
CS4210/CS8803GIO Project 1
A Rudimentary but Powerful Web-Server

Due date: Sep 25 at 11:59pm

In this project, you will design and implement a multi-threaded web server for static pages. At a
first approximation, a web server is a server program that implements the HTTP protocol. Your
web server should be based on a sound, scalable design.

I GENERAL INSTRUCTIONS

• Read these instructions carefully! They may save you a lot of time later.
• This project can be done individually or in pairs
• Subsequent projects will be based on this one and not always incrementally! Follow good

software engineering practices – you will have to live with the consequences. (As a
suggestion: use unit tests, document separately what data are protected by what
mutex/condition variable, isolate into libraries code pieces that you can reuse, comment your
code thoroughly, make your programs as flexible as possible.)

• Be sure to start early with the project; you need to have time to complete the implementation,
but also to design experiments and perform analysis!

• You may use any machine(s) that has a reasonable implementation of Pthreads (most likely
Solaris or Linux). In the end, your server should run on some GT machine (either CoC or
OIT). Pthreads are installed on the OIT machines, so you do not need to use CoC resources
for development but you may need to do so for experiments.

• If you want to use the CoC computers and you don’t have an account, apply for one by filling
out an online account request form (http://www.cc.gatech.edu/tso/forms). The
administrators already have the class roster and will give you an account - I do not need to
approve the applications individually.

• Use the pointers on the web page for reference to concrete technical information (e.g.,
Pthreads tutorials and examples, specification of the HTTP protocol, thread debugging
document, etc.). If you are unfamiliar with network programming, read the socket
programming examples on the class web page and the man pages for the socket, bind,
listen, accept, and connect calls. The socket code patterns that you will need for
clients and servers are very basic.

• Additional information will be provided regarding access to the Warp cluster, which will be
made available to you for experimentation.

• Use the newsgroup for broad questions. For questions that are not of general concern, ask me.

II DESCRIPTION OF PROJECT STAGES

The project consists of three stages:

1. Web Server
Overview :
Implement a simple web server. Strictly speaking, you are only required to implement a tiny
subset of the HTTP protocol, so formally your server should not be called an HTTP server. It
should be good enough for most common browsers, though.

You only need to support “simple” HTTP requests and responses
request: GET <path>, followed by a carriage return and line feed;

response: the body of the requested document and connection termination afterwards.
Additionally, implement some minimal failure functionality (e.g., return a “404 Not Found”
instead of just dropping the connection).

You can find the specification of the HTTP protocol on the Web, for instance, in:
http://www.w3.org/Protocols/rfc2616/rfc2616.html. You can implement
more than the required functionality (some extra credit opportunities exist), but this is not the
focus of the project. An easy way to implement the tedious parts of HTTP is to get code from an
existing implementation. For instance, the class webpage has a pointer to micro_httpd
(http://www.acme.com/software/micro_httpd/) which implements much of
HTTP in about 150 lines of C code!

Your server should be runnable with a parameter determining the port on which it listens for
connections.

Architecture:
There are several good designs for high-performance UNIX web servers. The one we will follow
consists of a “boss” thread receiving requests and dispatching them to “worker” threads. (If you
want to follow a different design, see me!) Worker threads then take over the rest of the
communication until the request is satisfied (i.e., the requested file is sent). To avoid the overhead
of creating new threads for each incoming connection, you should implement a pool of worker
threads that consume work requests produced by the boss thread. The size of the pool (i.e., the
number of threads) should be a run-time parameter. It is a good idea to have the scheduling scope
for all your threads to be the system scope (i.e., each of your threads is mapped to a different
kernel thread so that you get independent scheduling). This is something you can experiment
with.

Start your server running, preferably on your local machine. Make it look for files in some
directory on the local disk (e.g., /var/tmp/<yourname>). (This is not too important right
now but it will be in later stages, when we will be doing performance measurements.) For
security reasons, make sure your server is restricted in terms of what files it will return to
clients!!! (See “security”, below.) Point your browser to your server and make sure that it works.
That is, if you have installed your server on machine nonexistent.cc.gatech.edu, port
8008, give your browser the URL
http://nonexistent.cc.gatech.edu:8008/file1.html (assuming you have a
file called file1.html in the directory that your server searches).

Security:
It is very important that you ensure the security of your files while running the server. Anyone
who suspects you might have an unprotected server running can scan the ports and use the server
to get your private files! For instance, if I am running a web server on the /var/tmp directory
of ocelot.cc.gatech.edu, port 8008, someone could try to access
http://ocelot.cc.gatech.edu:8008/../../net/hc281/ada/private
and grab file private from my directory.

If you had administrator privileges, you could restrict the files your server can reach through the
chroot command or system call (see the man pages). Unfortunately, this is not an option on
the lab machines. The easiest way to protect yourselves is to scan the filename that the web client
is trying to retrieve and make sure it is an approved one. For instance, you could make sure that
the filename retrieved has no more than one “/” character.

