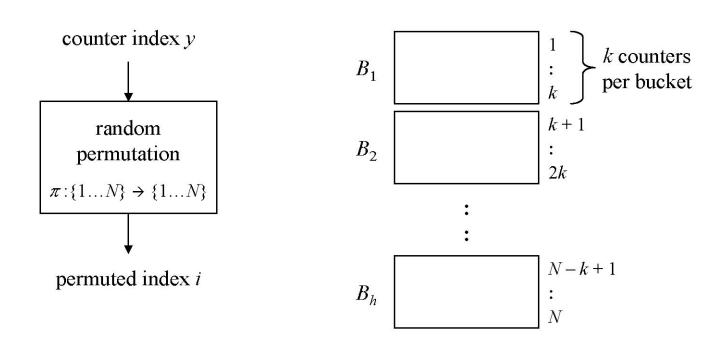
 To exploit the fact that most counters will be small, we propose a novel "Variable-Length Counter" representation called BRICK, which stands for Bucketized Rank-Indexed Counters

Only dynamically increase counter size as necessary

 The result is an exact counter data structure that is small enough for SRAM storage, enabling both active and passive applications

Basic Idea

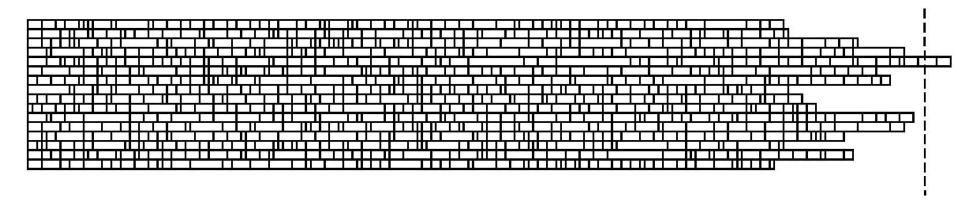
Randomly bundle counters into buckets



 Statistically, the sum of counter sizes per bucket should be similar

BRICK Wall Analogy

Each row corresponds to a bucket



- Buckets should be **statically** sized to ensure a very low probability of overflow
- Then provide a small amount of extra storage to handle overflow cases

A Key Challenge and Our Approach

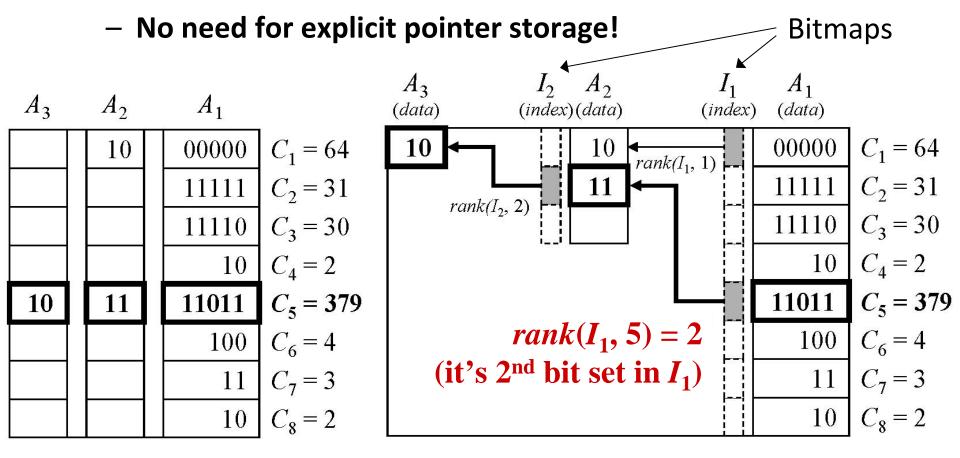
 The idea of variable-length data structures is not new, but expensive pointers are typically used to "chain" together different segments of a data structure

 In the case of counters, these pointers are as or even more expensive than the counters themselves!

