Virtual Memory Primitives for
User Programs

Andrew Appel and Kai LI

Objectives

e User programs can benefit from use of VM
primitives
— Efficiency is important, not dominated by disk
access overhead

— Many examples
 What's the performance on set of OS/arch

e Some design considerations

VM Primitives

Trap: Handle page-fault traps in user mode
Protl: Decrease accessibility of a page

ProtN: Decrease accessibility of N pages
— More efficient than calling Protl N times

Unprot: Increase accessibility of a page

Dirty: Return list of written pages since last call
— Can be emulated with ProtN, Trap, and Unprot
Map2: Map same physical page at two different

virtual addresses, at different access levels, In
the same address space

Example: Concurrent Garbage
Collection

From-space and to-space

Traverse reachable objects and move from from-space
to to-space; eventually discard from-space

ProtN from-space and initiate gc (collector)
Do not block running threads (mutator)
On mutator Trap — move object and Unprot

Must make sure in same process collector and mutator
have different privileges — Map2

Don’t have to worry about synchronization — taken care
by protection restriction

Benefits from small page size

Example: Virtual Shared Memory

One writer multiple readers

Trap, Protl, Unprot — to modify read/write
access to shared pages; to get current
copy of remote page

Map2 — trap handler needs access to page
protected from clients

Small page size useful (for false sharing)

Example: Concurrent
Checkpointing

o Simple approach: stop all threads, copy all
state, restart all threads

* More efficient approach:
— ProtN state and start copying/checkpointing
— On Trap — copy and Unprot
— For repeated checkpoints: Dirty works best
— Suggestion: medium page sizes (why?)

Other examples:

» Generational garbage collection

e Persistent stores

e Extending addressability
e Data-compression paging
 Heap overflow detection

Methods TRAP | PROT1 | PROTN | UNPROT | MAPZ | DIRTY | PAGESIZE
Concurrent GC v v v v v
SVM V4 v v v Vv
Concurrent checkpoint v vV Vv i Vv
(venerational GC v Vv v i J
Persistent store v v v v
Extending addressability v * * v v v
Data-compression paging v * * v v

Heap overflow

How did real systems perform

TRAP TRAP]

. proT1l PROTN _
Machine 08 ADD TRAP UNPROT UNPROT MAPZ PAGESIZE
Sun 3/60 SunOS 4.0 0.12 760 1238 1016 | yes 8192
Sun 3/60 SunOS 4.1 0.12 2080 1800 | yes 8192
Sun 3/60 Mach 2.5(xp) 0.12 3300 2540 | yes 3192
Sun 3/60 Mach 2.5(exc) | 0.12 3380 2880 ves 8192
SparcStn 1 SunOS 4.0.3¢ | 0.05 *919 39 | ves 4096
SparcStn 1 SunOS 1.1 0.05 7230 1008 909 | ves 1096
SparcStn 1 Mach 2.5(xp) 0.05 1550 1230 ves 1096
SparcStn 1 Mach 2.5(exc) | 0.05 1770 1470 | yes 4096
DEC 3100 Ultrix 4.1 0.062 210 395 244 no 4096
DEC 3100 Mach 2.5 (xp) | 0.062 937 766 no 1096
DEC 3100 Mach 2.5 (exc) | 0.062 1203 1063 no 1096

pvax 3 Ultrix 2.3 0.21 314 612 AR6 no 1024
1386 on 1PSC/2 NX/2 0.15 172 502 252 | ves 1096

Or scaled performance...

Sun 3/6045un054.0
Sun 3/60+5Sun054.1
Sun 3/60+Mach2.5(xp)
Sun 3/60+Mach2.5(exc)
SparcStnl+5Sun054.0.5¢
SparcStnl+Sun051.1
SparcStnl+Mach2.5(xp)
SparcStnl+Mach?2.5(exc)
DEC3100+Ultrix4.1
DEC3100+Mach2.5(xp)
DEC3100+Mach2.5(xp)
uVaxs+Ultrixd.1 |
13864+NX/2]
|
U

| |
10,000 20,000

 Numbers suggest it’s possible to get good
performance, but not necessarily what's done...

Design Considerations

Make pages more accessible one at a time, less
accessible in batches (ProtN)

— TLB flushes on multi-processors

Page size — small?

Map2:

— Alternatives: system call to copy to-from protected area (3x),

put service in different process, put service in kernel -> not
good...

— Map2 with physically addressed caches — ok

— Virtually addressed: consistency challenge
Pipelining:

— Can you undo instruction effects after page fault

— Most of the examples are semi-synchronous, so ok.