Hardcoding:
Please do not hard code machine names, port numbers, or your local directory in the code you
submit. The only thing you may hardcode is if the webserver is searching for files relative to the
current directory where it executes (.).

2. Testing Tools
Overview. Now that the web server is running, you will need some means for evaluating its
performance as well as the performance of future enhancements to the design. You probably
don’t have access to a few hundreds of human users who can put a load on your server.
Therefore, we will need to write a client program to simulate multiple user requests. Write such a
web client. It should be a program entirely independent from your web server, that is, a different
executable, runnable on a different machine if needed. Of course, you may reuse code from the
server, if needed.

The client should be multithreaded for performance. The number of threads it will create should
be a parameter. Each thread can access the web server a fixed number of times (e.g., 10),
requesting files uniformly at random. (In practice, uniform random accesses may not be a good
way to evaluate performance. Nevertheless, real-world access patterns are not the focus of this
project.) The set of all files the clients can access should be a compile-time or run-time parameter.
Make sure that your client keeps track of how many bytes it retrieved from the server. This could
be either a global variable or a per-thread variable. In the end, your program should report how
many bytes it got from the server.

Warning:
Some network calls that your client may use are not thread safe but have thread safe variants. The
usual gethostbyname call is one of these. Overall, you are responsible for ensuring the
thread safety of the calls you use.

Extra credit. In addition to your multithreaded client, you may use existing tools and/or
benchmarks for testing webserver performance (e.g., httperf).

3. Experiments
Overview:
Now test your server using your client. For the experiments, you would preferably need a
machine where you are the only active user, but this could be any old and slow workstation in a
public lab. Make several copies of a file in /var/tmp/ or any other local directory. Make your
client access all the files at random. Does your server fail when overloaded? Does it just die or
does it gracefully refuse connections? Make sure the server is quite robust. Test its limits. (Make
sure you are running on files stored locally, otherwise you are only testing the limits of the
network connection.) Vary running the client and server on one vs. multiple machines. Vary the
number of threads in the client and the number of threads in the server. Vary the number of files
and file sizes of the files you are retrieving by a couple of orders of magnitude. Keep notes of
your server’s throughput in terms of MB/s retrieved by the client. Do you see any difference for
different numbers of server or client threads?

Overall, you are responsible for coming up with a reasonable test plan. You do not have to
demonstrate that many threads are better, but make sure you experiment along a couple of axes of
variation and that you give a credible explanation for your observations. This is not a one-way
process: your explanation should influence your experimentation and vice-versa.

Specify clearly the type of machine where your server was executing. Test the server on uni- vs.
multi-processor machines (SMP or dual-/quad-core), and provide an explanation for the observed
performance changes, if any. Provide explanation for the observations.

Experimentation Suggestions and Hints (these are not requirements!):
Most likely you will be working on a uniprocessor, non-RAID system. The performance benefits
of threading in this environment become evident only on some workloads. Since your server is
multithreaded by nature (it has the boss thread and at least one worker), the difference between 1
worker thread and 10 may be minimal (e.g., < 10%). (You are already getting a performance
boost compared to the case of a single thread that both accepts connections and services requests.)
To see significant benefits from using more threads, you need substantial I/O, but also some CPU
activity to execute while other threads are doing I/O.

I/O is a little tricky: since you are making repeated requests, your files are likely cached, so no
disk I/O may occur. If you make more files (e.g., I tried my client with 2000 copies of the
index.html file from the CoC web page), you can be sure to get a lot of disk I/O in your
workload. If you are working on the console, you will be able to tell right away whether your
requests are serviced from the disk or not, by just listening to the disk noise. Now, if you make
sure that your server threads have something to do on the CPU (e.g., you do a floating point
calculation on each byte of the retrieved file), you will notice that your performance varies a lot
depending on the number of worker threads in the server.

There are other ways to exploit concurrency by balancing the activity of different subsystems. For
instance, you can try to have your client access a few (20-30) large files (e.g., 2MB or more).
(Why does this (not) work?) Of course, for a really dramatic increase in the observed
performance, you would need a multi-CPU machine with a RAID, but do not try your
experiments on server machines that other students are sharing!!!

III DELIVERABLES

You should turn in the following by email to Srikanth and me:
• Your code (the source code, not the executable). Make sure it is obvious how to unpack,

compile and run everything (i.e., supply a README file).
• In your README or report, give the name of a specific public CoC machine where

everything has been tested and works.
• A report of your observations, answers to questions I asked above, etc. Use specific

performance numbers to justify any claims you make. This is clearly an open-ended
assignment, but, as a rule of thumb, you can get full points if you are brief but accurate.

• Use as subject [CS4210] Project 1.

Good luck and have fun!