 Our key idea is a novel indexing method called Rank Indexing

Rank Indexing

- How rank indexing works?
 - The location of the linked element is calculated by the "rank" operation, rank(A, b), which returns the number of bits set in bitmap A at or before position b



Rank Indexing

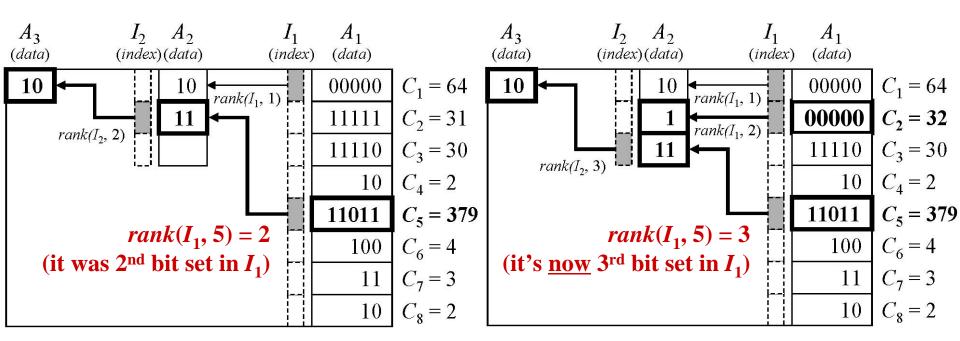
 Key observation: The rank operator can be efficiently implemented in modern 64-bit x86 processors

 Specifically, both Intel and AMD x86 processors provide a *popcount* instruction that returns the number of 1's in a 64-bit word

 The rank operator can be implemented in just 2 instructions using a bitwise-AND instruction and the popcount instruction!

Dynamic Sizing

- Suppose we increment C_2 , which requires dynamic expansion into A_2
- The update is performed by performing a variable shift operation in A_2 , which is also efficiently implemented with x86 hardware instructions



Finding a Good Configuration

- We need to decide on the following for a good configuration
 - $-\mathbf{k}$: the number of counters in each bucket
 - -p: the number of sub-arrays in each bucket $A_1 \dots A_p$
 - $-k_1 \dots k_p$: the number of entries in each sub-array $(k_1 = k)$
 - $w_1 \dots w_p$: the bit-width sub-array
- Given these configurations, we can decide on the probability of bucket overflow ${m P}_f$ using a binomial distribution tail bound analysis

Tail Bound (I)

• Due to the total count constraint $\sum_{i=1}^{N} C_i \leq M$

at most
$$\frac{M}{2^{w_1+w_2+\ldots+w_{d-1}}}$$
 (defined as m_d)

counters would be expanded into the $d^{\it th}$ Array

- Translated into the language of balls and bins :
 - Throwing $m_{\scriptscriptstyle d}$ balls into N bins
 - The capacity of each bin is only k_d .
 - Bound the probability that more than J_d bins have more than k_d balls

Tail Bound (II)

- Random Variable $X_i^{(m)}$ denotes the number of balls threw into i^{th} bin, when there comes m balls in total.
- into i^{th} bin, when there coils.

 The fail probability is $\Pr[\sum_{j=1}^h 1_{\{X_j^{(m)}>c\}} > J]$

(J is the number of full-size buckets pre-allocated) (now we forgot "d", since the calculation is the same for each level. For convenience, we use c to denote k_d)

- We could "estimate" fail probability by this way:
 - The overflow probability from one bin is *roughly* $\epsilon = \mathcal{B}inotail_{k,m/N}(c) \qquad \begin{array}{c} (\mathcal{B}inotail \text{ is tail probability} \\ \text{of Binomial distribution)} \end{array}$
 - Then the total fail probability would be roughly

$$\delta = \mathcal{B}inotail_{h,\epsilon}(J)$$

- This calculation is not strict! since Random Variable $X_i^{(m)}s$ are correlated under the constraint (although weakly)

Tail Bound (III)

- How to "de-correlate" the weakly correlated $X_i^{(m)}$?
- Construct Random Variables $Y_i^{(m)}$, i=1....h, which is **i.i.d** random variables with Binomial distribution (k, m/N).
- it could be proved that:

$$E[f(X_1^{(m)},...,X_h^{(m)})] \le 2E[f(Y_1^{(m)},...,Y_h^{(m)})]$$

where f is an nonnegative and increasing function.

