
Project 2 (due 10/30/2008, 11:59PM)  
An Optimized Skeletal Web Proxy Server  

 
In this project, you will use your web server code as the basis for a proxy server. The proxy 
server will have no functionality (yet!) other than being an intermediary between a web 
server and a web client. The proxy server will have to be optimized so that it can work very 
efficiently when communicating with your own web server running on the same machine.  
 
I GENERAL INSTRUCTIONS  
 
• Read the entire instructions carefully before you start implementing anything!  
• You may work individually or in teams of 2. If you team up, be sure to mention what 

code you used from each team member’s Project 1.  
• Be warned: this project will require more independent study of technical material than 

Project 1. This tends to be time consuming. Also, you have to decide on the design of 
your system.  

• Don’t get stuck! If something is hard to implement the way I suggest, approximate it and 
go on!  

• If you have any questions, ask me! Use the newsgroup for broad questions.  
 
II DESCRIPTION OF PROJECT STAGES  
The project consists of four stages. The stages are not balanced! (Stage 2 should take longer 
than the rest.)  
 
1. Web Proxy Server and Proxy Capable Client  
Using your web server code, implement a multithreaded web proxy server. (You should have 
as much code as possible in source files that are shared between the web server and the proxy 
server.) A proxy server is an intermediary between a web server and a client (the client could 
be another proxy server, however). That is, the proxy server receives requests for pages that 
would normally be served by different web servers. The proxy server will then need to 
contact the appropriate server and receive the contents of each page before it can serve them 
to the client. (Of course, the proxy server could have cached pages from previous requests, 
but caching is beyond the scope of this project.)  
The only kind of HTTP request you need to support in your proxy server is a GET request. 
Note, however, that a GET request that is addressed to a proxy server has to have an absolute 
URI (instead of a relative URI). That is, the requested address will begin with “http:” and will 
specify an internet name, instead of just specifying a relative file path.  
Test your proxy server with a standard browser. To set up Netscape to use a proxy, go to 
Edit->Preferences->Advanced->Proxies->Manual proxy configuration->HTTP Proxy. 
Additionally, change your web client from Project 1 to support web proxies. You can do this 
by adding a command line argument. For instance, your client could be executable as:  



web_client <#threads> [-proxy proxy_addr] <URL>+  
Make sure that your client issues requests with absolute URLs when connecting to a proxy 
server.  
 
2. Efficient Web Proxy  
Overview. An interesting special case is when your web proxy runs on the same machine as 
your web server and it receives a request for a file serviced by your web server. In this case, 
your web server and your web proxy server are essentially two modules of the same local 
application that just happen to run in different address spaces. This is a nice system structure 
because the role of the proxy server is conceptually very different from the role of the web 
server and one could run with or without the other. Web servers are responsible for serving 
pages (ensuring security, retrieving files from the file system, creating dynamic pages, etc.), 
whereas proxy servers can do higher-level page manipulation (e.g., compression, encryption, 
caching, etc.) without knowing anything about how pages are stored on disk or how they are 
generated dynamically.  
When your web server runs on the same machine as your proxy server, transmitting files 
between them through a socket is inefficient. Instead, the two processes can use shared 
memory to pass file data efficiently. This optimization is what you need to implement in this 
stage of the project. Note that this task requires additions both to the web server and the 
proxy server. Make sure that you can enable and disable the optimization (e.g., use a 
command line argument, or a compile-time flag). This is because you will need to compare 
the optimized and unoptimized versions eventually.  
 
Architecture and Technical Concerns. You are free to implement the basic functionality 
any way you want, but be sure to document your design in your report. Below, I give an 
outline of the functionality, but there is significant freedom at every step:  
 
• The proxy server receives a request and extracts the address of the target web server.  
• If the target web server is on the local machine, the proxy server checks to see if the web 

server is your own web server. There are two issues here. First, it is a (relatively) hard 
problem to check whether an internet name is a name (or alias) for the local machine. 
This project is not about implementing mature internet protocols, so just do something 
reasonable (like checking if the name maps to the IP address you know for the current 
host—do not just compare names!) The second issue is how to detect that the web server 
that will serve the page is your own. Again, any common sense solution will do. Explain 
the pros and cons of the solution you picked.  

