
Virtual Memory Primitives for 
User Programs

Andrew Appel and Kai Li



Objectives

• User programs can benefit from use of VM 
primitives
– Efficiency is important, not dominated by disk 

access overhead
– Many examples

• What’s the performance on set of OS/arch
• Some design considerations



VM Primitives
• Trap: Handle page-fault traps in user mode
• Prot1: Decrease accessibility of a page
• ProtN: Decrease accessibility of N pages

– More efficient than calling Prot1 N times
• Unprot: Increase accessibility of a page
• Dirty: Return list of written pages since last call

– Can be emulated with ProtN, Trap, and Unprot
• Map2: Map same physical page at two different 

virtual addresses, at different access levels, in 
the same address space



Example: Concurrent Garbage 
Collection

• From-space and to-space
• Traverse reachable objects and move from from-space 

to to-space; eventually discard from-space
• ProtN from-space and initiate gc (collector)
• Do not block running threads (mutator)
• On mutator Trap – move object and Unprot
• Must make sure in same process collector and mutator

have different privileges – Map2
• Don’t have to worry about synchronization – taken care 

by protection restriction
• Benefits from small page size



Example: Virtual Shared Memory

• One writer multiple readers
• Trap, Prot1, Unprot – to modify read/write 

access to shared pages; to get current 
copy of remote page

• Map2 – trap handler needs access to page 
protected from clients 

• Small page size useful (for false sharing)



Example: Concurrent 
Checkpointing

• Simple approach: stop all threads, copy all 
state, restart all threads

• More efficient approach:
– ProtN state and start copying/checkpointing
– On Trap – copy and Unprot
– For repeated checkpoints: Dirty works best
– Suggestion: medium page sizes (why?)



Other examples:
• Generational garbage collection
• Persistent stores
• Extending addressability
• Data-compression paging
• Heap overflow detection



How did real systems perform



Or scaled performance…

• Numbers suggest it’s possible to get good 
performance, but not necessarily what’s done…



Design Considerations
• Make pages more accessible one at a time, less 

accessible in batches (ProtN)
– TLB flushes on multi-processors

• Page size – small?
• Map2:

– Alternatives: system call to copy to-from protected area (3x), 
put service in different process, put service in kernel -> not 
good…

– Map2 with physically addressed caches – ok
– Virtually addressed: consistency challenge

• Pipelining:
– Can you undo instruction effects after page fault
– Most of the examples are semi-synchronous, so ok.