 Then, we could use the following increasing indicator function to get the bound

$$f(x_1, ..., x_h) = 1_{\left\{ \left(\sum_{i=1}^h 1_{\{x_i > c\}} \right) > J \right\}}$$

Numerical Results

• Sub-counter array sizing and per-counter storage for k=64 and $P_f=10^{-10}$

(a) Sizing of sub-counter arrays.

p	k_2	k_3	k_4	k_5	w_1	w_2	w_3	w_4	w_5
3	15	3			$lg \frac{M}{N} + 3$	4	13		
4	25	10	2		$\lg \frac{M}{N} + 2$	2	4	12	
5	25	10	3	1	$\log \frac{M}{N} + 2$	2	3	4	9

(b) Size of each sub-counter array = $k_j \times w_j$ (in bits).

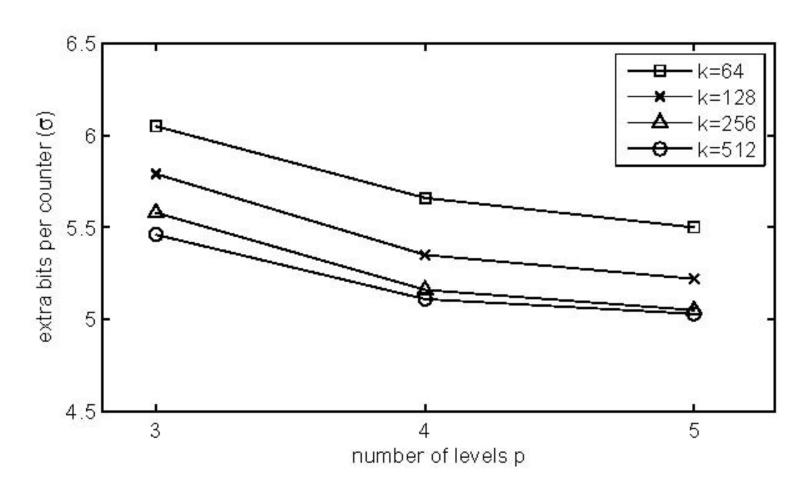
p	A_2	A_3	A_4	A_5
3	$15 \times 4 = 60$	$3 \times 13 = 39$		
4	$ \begin{array}{c c} 15 \times 4 = 60 \\ 25 \times 2 = 50 \end{array} $	$10 \times 4 = 40$	$2 \times 12 = 24$	
5	$25 \times 2 = 50$	$10 \times 3 = 30$	$3 \times 4 = 12$	$1 \times 9 = 9$

(c) Storage per counter.

p=3	p = 4	p=5	
$lg \frac{M}{N} + 6.05$	$\lg \frac{M}{N} + 5.66$	$lg \frac{M}{N} + 5.50$	

Effects of Larger Buckets

• Bucket size k = 64 works well, amenable to 64-bit processor instructions



Simulation of Real Traces

 USC (18.9 million packets, 1.1 million flows) and UNC traces (32.6 million packets, 1.24 million flows)

Percentage of full-size buckets

Trace	h	J	$\frac{J}{h}$
USC	17.3K	111	0.60%
UNC	19.5K	104	0.57%

Concluding Remarks

 Proposed an efficient variable-length counter data structure called BRICK that can implement exact statistics counters

 Avoids explicit pointer storage by means of a novel rank indexing method

Bucketization enables statistical multiplexing

Thank You