• The proxy server issues a command to the web server and the web server knows to return 
file data in a shared memory segment. There are many ways to do this, but do not cheat: 
the proxy server should know nothing about accessing files from disk! (Otherwise your 
solution is not modular and might work for static content but would not work for 
dynamic content.) Here is one possible implementation: The proxy server allocates the 
shared memory, then passes an identifier for the shared memory segment to the web 
server with a special-purpose request (e.g., you can invent a “LOCAL_GET” request). 
The web server can then supply the (optional) response header and file data in shared 
memory (in chunks, if the shared memory segment is not big enough). Note that 
synchronization of some kind will be needed. Pthread shared mutexes are one way to do 
this, but there are others, too. Also note that all shared data between the web server and 
the proxy will have to be in the shared memory segment. Such shared data include, e.g., 



the size of the file data written, possibly a flag to show whether the web server has yet 
written the data or not, etc.  

• Keep the shared memory segments around so that they can be used in multiple 
connections. Ideally, you can keep a shared memory segment per proxy worker thread, 
but you may run into problems with the maximum number of shared memory segments 
for a single process, which can be very small (6?) in some systems. If this is the case, 
then your threads in the proxy server will have to compete for shared memory segments! 
Limiting the number of threads in your proxy server is not an acceptable solution (unless 
the limit is over 50)! This would limit the concurrency in the general case just to support 
a specific optimization. You can implement a synchronized queue of shared memory 
segments instead.  

 
The mechanism you will use to implement shared memory is standard System V shared 
memory system calls (shmget, shmat, etc.). A handout documenting this functionality will 
be given out in class, and posted online (password will be provided). There is also a Posix 
shared memory standard (shm_open, etc.), but you will not find implementations in many 
platforms (e.g., to my knowledge, there is a Solaris library but not a Linux one).  
 
Extra Credit Opportunities (attempt only after you have completed everything else).  
The above construction uses fast inter-process communication for file transfer but not for 
requests. Requests are short, but the overhead of connecting through a socket every time may 
still be significant. Your proxy server could use a fast IPC mechanism to communicate with 
the web server, instead. The problem in this case is that the web server has to wait both on a 
network socket (accept) and on a “local” channel. You can use signals as a (bad) solution, 
but I would not recommend it due to the inherent complexity of signal handling, especially 
with multithreaded programs. Instead, you can either use select or have two boss threads 
in your server. One will wait for network connections and one will wait for local connections 
(e.g., through a System V message pipe). This will also eliminate the need for an ugly 
special-purpose “LOCAL_GET” request. If you implement this, make sure to compare its 
performance with the simpler design that uses a socket for requests and you will get up to 
10% extra credit.  
Clearly state in your project which (if any) extra credit opportunities did you implement.  
 
3. Termination Handling  
System V shared memory identifiers are persistent with respect to the process. This means 
that if a shared memory identifier is not explicitly removed, it will stay in the system even 
after your server has exited. Shared memory segments will be created either by your web 
server or by your proxy server. You goal in this stage is to do a good job of cleaning up 
shared memory resources after the server(s) have exited. As your servers are probably 
programs running forever, the only way for them to exit is through termination by a signal. 
This could happen, for instance, by pressing Ctrl-C on the keyboard. Define and install signal 
handlers for some common signals, so that the server cleans up when it exits (“server” being 
either the proxy server or the web server, depending on which one creates the shared 
memory). There is no way to do a perfect job—there are signals that cannot be caught, like 
SIGKILL or SIGSTOP—but take care of some obvious cases. Test to see that your solution 
works (that is, the shared memory resources are removed).  
For signal reference, read the man page for sigaction and follow the pointers to other 
man pages. See also header file <sys/signal.h>.  



 
4. Experiments  
Using your client, compare the performance of your optimized and unoptimized web server 
and proxy server pairs. Show the results of experiments (give actual numbers) and explain. Is 
using shared memory faster or slower? Is it a bandwidth issue or a latency issue? (Think 
about the kinds of experiments you need to perform to separate the two.) How do you 
interpret the results? (What do they tell you about the operating system and its 
implementation of cross-process synchronization and/or sockets?) Also, compare the 
performance of the web server and proxy server pair to just the web server. How much 
slower does the proxy server make the system?  
 
III DELIVERABLES  
You should turn in the following:  
 
• Your code. Make sure it is obvious how to compile and run everything (i.e., supply a 

README file). Send everything as in Project 1 (email a code archive to TA and me).  
 
• A report outlining your design choices and the results of your experiments.  
 
• A brief explanation of what each team member did.  
 

Good luck! Have fun!!! 


